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Abstract
Algorithms for finding communities in complex networks are generally unsupervised,
relying solely on the structure of the network. However, these methods can often fail to
uncover meaningful groupings that reflect the underlying communities in the data,
particularly when they are highly overlapping. One way to improve these algorithms is
by incorporating human expertise or background knowledge in the form of pairwise
constraints to direct the community detection process. In this work, we explore the
potential of semi-supervised strategies to improve algorithms for finding overlapping
communities in networks. We propose a method, based on label propagation, for
finding communities using pairwise constraints. Furthermore, we introduce a new
strategy, inspired by active learning, for intelligent constraint selection, which is
designed to minimize the level of human annotation required. Extensive evaluations
on synthetic and real-world datasets demonstrate the potential of this strategy for
effectively uncovering meaningful overlapping community structures, using a limited
amount of supervision.

Introduction
Inmany real-world applications involvingmachine learning, the tasks do not neatly corre-
spond to the standard distinction between supervised and unsupervised learning. Rather,
a limited degree of background knowledge or human annotation would be available to
guide the process. In the area of network analysis, tasks such as community detection can
potentially benefit from the introduction of “lightweight” supervision originating from
domain experts or crowdsourced annotations. Usually, this knowledge is encoded as con-
straints, indicating that a pair of nodes in the network should always be assigned to the
same community or should never be assigned to the same community. For instance, we
might be interested in grouping users on a social media platform such as Twitter, based
primarily on their follower connections, in order to discover communities of individu-
als with shared ideologies. In order to improve our ability to achieve this, and go beyond
simply looking at connections, we could present pairs of user profiles to a human anno-
tator (referred to as the “oracle”) and ask whether those two users should be assigned
to the same community or different communities. By harnessing this kind of external
knowledge, we can potentially uncover communities of users, which would otherwise be
difficult to identify using methods that are solely unsupervised.
Similar scope exists in other areas where community finding has previously been

applied and relevant background knowledge exists. In the context of biological network
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analysis, researchers have frequently attempted to discover communities corresponding
to complexes in protein interaction networks (Jonsson et al. 2006). Here, constraints
might be derived from external knowledge bases, such as gene ontologies, in order to
support the more accurate identification of biologically-meaningful groups. In the case
of other inter-disciplinary applications, such as the extraction of communities from lit-
erary character networks (Grayson et al. 2016), constraints can provide a means of
incorporating “human in the loop” domain expertise into the community finding process.
Initial work in community detection focused on the development of algorithms to pro-

duce disjoint groups (Blondel et al. 2008). However, in many real-world networks we
observe pervasive overlap, where nodes belong to many highly-overlapping groups (Ahn
et al. 2010). More recently, overlapping community finding algorithms have been devel-
oped for application to these networks (Ahn et al. 2010; Lee et al. 2010), but the work has
focused only on the unsupervised case. In contrast, work on semi-supervised community
finding continues to focus on cases where communities are strictly required to be disjoint
(Li et al. 2014).
The aim of this study is to explore the potential of semi-supervised strategies, in partic-

ular those employing pairwise constraints, to improve algorithms for finding overlapping
communities in social networks. To the best of our knowledge, these constraints have not
been previously considered in the context of overlapping communities in the literature.
To address this deficit, we introduce two main contributions. The First contribution, we
describe a semi-supervised method for overlapping community finding based on a label
propagation strategy, which has previously been applied in a purely unsupervised con-
text (Xie et al. 2011). The proposed method, referred to as Pairwise Constrained SLPA
(PC-SLPA), involves a speaker-listener information propagation process (Alghamdi and
Greene 2018). To encode external supervision, we use pairwise constraints to influence
the community finding process.
Since the choice of constraints in semi-supervised learning has been shown to be highly

important (Leng et al. 2013), we propose a new strategy, integrated into PC-SLPA, for
selecting constraint pairs for which the oracle should be queried. This strategy is specif-
ically designed for the case where communities overlap in a network. However, in most
networks only a small percentage of the nodes would provide truly informative pair-
wise constraints from the perspective of community finding. Thus, we introduce both
semi-supervised learning and active learning to propose our second contribution: a novel
active semi-supervised algorithm based on PC-SLPA with an active pairwise constraint
selection component for selecting informative constraints with limited annotation bud-
get (AC-SLPA). The key challenge is to minimize the level of supervision required, while
maintaining or improving our ability to find meaningful community structure. Based on
extensive experiments, involving both synthetic and real networks, the results show that
the introduction of a relatively small number of constraints can substantially improve our
ability to correctly uncover the underlying communities in the data.
The remainder of this paper is structured as follows. “Related work” section provides

a summary of relevant work pertaining to semi-supervised learning, active-learning,
and community finding. In “Methods” section we describe the proposed methods for
community finding, together with an appropriate constraint selection strategy, which
incorporates a novel active pairwise constraint selection component. In “Evaluation”
section we perform a benchmark evaluation of these techniques on a range of synthetic
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and real networks. Finally, “Conclusion” section presents suggestions for extending this
work in new directions.

Related work
To provide context for our work, in this section we will describe relevant existing
work on community detection in “Community finding” section, semi-supervised learn-
ing in “Semi-Supervised learning in community finding” section, and active learning in
community detection in “Active learning” section.

Community finding

Finding non-overlapping communities. Algorithms in this context can be broadly
grouped into three types: (1) Hierarchical algorithms which construct a tree of com-
munities based on the network topology. These can be one of two types: divisive
algorithms (Girvan and Newman 2002) or agglomerative algorithms (Clauset et al. 2004).
(2)Modularity-based algorithmswhich optimize a well-knownmodularity objective func-
tion to uncover communities in a network (Newman 2006). (3) Other algorithms which
include those based on label propagation approaches (Xie et al. 2011), spectral methods
that make use of the eigenvectors of a graph’s adjacency matrix, and methods based on
statistical modeling (Fortunato 2010).

