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Worcester, USA Feature representation learning for classification of multiple graphs is a problem with
practical applications in many domains. For instance, in chemoinformatics, the learned
feature representations of molecular graphs can be used to classify molecules which
exhibit anti-cancer properties. In many previous work, including discriminative
subgraph mining and graphlet-based approaches, a graph representation is derived by
counting the occurrence of various graph sub-structures. However, these
representations fail to capture the co-occurrence patterns that are inherently present
among different sub-structures. Recently, various methods (e.g., DeepWalk, node2vec)
have been proposed to learn representations for nodes in a graph. These methods use
node co-occurrence to learn node embeddings. However, these methods fail to
capture the co-occurrence relationship between more complex sub-structures in the
graph since they were designed primarily for node representation learning. In this work,
we study the problem of learning graph representations that can capture the structural
and functional similarity of sub-structures (as evidenced by their co-occurrence
relationship) in graphs. This is particularly useful when classifying graphs that have very
few sub-structures in common. The proposed method uses an encoder-decoder model
to predict the random walk sequence along neighboring regions (or sub-structures) in
a graph given a random walk along a particular region. The method is unsupervised
and can be used to obtain generic feature representations of graphs making it
applicable with various types of graphs. We evaluate the learned representations using
several real-world datasets on the binary graph classification task. The proposed model
is able to achieve superior results against multiple state-of-the-art techniques.

Keywords: Deep learning, Encoder-decoder, Graph classification, Graph
representation, RNN

Introduction

Graph-structured data can be found in many different domains including biology, chem-
istry, and the study of social networks (Duvenaud et al. 2015; Hwang and Kuang 2010;
Yanardag and Vishwanathan 2015). For instance, in chemistry, chemical compounds
can be represented as molecular graphs where nodes represent atoms and edges sig-
nify the presence of a chemical bond between atoms (Duvenaud et al. 2015). In social
network analysis, the interaction among different entities of a community can be rep-
resented as a graph with individuals as nodes and edges denoting social interactions
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between individuals (Yanardag and Vishwanathan 2015). A natural question that arises
in these scenarios is what the structure of a graph tells us about the properties of the
graph (e.g, what does the structure of a molecule tell us about the compound’s aqueous
solubility, or its anti-cancer activity?). In other words, we are often interested in classify-
ing graph-structured data. Many techniques have been proposed to solve this problem.
These include learning graph kernels (Vishwanathan et al. 2010), identifying discrimi-
native subgraphs (Jin and Wang 2011; Kong et al. 2011), using specially designed neural
network models such as the graph neural network (Scarselli et al. 2009), and learning
graph fingerprints (Duvenaud et al. 2015).

In this paper, we study the graph representation learning problem, where the task is to
learn feature representations of graphs for classification. An illustration of this is shown
in Fig. 1. In particular, we investigate the use of an unsupervised model that can be used
to learn compact graph representations for a large number of labeled or unlabeled graphs.
The learned representations can be used directly with off-the-shelf classification methods
like support vector machines (SVM), logistic regression, or neural networks.

Many existing work in the literature for calculating graph representations, like tech-
niques based on discriminative subgraph mining (Kong et al. 2011; Natarajan and Ranu
2018; Wang et al. 2017) and ones involving graphlet counts (Ahmed et al. 2017; Sher-
vashidze et al. 2009), make the assumption that different graph sub-structures are
independent. Representations calculated using these approaches inevitably grow in size
as more sub-structures are considered. Because of this, usually only a limited number of
sub-structures are considered. Furthermore, previous work focus on the problem of graph
representation learning without considering the co-occurrence relationships among dif-
ferent graph sub-structures. However, in many applications it is beneficial to calculate
graph representations that capture the co-occurrence among sub-structures. This is par-
ticularly useful when there are a large number of structures and only a few are shared

+ positive graphs il — negative graphs

"""""" R DR SR SR

’ graph representation learning ‘

' ! ' '

(8[7]ol1]2] [of7]of2]2] [1]ol6]9]s| [2[1]6]9]4]