Finding overlapping communities. Existing algorithms in this context can be classified
into four main categories:
(1) Clique percolation methods: Many algorithms for detecting overlapping communi-

ties use cliques based on the assumption that the internal connections of a community
are likely to form cliques due to their high density. One of the most popular techniques
has been in this category the Clique Percolation Method (CPM) proposed in Palla et al.
(2005). This method first finds all maximal cliques in a network, and then constructs a
clique-clique overlap matrix using the algorithm from (Everett and Borgatti 1998). The
CFinder (Adamcsek et al. 2006) algorithm is a widely-used implementation of the CPM
strategy.
(2) Local expansion methods: This category of algorithms detects communities by start-

ing with initial seeds (i.e., single nodes or small groups of nodes), and then expanding
them into communities by adding nodes that maximize a given quality function. OSLOM
(Lancichinetti et al. 2011) is an example of such an algorithm, which expands commu-
nities based on a fitness function measuring the statistical significance of communities
with respect to random variations. Another example is MOSES (McDaid and Hurley
2010), which is based on a statistical model and uses an objective function similar to that
employed by many greedy optimization techniques. Other algorithms, which follow this
type of expansion strategy include LFM (Lancichinetti et al. 2009), GCE (Lee et al. 2010),
and EAGLE (Shen et al. 2009).
(3) Link clustering algorithms:This category of algorithms detects communities by split-

ting the network edges rather than the nodes, typically by using a line graph (Amelio and
Pizzuti 2014).
(4) Label propagation algorithms: These attempt to group each node into a commu-

nity based on its neighboring nodes’ affinities. COPRA (Gregory 2010) was the first
algorithm which followed this approach. More specifically, COPRA allows a node label
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to have more than one community identifier. However, one challenge with COPRA is
the selection of an appropriate value for the input parameter v,the maximum num-
ber of communities, which effectively controls community overlap. This limitation
was overcome by BMLPA (Wu et al. 2012), which introduced a new balanced update
strategy that does not limit the number of communities to which a node can be
assigned.
Another algorithm based on label propagation is SLPA (Xie et al. 2011), where

every node is associated with a corresponding memory to store labels received from
other nodes, in terms of their frequency of occurrence. During the process of updat-
ing nodes’ labels, SLPA takes into account past information that has been observed
about each label to make an update decision. This algorithm implements the prin-
ciple of speaker-listener based information propagation process. Each node can take
the role of either a listener or a speaker, and the roles are switched based on a
node’s state – i.e. whether a node is providing information or consuming it. In the
listener state, a node accepts labels from its neighbors, based on certain rules. In
the speaker state, the node chooses a label from its own memory according to cer-
tain rules and sends it to neighboring listener nodes. Initially each node is assigned
to its own unique label. Then an iterative evaluation stage is repeatedly applied,
as follows:

1. Randomly select one node as a listener.
2. Each neighbor of the listener randomly chooses a label from its own memory with

a probability proportional to the frequency of occurrence of this label, and sends
the label to the listener.

3. The listener chooses the most popular label among the received labels, and then
adds it to its own memory.

As a stopping criterion, SLPA stops when reaching a predefined maximum number of
iterations, T. Overall, SLPA produces relatively stable outputs when T is more than 20,
regardless of network size or structure. A subsequent post-processing stage converts each
node?s memory into a probability distribution of labels. If the probability of the frequency
of a certain label is less than a predefined threshold r ∈[ 0, 1], the label is removed from
a node?s memory. After this thresholding step, all nodes which have the same label are
grouped into one community. Nodes that have more than one label, naturally belong to
multiple communities. The main feature of this algorithm is the accumulative knowledge
of previously-seen labels, which is not present in other label propagation algorithms.
Other methods: A number of overlapping community detection algorithms have been

proposed, which cannot be neatly classified into any of the categories above. For instance,
CONGA (Gregory 2007) and CONGO (Gregory 2008) are both based on the concept
of betweenness, which refers to the number of shortest paths that pass through a node
in the network. An alternative strategy for finding communities is non-negative matrix
factorization (NMF) (Lee and Seung 1999), a general unsupervised learning strategy for
performing factorization-based dimensionality reduction and clustering, simultaneously.
Recently NMF has been applied to the problem of community detection, in order to fac-
torize the affinity matrix representation of a network, as implemented in algorithms such
as BIGCLAM (Yang and Leskovec 2013), BNMTF (Zhang and Yeung 2012), and NMFGR
(Liu et al. 2016).
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Semi-Supervised learning in community finding

Several types of prior knowledge have been used in semi-supervised strategies to guide
the community detection process. The most widely-used approach has been to employ
pairwise constraints, eithermust-link or cannot-link, which indicate that either two nodes
must be in the same community or must be in different communities. This strategy has
been implemented via several algorithms, including modularity-based methods (Li et al.
2014), spectral partitioning methods (Habashi et al. 2016; Zhang 2013; Zhang et al. 2013),
a spin-glass model (Eaton and Mansbach 2012), and matrix factorization methods (Shi
et al. 2015; Zhang 2013). Such approaches have often provided significantly better results
on benchmark data, when compared to standard unsupervised algorithms. However, all
of these algorithms have been designed to only find non-overlapping communities.
Other authors have used different kinds of prior knowledge to provide limited super-

vision for community detection. Ciglan et al. (2010) developed an algorithm for finding
communities with size constraints, where the upper limit size of communities is given as
a user-specified input. This algorithm is based on standard label propagation methods
for finding disjoint communities. In Wu et al. (2016) an optimization algorithm based
on density constraints was proposed. This algorithm constructs an initial skeleton of the
community structure by maximizing a new criterion function, which incorporates con-
straints to only find communities with intra-cluster densities above a given threshold.
The remaining nodes are subsequently classified with respect to this skeleton. Other
algorithms have used node labels as prior knowledge to improve the performance of
community detection, using an approach which resembles traditional training data in
classification (Leng et al. 2013; Liu et al. 2014; Wang et al. 2015). Liu et al. (2015) devel-
oped a method that uses a semi-supervised label propagation algorithm based on node
labels and negative information, where a node is deemed not to belong to a specific
community.
The majority of algorithms in this area aim at detecting disjoint groups of nodes,

whereas many real-world networks naturally contain overlapping community structure
(Adamcsek et al. 2006). To the best of our knowledge, very little work has been done in the
context of finding overlapping communities from a semi-supervised perspective. Dreier
et al. (2014) performed some initial work in the area, using supervision in the forming of
seeding. Specifically, a small set of seed nodes was selected, whose affinities to a commu-
nity was provided as prior knowledge in order to infer the rest of the nodes’ affinities in
the network. In contrast, for our study, we focus on the problem of semi-supervised com-
munity detection based on the use of pairwise constraints, since they have proven to be
effective in a range of learning contexts (Basu et al. 2004; Greene and Cunningham 2007).

Active learning

Active learning for classification. Active learning refers to a sub-field of supervised
machine learning, where the goal is to build models that achieve high classification accu-
racy, while using as little labeled training data as possible. In the standard supervised
learning scenario, an algorithm is trained on a predefined batch of labeled data. Since
there is no interaction with a human during the training process, this is referred as pas-
sive learning. In contrast, in an active learning scenario, the model carefully selects the
training instances from which the model learns in an incremental manner. This is done by
interactively making queries to an “oracle” for labels during the training process. Queries
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are usually structured so as to minimize the number of requests that must be made to the
oracle, thus reducing the “budget” required for manual work and avoiding the risk of feed-
ing the algorithm with redundant or uninformative information (Krishnakumar 2007).
A variety of different active learning strategies have been proposed. Most involve either
stream-based sampling, which selects instances for labeling from a continuous stream of
unlabeled data, or pool-based sampling, which selects instances for labeling from a fixed
collection of unlabeled data. The key component of active learning is the query selection
strategy, which determines which instances should be labeled by the oracle. Query strate-
gies can be organized into twomain approaches (Prince 2004). The first approach refers to
model-based strategies, which generate a model using the current labeled instances, and
assess the informativeness of the unlabeled instances based on the derived information
from this model. The second general approach for query selection involves a model-free
strategy, which evaluates the informativeness of a given instance based on the features
of the entire data set. An example method of this latter approach is density-weighted
selection, which chooses the instances that the model is most uncertain about, while also
ensuring that the instances are representative of the underlying distribution of the data
(Donmez et al. 2007).

Active learning for community detection. Beyond the task of classification,
researchers have also applied the general concept of active learning to other machine
learning tasks, such as semi-supervised clustering (Basu et al. 2004; Greene and
Cunningham 2007). This has subsequently motivated the idea of extending active
learning to the field of community detection. However, only limited research has been
done on this problem until now, with researchers focusing solely on the problem of finding
disjoint communities. Leng et al. (2013) did the first work on active learning in commu-
nity detection. Their proposed method aims to find a small number of “core nodes” that
can cover as many underlying communities in a given network as possible, which are sub-
sequently passed to the oracle for annotation. This method uses a model-free-inspired
selection strategy, where the nodes are chosen solely based on their local density and
representativeness of the communities in a given network. Another model-free-inspired
approach was proposed by Cheng et al. (2014), which uses pairwise constraints in order to
provide supervision. Specifically, a fitness score is calculated for each node in the network
and nodes with values larger than a given threshold are added to a target set. This result-
ing target set is then partitioned into clusters, and for each cluster the maximal degree
nodes along with the boundary nodes are chosen as pairs to query the oracle for label-
ing as must-link or cannot-link. Yang et al. (2015) also proposed an active learning-style
method, which combines pairwise constraints with NMF community detection. Firstly,
NMF is applied on the basic network topology. Then an entropy measure is applied to the
results, which actively identifies the most uncertain edges for which the endpoint nodes
should be labeled by the oracle. A final stage involves removing certain inter-community
edges based on the label information.

Methods
In “Related work” section we observed that the majority of work in the semi-supervised
learning for community detection literature has focused on the problem of finding dis-
joint groups, to the exclusion of the task of finding overlapping groups. Therefore, we



Alghamdi and Greene Applied Network Science            (2019) 4:63 Page 7 of 27

have sought to address this gap in the literature by proposing two novel overlapping com-
munity finding algorithms which use pairwise constraints to encode external supervision,
and suitable for application to arbitrary undirected, unweighted networks. Both algo-
rithms adopt a label propagation approach for community finding, due to the conceptual
simplicity of this approach and also due to the linear time complexity. Therefore, we have
used SLPA (Speaker-listener Label Propagation Algorithm) (Xie et al. 2011), which is a
representative example of label propagation approach. The main feature of SLPA algo-
rithm is the accumulative knowledge of previously-seen labels, which is not present in
other label propagation algorithms. Our first proposed algorithm, referred to as Pairwise
Constrained SLPA (PC-SLPA), is described in “Semi-Supervised overlapping community
finding” section.
Since the choice of constraints in semi-supervised learning has been shown to be highly

important (Leng et al. 2013), in “Active semi-supervised overlapping community fin-
ding” section we propose a further strategy for selecting informative constraint pairs to
pass to the oracle for annotation. Since this strategy is inspired by previous work from
active learning, we refer to it as Active Semi-supervised SLPA (AC-SLPA). The goal of this
approach is to select informative constraints while using a limited annotation budget.

Pairwise constraints for overlapping communities

Before describing the proposed methods, we firstly discuss the issue of selecting appro-
priate pairwise constraints for networks containing overlapping communities.
Given a network that contains a set of nodes V, semi-supervised pairwise constraints

typically take two possible forms:

1. A must-link constraint specifies that two nodes must be in the same community.
Let CML be the must-link constraint set: ∀ vi, vj ∈ V where i �= j, (vi, vj) ∈ CML
indicates that two nodes vi and vj must be assigned to the same community.

2. A cannot-link constraint specifies that two nodes must be in different
communities. Let CCL be the cannot-link constraint set: ∀ vi, vj ∈ V where i �= j,
(vi, vj) ∈ CCL indicates that vi and vj must be assigned to separate communities.