Ie1 Ie, rg3 rea
.
e s 1 2D projections of graph representations |
‘ graph classification |: prol graphrep :
! ! | SR
N (ePRd i

r64°

1 -
predicted label for G, predicted label for G;

Fig. 1 An example of the representation learning problem for graph classification. Here, the graph
representation model is trained using the graphs attached to solid lines (G, and Gg). The corresponding
representations (for G, and Gy4) are then used to train the classifier. The trained model can then be used to
generate representations for unseen samples, shown with dashed lines here (Gy and G3)
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between graphs. For instance, two molecules may not have many sub-structures in com-
mon but if they both have sub-structures that co-occur frequently in other molecules they
may be considered functionally similar as their respective sub-structures seem to serve
the same function. An example of this is shown in Fig. 2.

Inspired by the recent success of encoder-decoder models (Cho et al. 2014; Kalchbren-
ner and Blunsom 2013; Kiros et al. 2015) for modeling co-occurrence of text data, we
propose a model to capture graph representations that reflect structural and functional
similarity in graphs. This is done by considering the co-occurrence relationship of graph
sub-structures. The proposed method has an advantage over existing techniques since
the model can learn similar representations for graphs that do not necessarily have to be
very structurally similar.

We propose a novel solution based upon the Skip-thought encoder-decoder model
(Kiros et al. 2015). Skip-thought is a generalization of the skip-gram model (Mikolov et al.
2013) which was originally introduced in the natural language processing (NLP) domain
for learning vector representations of words. Recently, the skip-gram model has been
adapted successfully to solve the problem of learning node representations for graph-
structured data (Grover and Leskovec 2016; Perozzi et al. 2014; Tang et al. 2015). These
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Fig. 2 (a) If we simply count or consider the sub-structures independently while ignoring their
co-occurrence relationship (Kong et al. 2011; Natarajan and Ranu 2018; Vishwanathan et al. 2010; Wang et al.
2017), the representations will not be very similar. (b) On the other hand, if only node co-occurrence is
considered (Grover and Leskovec 2016; Perozzi et al. 2014; Tang et al. 2015), graphs G, and G4 (similarly, G
and G3) end up having more similar representations (due to similar nodes) even though they do not share
sub-structures that co-occur often. In (c), the approach considered in this paper, the representations for
graphs Gy and G, (similarly, G3 and G4) end up being more similar because both graphs have sub-structures
that co-occur frequently in the dataset
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embeddings work well on node-level tasks such as link prediction. However, in many real-
world applications we also need to learn feature representations for graphs and not just
node embeddings.

In (Kiros et al. 2015), an encoder-decoder model is trained on a large text corpus and
the final output of the encoder is used as the input sentence’s representation. It has been
shown that the model learns a function that maps semantically and syntactically similar
sentences close to one another in representation space. In this work, the idea is to take
instead a sequence generated by a random walk along a labeled graph and to divide it
into three parts, feeding these into the encoder-decoder model. Since the structure of the
graph determines the random walk sequences that can be generated, we can treat each
sub-sequence as a representation of a particular subgraph in the graph. We argue that by
training an encoder-decoder model on a large number of random walk sequences, we can
learn a feature representation that groups structurally and functionally similar subgraphs
together. We further expound on this point when we introduce the proposed encoder-
decoder model. Fig. 3 shows an example of how we can train the model using a random
walk over a graph.

After the model is trained on a large sample of random walks generated from a dataset
of labeled graphs, we can then freeze the model and use the encoder as a feature extractor.
In particular, we obtain a representation of a graph by sampling multiple short random
walks and aggregating the information encoded in the feature representations of these
short walks. We borrow an analogy from the NLP domain to highlight the idea. In order to
obtain a good feature representation for a text document, short of sampling all the words
in the document one may sample a set of sentences from the document and use these
to construct the features for the document. Similarly, to obtain a feature representation
for a graph, we sample a set of subgraphs (as represented by the short walks) and use
the aggregate subgraph features to construct the final graph feature vector. Since we use
the trained encoder as our feature extractor, graphs whose sub-structures share structural
and functional properties will tend to have more similar feature vectors.

Problem formulation

Here, we briefly define the problem of representation learning for graphs. We are given a
set of labeled graphs D = {G1, G2, - - , Gn}. Each graph G; = (V;, &;, £,) is comprised of a
vertex set V;, an edge set & C V; x V;, and a node labeling function ¢, : V' — Ly which

,,,,,,,,,
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graphs. We initially assign the same id/label to each node in the graph. Each iteration of the algorithm is
comprised of two steps: node signature construction and hashing. The illustration above shows one iteration.
Each node’s signature is prefixed by their current label followed by a sorted list of their neighbor’s labels. The
signatures are then hashed to derive new node labels
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assigns each node to a label in L. Here, V = | J/_; Vi and Ly is the set of all node labels.
Additionally, the edges may also be labeled in which case we also have an edge labeling
function ¢, : E — L. Finally, each node v € V (similarly, an edge e € E) can also have
an associated attribute vector, f, € RX (similarly, f, € RY). X is the number of node
attributes and Y is the number of edge attributes.

The task is then to learn a function f, : G — RP that maps a graph to a D-dimensional
representation, here G is the input space of graphs. The set of learned representations R
can then be used to train a classifier f, : R — ) that learns to predict the class label y; of
a graph G; given its representation. Here, ) is the set of all class labels.

Unlabeled graphs
Although we will be working primarily with labeled graphs, our method can be easily
extended to support unlabeled graphs by including an additional pre-processing step.
Algorithms like the Weisfeiler-Lehman algorithm (Weisfeiler and Lehman 1968; Sher-
vashidze et al. 2011) or the Morgan algorithm (Rogers and Hahn 2010) for calculating
molecular fingerprints are iterative algorithms that work by repeatedly calculating the
attribute for a node via hashing of the attributes of its neighboring nodes. The final node
attributes capture the local structure or topology of the graph. For unlabeled graphs, all
node attributes can be initialized to a constant value and after the algorithm is run, we
can treat the node attributes as the labels for the nodes in the graph. We show an example
of the Weisfeiler-Lehman algorithm in Fig. 4.

Furthermore, for more flexibility, we can also used the approach proposed in role2vec
(Ahmed et al. 2018). The intuition is to allow users to construct structural feature vectors

C D C
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Fig. 4 Arandom walk over a graph can be split into three sub-sequences (51, 52, 53). The middle sequence is
fed as input into the encoder and the decoders attempt to reconstruct the other sub-sequences. Note that
the unattached arrows are connected to the encoder output to condition the decoder prediction at each
step. Since the model processes entire sequences, it can distinguish the structural difference between the
two neighboring sub-structures, even though they share the same types of nodes
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for each node (e.g,, counts of various network motifs in a node’s neighborhood). We can

then use logarithmic binning to map nodes with similar features to the same label.

Proposed method

Skip-thought

We begin by introducing the general architecture of the particular encoder-decoder
(Kiros et al. 2015) design we decided to employ. Here, a recurrent neural network (RNN),
in particular using the Gated Recurrent Unit (GRU) architecture (Chung et al. 2014), is
used as the encoder while a pair of RNNs with conditional GRU are used as decoders.
The model is trained using the Adam stochastic optimization algorithm (Kingma and Ba
2015).

The input to the model is a triplet of sequences (s;_1,;, Si+1), with xf. being the ¢-th
value in the sequence s;. In the case where the sequences are sentences, each input x sim-
ply represents an embedding of a word in a sentence. The vectors x! that comprise the
middle sequence, s;, are then fed sequentially as input into the encoder. The encoder gen-

erates a hidden vector h! at each time step ¢, this is the information the model retained

after processing the sub-sequence x}, -+, x! and can be thought of as the representation
of the particular sub-sequence. The hidden state hﬁv" can thus be considered the repre-
sentation of the entire sequence, where N; is the length of sequence s;. Given a sequence

to encode, the encoder iterates through the following equations. Here the subscripts i are

dropped for simplicity.
‘=0 (Wrxt + U,htil) (1)
=0 (szt + Uzhtfl) (2)
h’ = tanh (Wx' + U (' © '™ 1)) (3)
ht — (1 _ Zt) o) ht—l + Zt 10 l_lt (4_)

where rt is the forget gate, z¢ is the update gate, h is the proposed hidden state, and ©
is the component-wise product. Here r’ decides what information to discard from the
previous state, z' decides what new information to encode, and the new hidden vector h’
is calculated accordingly. Values in r’ and z’ are within the range [0, 1].