These constraints are provided by the oracle, typically an individual expert or a commit-
tee of annotators. The simplest approach for selecting pairwise constraints to present to
the oracle is to naïvely select a pair of nodes (vi, vj) at random, and query the oracle about
whether the pair share a must-link or cannot-link relationship. This process is typically
repeated until some supervision budget is exhausted.
In non-overlapping community finding, must-link constraints have a transitive prop-

erty, such that a third must-link relationship can be inferred from two other associated
must-link constraint pairs. So, if (vi, vj) ∈ CML, and (vi, vk) ∈ CML, then we can also infer
that (vj, vk) ∈ CML (see Fig. 1a).
However, incorporating constraints into the context of overlapping communities is

more challenging. This is because the transitive property does not hold here (see the sec-
ond example in Fig. 1). Specifically, if (vi, vj) ∈ CML, and (vi, vk) ∈ CML, there are two
possible scenarios for the pair (vj, vk). It can be the case that either (vj, vk) ∈ CML or (vj, vk)
∈ CCL. This is because an overlapping node vj can have a must-link constraint with both
vi and vk , yet these two nodes could belong to two different communities. However, it is
also possible that all three nodes are in fact in the same community. Unless we explicitly
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(a) (b)
Fig. 1 In the non-overlapping case (a), the transitive property allows us to infer a third must-link constraint
from two existing must-link constraints. However, this does not automatically apply in the overlapping case
(b), where two possible situations exist, as shown

inform the algorithm about whether a must-link or cannot-link constraint exists for the
pair (vj, vk), the algorithm cannot reliably distinguish between the two alternative cases.
If the network has highly-overlapping communities (i.e. each node typically belongs to

many communities), then this problematic situation will occur more frequently. There-
fore, if we attempt to incorporate pairwise constraints into overlapping community
finding without taking this situation into account, the quality of the resulting commu-
nities can potentially suffer, even with more constraints are added. Next we introduce a
strategy to resolve this issue.

Semi-Supervised overlapping community finding

Here we describe a semi-supervised label propagation procedure for finding overlapping
communities, which consists of two distinct phases:

1. Select and pre-process constraints, to resolve the problem of lack of the transitive
property for must-link constraints.

2. Apply label propagation-based community finding, in a manner that takes into
account the information provided by the selected constraints.

Phase 1: Selecting and pre-processing constraints. After selecting an initial set of pair-
wise constraints by querying an oracle, we can view the set of pairwise constraints as a
new graph, where an edge exists between two nodes from the original network if they
share a pairwise constraint (either must-link or cannot-link). Then we look for all possi-
ble forbidden triads among the nodes involved in the must-link set. Given three nodes A,
B, C, a forbidden triad (sometimes referred to as an open triad) occurs when A is con-
nected to B and C, but no edge exists between B and C. In our pre-processing step, we
look for such cases— i.e. where we do not know whether a must-link or cannot-link exists
between a pair of nodes B and C. To control the size of the constraints set, we greedily
expand it until we reach a pre-defined maximum size. The complete constraint selection
strategy can be summarized as follows (see also Fig. 2):

1. Select a small random set of both must-link and cannot-link constraints.
2. Find all possible forbidden triads in the must-link set, to identify pairs to query the

oracle about their relationship.
3. For each resulting pair, if their relationship is must-link, then add the pair to the

must-link set. Otherwise, add the pair to the cannot-link set.
4. Repeat all steps until the maximum number of selected constraints is reached.
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Fig. 2 An illustration of all steps in the overlapping constraint selection process

At the end of this process, the pairwise constraints are ready to be supplied to the
community detection algorithm, which we describe next.

Phase 2: Pairwise Constrained SLPA. Given a threshold r ∈[ 0, 1] and a predefined
maximum number of iterations T, we incorporate the selected pairwise constraints as
follows (see also Fig. 3 for an illustration):

1. In the initialization step:

a. Assign a unique label to each node in the network.
b. For each pair of nodes that share a must-link relationship, the two nodes

exchange labels (i.e. update each node’s memory with the other node’s
label).

2. The evaluation step broadly follows a similar process as unsupervised SLPA (see
“Community finding” section). However, we account for the pairwise constraints as
follows:

Fig. 3 An illustration of Steps 1-4 involved in the PC-SLPA algorithm
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a. Randomly select one node as a listener, and identify the set of speakers
(i.e. the neighbors of the listener).

b. Augment the set of speakers by adding all nodes that have must-link
relationship with the listener and removing all nodes that have cannot link
relationship with the listener. Then each speaker sends out a label
according to the rule defined in standard SLPA. Removing cannot link
nodes from speakers set avoids grouping together pairs of nodes having a
cannot-link relationship since all nodes that hold the same label will be
grouped together as a community at the end of the process.

c. Each listener accepts a label according to the rule defined in standard
SLPA.

3. The constraint processing step considers both sets of pairwise constraints:

a. For each must-link pair, compare the memories of the two nodes to
ensure they both share the same highest occurrence frequency label. If
they do not, both nodes exchange their most frequently-occurring labels
with each other under the condition that each node does not have a
cannot link relationship with any nodes assigned to that label. If this
condition is not met, then the exchange does not occur for that label.

b. For each cannot-link pair, compare the memories of both nodes. If both
nodes have a common label, remove this label from the node that has the
lowest label occurrence frequency.

4. In the post-processing step, convert each node’s memory into a probability
distribution of labels. If the node’s probability of a certain label is less that a
threshold r ∈[ 0, 1], the label is removed from the node’s memory. Then all nodes
having the same label are grouped into one community. Nodes that have more than
one label, correspond to overlapping cases, which belong to multiple communities.

Active semi-supervised overlapping community finding

This section describes a novel active learning-inspired approach for a semi-supervised
community detection designed to improve the algorithm’s performance, while simulta-
neously reducing the annotation effort required on the side of the oracle (i.e., reducing
the annotation budget). The main idea is to develop an iterative uncertainty-based
method for selecting informative pairwise constraints for PC-SLPA, as presented in the
last section.