Two decoders with separate parameters are then used to reconstruct the previous
sequence s;_1 and the next sequence s;+1. The computation for the decoder is similar
to that of the encoder, except this time the models are also conditioned on the final
encoder output or representation h; (which is hf\[i). Decoding involves iterating through
the following statements. Again the subscript i 4+ 1 (similarly, i — 1) is dropped.

¥ = o (Wix' !+ U1+ Cohy) (5)
=0 (fot_l +UZn 4 Czhi) 6)
h! = tanh (detfl +U? (o ht*l) + Chi) (7)
b, =(1-2z)on !l +20ohn (®)

here the C matrices are used to bias the decoder computation using the representation
produced by the encoder. Also, note that the input values x are from the previous time
step since the decoder’s job is to reconstruct the sequence s;; (similarly, s;_1) one step at
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a time. The probability of value x!_ ; can then be calculated by

P (xi, x4, hy) o exp <vxf+1h§+1) )

where Vit is the row vector in the “vocabulary” vector V corresponding to the input
X;, ;. The vocabulary matrix, V, is a weight matrix shared by both decoders connecting
the decoder’s hidden states for computing a distribution over the inputs.

Finally, given a triplet of sequences, the training objective is then given by

> logP (xfyyIxy, hi) + D logP (xi_ Ixi T, hy) (10)
t t

which is the sum of log-probabilities for the values in the previous and next statements,
si—1 and s;41, conditioned on the final representation for s;. The total objective would then
be the above summed for all triplets used in the training data.

Skip-graph

We now discuss how an encoder-decoder can be used to learn useful representations for
sub-sequences derived from walks over a labeled graph. Figure 3 shows an example of
how a random walk over a graph can be fed into the encoder-decoder introduced above.

Training set generation

Given a set of graphs D, a sample size K, a minimum random walk length /,,;, and a
maximum random walk length /,,,«, we take each graph G € D and generate K random
walk sequences. Specifically, for a graph G, K sequences of the form

by i)y by )5 by (Vign) o by (Vi) b (i) 0 b (g ) (A1)

are generated. Here, v; € V is a randomly selected start node, (v;, viy1) € & for i from
1--k+k +k —1,and by, > kk,k > Ly Each sequence can then be split into a
triplet of three sub-sequences with s; = £,(v1), -+, £, (Vk), 2 = £y (Vieg1) -+ » &y (Vk+k’)’
and s3 = £, (Vk+k’+1) by (Vk+k:+k”)' ,

When generating sequences, k, k , and k are randomly drawn to be between the con-
straints ,,;, and /.45 each time. This is to ensure that the length of the sub-sequences do
not need to have fixed lengths and can instead vary. Because of this, graph sub-structures
or regions of varying sizes can easily be processed by the model.

In the above formulation, we assume that only the vertices in the graph are labeled and
node and edge features are not given. When nodes, or edges, are labeled and feature vec-
tors are provided we can use a one-hot embedding to represent each unique combination
of labels and features. This treats each distinct combination as a unique “word" and does
not capture the relationship between nodes or edges that share labels or certain features.
A better approach is to simply use a one-of-|L| vector to encode the label and concatenate
this with the feature vector, this allows the node or edge embedding to capture shared
features and labels.

Once all the triplets of random walk sequences have been generated, they can be used to
train the encoder-decoder! in an unsupervised fashion. The intuition behind this is quite
simple. If an encoder-decoder model is trained with a large number of random walks,
the sub-sequence corresponding to sub-structures in the graph that co-appear frequently
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will have learned embeddings that are more similar. This allows us to learn representa-
tions for sub-structures that are more compact since the different sub-structures are not
considered independently of one another. Figure 5 illustrates this idea.