Node pair selection

The labeling of pairs of nodes as constraints can potentially be a time-consuming
process, especially for large complex networks. Therefore, to reduce this effort, we
design our method to select nodes to be labeled from an important node pair set,
rather than sampling from the entire network. We propose a method for select-
ing pairs of important nodes which the algorithm is most uncertain (i.e. we are
unsure about the node’s membership of a given community). We define uncertain
nodes as: 1) nodes that are located at the boundaries between two or more com-
munities; 2) overlapping nodes that have been previously assigned to more than one
community.
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For each uncertain node i, we retrieve the set of communities to which each of its
neighbors has been assigned. Then for each retrieved community, we extract the highest
internal degree node j, and add the pair of nodes (i, j) to the important node pairs
set. We select high degree nodes j from a community on the basis that such nodes
are likely to be highly representative of that community. The final step, we sort the
set in ascending order of degree of the uncertain nodes. Usually, high degree nodes
in the boundary have more dense connections within their own communities, rather
than with other communities. In contrast, lower degree nodes in the boundary tend
to have an almost equal level of connectivity between communities, and thus are more
likely to be misclassified during community detection. Therefore lower degree nodes
have a higher priority to be selected for querying. By presenting the pair (i, j) to the
oracle, we should be able to accurately determine whether i belongs to the same com-
munity as j (i.e, either a must-link or a cannot-link constraint). This approach addresses
the misclassification of boundary nodes as overlapping nodes and vice versa, especially
for relatively low degree nodes. Thus, the selection process can contribute signifi-
cantly to generating informative pairwise constraints. This process is summarized in
Algorithm 1.

Active semi-Supervised sLPA (AC-SLPA)

Now we discuss the integration of the proposed constraint selection method described
above with the PC-SLPA algorithm to produce a novel active semi-supervised SLPA
algorithm (AC-SLPA). This approach is divided into three phases, which are executed
iteratively. Note that we run the unsupervised SLPA algorithm as an initialization step to
generate a starting set of communities, which then allows us to select the constraints. The
phases of the proposed algorithm are as follows: In the first phase, we run the method
from “Node pair selection” section on the current communities to select a set of infor-
mative constraint pairs (i.e. the important node pairs set). In the second phase, this set is
passed to the oracle for annotation. In the third phase, we run PC-SLPA with the result-
ing pairwise constraints to find communities, which will be used as input for the next
run of the first phase. These three phases are repeated until either we have exhausted a
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predefined maximum annotation budget, or the annotator is satisfied with the current set
of communities. The complete process is summarized in Algorithm 2.

Time complexity

In this subsection, we detail the time complexity of each phase of the algorithms described
in this paper. The notation used to define running time is as follows:

n number of nodes in the network
K average degree of the nodes in the network
T maximum number of iterations specified by the user
PC total number of pairwise constraints
M number of must-link pairs
C number of cannot-link pairs

PC-SLPA: The first phase, which involves selecting and pre-processing constraints,
requires time O(PC). For the second phase, the initialization stage contains two itera-
tive steps. The first loop initializes nodes, which takes O(n), and the second loop iterate
through M. Since on average M < n, the entire stage requires O(n). The complexity of
both the evaluation and post-processing stages is O(Tn), as per the original SLPA algo-
rithm (Xie et al. 2011). As for the final constraint processing stage, it involves loops for
processing the two constraint sets, requiring time O(PC). The overall time complexity is
O(Tn + PC).
AC-SLPA: The first phase of the algorithm consists of three nested loops. The first

loop processes the uncertain nodes (i.e. the overlapping and boundary nodes), the second
loop processes the neighbor set of each uncertain node, and the third loop processes
the communities to which each uncertain node belongs. In the worst case, all nodes of
the network are overlapping nodes, therefore the complexity of the first loop is O(n). The
second loop requiresO(K) on average. Given that the minimum size of a community here
is two nodes, in the worst case an overlapping node belongs to all communities, thus the
third loop takes O(n/2), which reduces to O(n). Ultimately, the time complexity of this
first phase is O(n2). As described above, the subsequent execution of PC-SLPA requires
O(Tn + PC).
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Evaluation
In this section, the performance of both proposed methods (PC-SLPA and AC-SLPA) is
evaluated via experiments performed on two groups of synthetic benchmark networks
and real-world networks, both containing overlapping communities. As we observed
in “Related work” section, no work has been conducted in the literature regarding
pairwise constrained algorithms for finding overlapping communities. Therefore, for
the sake of comparison, the results of the proposed algorithms (PC-SLPA and AC-
SLPA) are compared with the corresponding unsupervised version and a group of
popular unsupervised community finding algorithms. Our objectives here are: (1) deter-
mine the extent to which introducing varying levels of constraints can improve the
performance of overlapping community finding through PC-SLPA; (2) evaluate the effec-
tiveness of the selected constraints by our proposed selection component (Node Pair
Selection) integrated in AC-SLPA compared to the constraints selected at random in
PC-SLPA.

Experimental setup

Data. Firstly, we evaluate on synthetic data created using the widely-used LFR generator
(Lancichinetti et al. 2008), which can produce networks with properties similar to real-
world networks, with overlapping ground truth communities. The selection of network
parameters shown in Table 1 is based on those used to evaluate the original algorithm
SLPA (Xie et al. 2011) and other works in the literature. We generate two different groups
of synthetic networks with different sizes and degree of overlapping communities, each
containing small and large communities and mixing parameter μ varies from 0.1 to 0.3.
Small communities have 10–50 nodes, while large communities have 20–100 nodes. Each
group consists of 64 networks with different combinations of the parameter Om, which
controls the number of communities per node, and On, which controls the number of
overlapping nodes. For the first network in each set, all nodes belong to two communities
(Om = 2). For each successive network, this parameter value is incremented by 1 until
Om = 8 is reached. As for the parameter On is set to 10% and 50% of the total number of
nodes, indicating low and high overlapping degree respectively.
Secondly, we consider three real-world networks which have previously been used in

the community finding literature (Leskovec and Krevl 2015): 1) a co-purchasing network
from Amazon.com; 2) a friendship network from YouTube; 3) a scientific collaboration
network from DBLP. These networks contain annotated ground truth overlapping com-
munities. For each network, we include only the 5,000 largest such communities, as per
(Yang and Leskovec 2015). We then perform filtering as per (Harenberg et al. 2014) –
the remaining communities are ranked based on their internal densities and the bottom
quartile is discarded, along with any duplicate communities.

Table 1 Lists parameters used for the generation of the LFR synthetic networks

Parameter Description Value Parameter Description Value

N Number of nodes 1000-5000 t1 Degree exponent 2

k Average degree 10 t2 Community exponent 1

Kmax Max degree 50 μ Mixing parameter 0.1-0.3

Cmin Min community size 10/20 On Num of overlapping nodes 10%/50%

Cmax Max community size 50/100 Om Communities per node 1-8
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Finally, as an additional step, we eliminated extremely small communities. For the
Amazon and YouTube networks, communities of size < 5 nodes are removed, while for
the DBLP network communities with < 10 nodes are removed. Details of the resulting
networks are listed in Table 2.
Evaluation metrics and baselines. The results of PC-SLPA and AC-SLPA are com-

pared with outputs of the following popular unsupervised overlapping community detec-
tion algorithms: SLPA(Xie et al. 2011), OSLOM (Lancichinetti et al. 2011), BIGCLAM
(Yang and Leskovec 2013), MOSES (McDaid and Hurley 2010), and COPRA (Adamcsek
et al. 2006). For OSLOM and MOSES, we use the default parameters recommended by
the original authors. For COPRA, we use the settings recommended in Xie et al. (2011).
For BIGCLAM, the number of communities to detect is selected automatically. However,
it is necessary to provide a range of values from which to select. Thus, we provide the
algorithm with broad ranges based on the number of communities in the ground truth
for each data set. To evaluate the performance of these algorithms relative to the ground
truth, we use the overlapping form of Normalized Mutual Information (NMI), proposed
in Lancichinetti et al. (Lancichinetti et al. 2009). For this measure, a value close to 1 indi-
cates a high level of agreement with the ground truth communities, while a value close to
0 indicates that the communities generated by an algorithm are no better than random.
Part of our objective in this work is to develop techniques that can accurately identify

overlapping communities. Therefore, to quantify an algorithm’s ability to correctly iden-
tify overlapping nodes, we used the overlapping F-measure (FS) (Xie et al. 2011; Xie et
al. 2013). This is calculated as the harmonic mean of precision and recall, in the same
way as the corresponding measure commonly used in information retrieval. In this con-
text, precision is defined as the number of “true” overlapping nodes detected, divided by
the total number of overlapping nodes identified by the algorithm. Recall is defined here
as the number of overlapping nodes detected correctly, divided by the total number of
“true” overlapping nodes. A higher value for the F-measure here indicates more accurate
detection of nodes which belong to multiple communities. Since SLPA and COPRA are
non-deterministic, we average the NMI and F-measure scores over 10 runs.

Experimental methodology. We conducted three experiments in our evaluation.
The first experiment aims to assess the performance of the unsupervised algo-
rithms, which provides a baseline for evaluating the performance of our proposed
methods. For SLPA, PC-SLPA, and AC-SLPA, we use the default parameters values
T = 100 and r ∈[ 0, 1] , as suggested in Lee et al. (2010). The second experi-
ment evaluates the performance of PC-SLPA with increasing numbers of constraints,
from 1% to 5% of the total number of possible pairs in each network. Since the
initial pairwise constraints are selected at random, we repeat the semi-supervised

Table 2 Summarizes details of the real-world networks

Real-world Networks Amazon YouTube DBLP

#Nodes - # Edges - #Communities 7411 - 21214 - 876 6426 - 23226 - 1058 7233 - 33045 - 613

Max community size 27 31 38

Min community size 5 5 10

Max communities per node 4 11 8

#Overlapping nodes 1394(18%) 865(13%) 214 (3.3%)
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process for 10 runs and average the resulting scores. The third experiment evalu-
ates the performance of AC-SLPA with limited numbers of constraints not exceeding
1% of the total number of possible pairs in each network. Finally, we compare the
results obtained from AC-SLPA with PC-SLPA, then compare them with the base-
line algorithms. The full set of experiments and associated parameters are summarized
in Table 3.

Results and discussion

Firstly, we compare the accuracy of the proposed algorithms, PC-SLPA and AC-SLPA,
to the unsupervised version of these algorithms, SLPA. Secondly, we compare the accu-
racy of AC-SLPA using limited number of pairwise constraints selected by the proposed
active learning-inspired approach Node Pair Selection, to PC-SLPA, where the pairwise
constraints are selected at random. Finally, we compare the accuracy of all algorithms
according to their average ranks.

Synthetic networks. When evaluating on LFR-generated networks, different factors
can affect algorithm’s performance, such as the mixing parameters, and the size of
both networks and embedded communities. The larger the value of μ, the poorer
the communities were detected by the algorithms, due to the weaker intra-community
connectivity. As we see from Figs. 4 and 5, the performance of SLPA drops as μ

increases from 0.1 to 0.3. However, AC-SLPA and PC-SLPA show more stability with
higher values of μ. For instance, in the case of small network of big communities
with μ = 0.1, the NMI score of SLPA is 0.94 at Om = 2 and drops to 0.82 with
μ = 0.3. In contrast, AC-SLPA and PC-SLPA show more moderate decrease in accu-
racy as the value of μ increases to 0.3 with the same network, (PC-SLPA: NMI=0.88
at μ = 1 to NMI=0.80 at μ = 3, AC-SLPA: NMI=0.998 at μ = 1 to NMI=0.99
at μ = 3).
Another factor that affects the algorithmic performance is the degree of overlapping

communities in terms ofOm andOn. As the values ofOm increases from 2 to 8, AC-SLPA
and PC-SLPA demonstrate better NMI values than SLPA across all the networks. As for
On, we can see that as the fraction of overlapping nodes increases from 10% to 50%, AC-
SLPA and PC-SLPA show a medium decrease compared to SLPA specifically with large
networks. For instance, in large and small community networks atμ = 0.1, the NMI value
of SLPA falls from 0.91 to 0.52 with Om = 2. On the other hand, the NMI values of AC-
SLPA and PC-SLPA decreases from 0.94 to 0.63 and from 0.98 to 0.90 respectively, where
AC-SLPA shows better stability than PC-SLPA. As for the size of the networks, both the