Obtaining final graph representation

After the encoder-decoder has been trained, we can freeze the model and use the encoder
to generate representations, h;, for any arbitrary random walk sequence. Ultimately, how-
ever, we are interested in obtaining representations for entire graphs so we try several
strategies for aggregating the encoder representations obtained from a set of indepen-
dent random walks sampled from a given graph. Sampling multiple short walks from a
graph allows us to obtain a relatively accurate profile of a graph. The representations can
then be aggregated to get a representation for the graph as a whole. While one can cer-
tainly try more sophisticated approaches for aggregation like a neural network that learns
a final graph representation from the sampled representations, we choose to use relatively
simple aggregation techniques to highlight the usefulness of the model.

1. Single walk: In this approach we do not use several encoder representations.
Instead, we train the model on relatively long (relative to the size of the graphs in
the dataset) random walk sequences and use a single long walk over the graph to
obtain its representation.

2. Average: We compute the component-wise average of the encoder
representations of the sampled random walk sequences. This is then used as the
graph representation.

3. Max: As in (Kiela and Bottou 2014), we take the component-wise absolute
maximum of all encoder representations.

4.  Cluster: The encoder representations are first fed into a clustering technique like
K-means (Hamerly and Elkan 2003) and we use the cluster information to create a
bag-of-cluster vector that serves as the graph’s representation.

The procedure for obtaining the graph embeddings is summarized in Algorithm 1. The
calculated graph embeddings can now be used with any off-the-shelf classifier.

I 0 0 0 1 0 0 0 1|
000000000 000060000 __60000-00-0-0;

Fig. 5 (a) An encoder-decoder can be used to learn similar representations for sub-structures that share the
same function. Here, the sub-structures “C-C-C", “D-A-D", and “E-D-E" are structurally dissimilar. However, they
seem to be serving the same function of connecting similar regions together. If these patterns appear
frequently, the encoder-decoder will learn to capture the functional similarity by learning similar
representations for all three sub-structures. The learned representations are more compact since the
co-occurrence dependencies of sub-structures are considered. (b) On the other hand, simply counting the
occurrence of sub-structures to create a graph representation can result in representations that are less
compact and less useful as the different sub-structures are treated independently
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Algorithm 1: Calculate graph embedding

Input : Training set D, sample size K, walk lengths /,;;, and /,,,4x, aggregate sample
size K, and aggregate method agg
Output: Graph embeddings
1 Generate set of K x |D| random walk triplets, S;
2 Train encoder-decoder model using S;
3 foreach G inD do
4 Randomly select K " random walks;
5 Obtain encoder representations hy, ..., h;s from the random walks;
6 Compute graph embedding with agg (hy, ..., h, );
7 end

8 Return final graph embeddings;

Time complexity

The overall time it takes to train an encoder-decoder model depends on two things: the
size of the training set D, and the average length of the walks in each triplet. In previous
work, an encoder-decoder was trained on a very large dataset with 74,004,228 sequences
with average length of 13, demonstrating that the model can be trained in a relatively
reasonable amount of time on large datasets (Kiros et al. 2015).

Once the unsupervised training of the model is complete, we can proceed to compute a
graph’s embedding (even for an unseen sample) in time O(K” - T - d%). As mentioned pre-
viously, K’ is the number of random walks we use to calculate the final graph embedding,
T is the average length of the random walks, and d is the embedding size (for simplicity
we assume that the input size is equal to the embedding size).

Experiments

Dataset

We evaluate our proposed method on the binary classification task using three chem-
ical compound datasets (Kong et al. 2011). The datasets contain chemical compounds
encoded in the simplified molecular-input line-entry system (SMILES) format (Weininger
1988); class labels indicate the anti-cancer properties (active or inactive) of each com-
pound. We use the RDKit? package to obtain the molecular graphs from the SMILES data.
We also use RDKit to obtain the labels for the nodes (atom type) and edges (bond type).
Additionally, like previous work (Duvenaud et al. 2015), we used the number of attached
hydrogens as a node feature and bond conjugation as an edge feature. Since the edges in
the datasets we evaluate on are also labeled, the generated random walk sequences include
edges. The datasets are all highly skewed with far more negative samples than positive
ones, we tested the methods on balanced datasets by selecting a random set of negative
samples equal to the positive ones.