Table 3 Parameters used for all three experiments (E1, E2, E3)

E1 E2 E3

Algorithms Baseline algorithms: SLPA,
OSLOM, MOSES, COPRA,
and BIGCLAM

PC-SLPA AC-SLPA

PW selection None Random Node Pair Selection

% of constraints 0% 1% − 5% 0.5% − 1%

Evaluation metrics NMI and F-score

Networks Synthetic and real-world networks

Type of experiment Deterministic, except SLPA
and COPRA

Non-deterministic Non-deterministic
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Fig. 4 Summary of the performance of all algorithms on small synthetic networks, containing both small and
large communities, where the mixing parameter μ varies from 0.1 to 0.3. NMI values are plotted against the
number of communities per node (Om), with 4 networks in each plot
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Fig. 5 Summary of the performance of all algorithms on large synthetic networks, containing both small and
large communities, where the mixing parameter μ varies from 0.1 to 0.3. NMI values are plotted against the
number of communities per node (Om), with 4 networks in each plot
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standard SLPA and the proposed algorithms show a better performance when the net-
work increases from 1,000 to 5,000 nodes, with PC-SLPA achieving the best performance
on the networks with larger communities, while AC-SLPA shows consistent performance
with both large and small communities.
Overall, PC-SLPA achieves consistently higher NMI scores than the standard SLPA

algorithm, except with PC-SLPA with 1%. Here, PC-SLPA attains lower NMI values than
SLPA, until the number of constraints increases towards 5%. This is due to the ran-
dom selection of a small set consisting of largely non-informative constraints, which
do not aid in the detection of the ground truth communities. In such a situation, PC-
SLPA may not achieve an improvement compared to the standard SLPA algorithm.
Nevertheless, as PC-SLPA shows a consistent pattern of improvement correlated with
the number of constrains this shows the potential of using semi-supervised strategies
in particular pairwise constraints in the context of overlapping communities which was
the main motivation for this study to propose AC-SLPA that implement active learning-
inspired approach for selecting informative constraints with small annotation budget. As
a result, AC-SLPA significantly outperforms both PC-SLPA algorithm and the standard
SLPA algorithm on most of the networks, particularly when using a limited annotation
budget.
When comparing the proposed algorithms to the baseline algorithms, we observe that

BiGCLAM, COPRA and MOSES show lower performance than PC-SLPA and AC-SLPA
on all synthetic networks, except for BIGCLAM which shows almost equivalent per-
formance in limited cases as illustrated in Figs. 4 and 5. When we look at the level of
coverage provided by the algorithms (i.e. the percentage of nodes in the network assigned
to at least one community), we notice that many nodes are not assigned to any com-
munities by MOSES, which may partly explain the low NMI values. For instance, for
networks at Om = 6 and Om = 8 with On = 50%, the percentage of coverage is 46%
and 46.6% respectively. As for OSLOM, it shows a slightly better performance than PC-
SLPA and AC-SLPA for networks with a low level of community overlap. However, as the
number of communities per node increases, both PC-SLPA and AC-SLPA start to out-
perform all of the baseline algorithms, indicating that it is effective in highly-overlapping
contexts.
In terms of identifying overlapping nodes, Fig. 6 shows the algorithms’ accuracy in

identifying the true overlapping nodes using the overlapping F-measure. We can observe
that, in most cases, the AC-SLPA and PC-SLPA outperform the standard SLPA. On the
other hand, it is worth noticing that in most networks as Om increases, the F-measure
values of PC-SLPA increase, the same pattern of SLPA, while the F-measure values of
AC-SLPA decrease, however still AC-SLPA provides higher values than PC-SLPA in most
cases.
Table 4, summarizes the average ranks of NMI and FS scores of all algorithms on syn-

thetic networks with 10% and 50% of overlapping nodes respectively. Each table entry
shows the average ranks (lower values are better) of an algorithm (on the columns) over
each overlapping category and evaluation score (on the rows). The best ranks are shown
in boldface. As we can see, AC-SLPA with 1% pairwise constraints is the top-ranked
algorithm in all overlapping categories and evaluations scores. The next best alterna-
tives are AC-SLPA and PC-SLPA with 0.5% and 5% pairwise constraints respectively, both
algorithms show similar ranks in both evaluations scores.
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Fig. 6 Summary of the performance of all algorithms on synthetic networks, containing both small and large
communities, where the mixing parameter μ varies from 0.1 to 0.3. F-measure values are plotted against the
number of communities per node (Om), with 4 networks in each plot
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To understand the effectiveness of the proposed method over the different syn-
thetic networks with various degrees of node overlap, statistical significance tests were
performed. Following the recommendations of (García et al. 2010) and the statistical
experimental methodology in Pakrashi and Mac Namee (2019), a post-hoc Friedman
Aligned Rank test with the Finner p-value adjustment was performed on the net-
work results for each node overlap level and evaluation metric. The rank plots (with
a significance level of α = 0.05) of the tests are provided in Fig. 7. Each diagram
shows the average ranks of the algorithms in the corresponding node overlap level. The
algorithms not connected with the horizontal bars in each plot in Fig. 7 indicate that they
are significantly different based on a significance level of α = 0.05, whereas for the algo-
rithms connected with the horizontal bars, the null hypothesis could not be rejected. The
detailed p-values and the win/lose/tie counts for each algorithm pairs are provided in
Appendix A.
The statistical results indicate that AC-SLPA with 1% pairwise constraints was

significantly better than all the baseline algorithms on both evaluations metrics.
AC-SLPA and PC-SLPA with 0.5% and 5% pairwise constraints respectively were
not found to be statistically different. Although both algorithms attained better
average ranks than OSLOM for NMI and better average ranks than SLPA and
BIGCLAM for the F-measure, the tests did not identify a statistically significant
difference.

(a) (b)

(c) (d)

Fig. 7 Rank plots from Friedman Aligned rank tests with Finner p-value adjustment, for NMI and F-Measure
(FS). Algorithms which are not connected with a horizontal line are significantly different over all synthetic
networks, with a significance level of α = 0.05
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Real-world networks. Next we discuss our experiments on three real-world networks.
We compare the NMI performance of our proposed semi-supervised method with
increasing numbers of pairwise constraints, relative to the benchmark algorithms. For
the non-deterministic algorithms, 10 runs were executed and NMI scores were aver-
aged. Tables 5 and 6 summarize the corresponding performance of all algorithms. The
results show that AC-SLPA significantly outperforms PC-SLPA algorithm, the stan-
dard SLPA algorithm, and the benchmark algorithms on the three real networks, using
only small percentages of constraints. Table 5 lists the NMI and FS scores for PC-
SLPA and AC-SLPA, and also reports the actual effective annotation budget of pair-
wise constraints used for each algorithm, beyond which no further constraints were
added. In all cases we observe that the level of constraints required by AC-SLPA is
far less than the predefined maximum budget (1% − 5%), while still yielding high
accuracy.
When comparing the performance of the proposed methods to the benchmark

algorithms, we see that PC-SLPA achieves high NMI scores (> 0.9) on the Amazon
and DBLP networks. However, PC-SLPA shows moderate performance on the YouTube
network, which may be due to the poor separation between the ground truth clus-
ters in this network. In fact, the addition of < 4% of constraints does not yield an
improvement over the unsupervised approach. The effect of high inter-community
overlap is far more pronounced in the cases of the OSLOM, MOSES, and COPRA
algorithms. Overall, PC-SLPA outperforms the four alternative algorithms in most
cases on these networks, with a consistent increases as the number of constraints is
increased from 1% to 5%. We would expect this trend to continue as more constraints
are added, although it may be impractical to generate larger numbers of constraints
in real-world scenarios. On the other hand, AC-SLPA achieved significantly higher
performance relative to the benchmark algorithms, particularly on the YouTube net-
work, with a limited annotation budget not exceeding 1% of all possible pairwise
constraints.
In general, our results suggest that PC-SLPA is an appropriate choice for community

finding in undirected, unweighted networks, in applications where external knowledge or
human annotation is available. For purely unsupervised cases, our results indicate that
OSLOM remains a good alternative.

Conclusion
In this study, we have explored the potential of semi-supervised strategies to improve
existing unsupervised algorithms for finding overlapping communities in complex net-
works. Our primary contributions are three-fold: 1) we explored the nuances around
the selection of constraints, which are specific to contexts where the communities

Table 5 NMI and F-Measure (FS) scores of benchmark algorithms on three real-world networks

NMI FS

OSLOM MOSES COPRA BIGCLAM SLPA OSLOM MOSES COPRA BIGCLAM SLPA

Amazon 0.9668 0.9084 0.96228 0.0227 0.9565 0.0029 0.1143 0.0210 0.3228 0.01553

YouTube 0.4490 0.4209 0.1907 0.3385 0.6257 0.1192 0.3556 0.0512 0.3614 0.1036

DBLP 0.8485 0.7707 0.9136 0.8729 0.8982 0.2534 0.2462 0.1203 0.1647 0.0496



Alghamdi and Greene Applied Network Science            (2019) 4:63 Page 23 of 27

Table 6 Comparison of AC-SLPA and PC-SLPA on three real-world networks

Amazon YouTube DBLP

PC-SLPA AC-SLPA PC-SLPA AC-SLPA PC-SLPA AC-SLPA

% annotation
budget

Predefined
max %

1% 5% 0.5% 1% 1% 5% 0.5% 1% 1% 5% 0.5% 1%

Actual
used %

1% 5% 0.013%0.014%1% 5% 0.5% 0.78% 1% 5% 0.024% 0.025%

NMI score 0.961 0.972 0.988 0.989 0.600 0.643 0.883 0.934 0.904 0.933 0.984 0.985

FS score 0.0404 0.0643 0.0095 0.0100 0.1335 0.1941 0.4504 0.6755 0.08880.1923 0.5050 0.5199

in the data naturally overlap; 2) we proposed a new semi-supervised algorithm (PC-
SLPA) for detecting overlapping communities, based on the use of a label propagation
strategy that is informed by the addition of external information encoded as pairwise
constraints selected at random; 3) we introduced a new semi-supervised approach,
inspired by active learning, which uses an active pairwise constraint selection com-
ponent to limit the level of annotation required for effective community finding
(AC-SLPA). Based on extensive experiments, the results of PC-SLPA show that over-
lapping community finding algorithms with constraints can considerably outperform
their unconstrained counterparts on both synthetic and real-world networks. As one
might expect, their performance improves with increasing the number of pairwise
constraints.
In general, the results show the potential of using semi-supervised strategies for

finding overlapping communities. Furthermore, the results for AC-SLPA demonstrate
that the active pairwise constraint selection component can significantly improve the
effectiveness of community detection, while using a small annotation budget. This
was demonstrated on both synthetic and real-world networks. In terms of practical
applications, one consideration is around the time required for an oracle to gener-
ate constraint pairs. If constraints are being generated from a source of background
knowledge, such as an existing ontology, there may be little overhead. However, if
constraints are being provided via human annotation, the effort and cognitive load
will vary depending on the domain and the complexity of the task from a human
perspective. In some cases, this annotation effort can be crowdsourced (Tang and
Lease 2011). In either case, applying an active approach to constraint selection still
allows us to minimize the number of constraints required, thereby reducing the overall
human effort.
One other practical consideration is the extent to which we can rely on the judg-

ment of the oracle to provide reliable constraint information. While this issue has been
considered to some extent in the context of semi-supervised clustering (Basu et al.
2008), relatively little work has been performed in this area in the context of community
detection. In future work we aim to explore the impact of noisy, potentially-incorrect con-
straints upon the performance of semi-supervised community finding algorithms, and
to investigate how we might mitigate against such cases in real-world network analysis
tasks.

Appendix A. Complete results of statistical tests
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