Table 1 shows a summary of the datasets used. The average size of the molecular graphs
in each of the four datasets is around 30. Although the compared datasets all come from
the chemoinformatic domain, the chemical compounds in each dataset are screened for
different purposes. In NCI81, we screen for anti-cancer properties against Colon Can-
cer while NCI83 deals with Breast Cancer. In the final dataset, we screen for anti-viral
properties against the human immunodeficiency virus (HIV).
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Table 1 Summary of experimental datasets

Dataset # graphs # pos Details

NCI81 40700 1396 Colon Cancer
NCI83 27992 2276 Breast Cancer
HIV 7781 266 HIV Anti-virus
"# pos" stands for the number of positive samples.

Compared methods

We compared our proposed approach against several state-of-the-art techniques. Our

primary objective is to see whether the method has the potential to learn useful and

compact representations for graph classification so we compare against a variety of

approaches for graph classification in the literature. Since we are testing the method

using molecular graph datasets, we first compare against techniques that have achieved

state

-of-the-art performance on these type of graphs including one that uses a deep

learning framework that is end-to-end differentiable (Duvenaud et al. 2015). We also com-

pared against several general graph kernel-based approaches. Finally, we tested against

a modified version of a method designed to learn node embeddings and used the same

aggregation techniques we discussed to obtain a final graph representation. We provide

more information on the compared methods below.

ECFP (Rogers and Hahn 2010): Extended-connectivity circular fingerprints, which
are a refinement of the Morgan algorithm (Morgan 1965), use an iterative approach
to encode information about substructures in a molecular graph in a fingerprint
vector. In this method a hash function is used to map the concatenated features from
a neighborhood to an index in the fingerprint vector. This method uses the same
iterative process that the WL graph-kernel (Weisfeiler and Lehman 1968;
Shervashidze et al. 2011) employs to generate an initial graph representation.
NeuralFPS (Duvenaud et al. 2015): Neural fingerprints replace the function that is
used to compute a fingerprint vector with a differentiable neural network. This allows
the method to learn from the data, prioritizing useful or discriminative features. One
can think of this method as end-to-end differentiable version of the WL algorithm.
DeepWalk (Perozzi et al. 2014): The DeepWalk model was originally designed to
learn representations for nodes in a single graph. We modify it slightly and train the
model using random walks from multiple graphs. Since the various graphs in our
dataset share the same types of node, the model will then learn to generate similar
representations for nodes that co-occur frequently across all the graphs. To generate
the final embedding for a graph, we simply apply average pooling to the vectors of all
the nodes in the graph — which is a reasonable strategy to capture the overall profile
of the graph.

3-GK & SP (Borgwardt and Kriegel 2005; Shervashidze et al. 2009; Yanardag and
Vishwanathan 2015): We compare against the graphlet kernel and the shortest-path
kernel — both of which support labeled graphs. The former calculates similarity
between a pair of graphs by counting subgraphs while the latter uses shortest-paths
to measure similarity. In the experiments of (Yanardag and Vishwanathan 2015),
there is not a huge difference in performance between graph kernels and their
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deep-learning variant on tests performed on chemoinformatic datasets. Because of
this, we only compare against traditional graph kernels.

e Skip-graph: Our proposed method. We train an encoder-decoder model using
random walks generated from the graphs and use the encoder’s random walk

representations to calculate the final graph embedding.

To test ECFP and NeuralFPS, we used the library? provided by (Duvenaud et al. 2015).
The size of the graph embedding was restricted to 164 for all applicable methods and a
grid-search was done to optimize the parameters of the various methods. For ECFP and
NeuralFPS, we tested different values for the following parameters: fingerprint radius, £
regularization penalty, step size for the optimization, hidden layer dimension, and con-
volution layer dimension (only for NeuralEPS). All results reported are the average over
5-fold cross validation. Since a neural network, with a single hidden layer, was used as
the classifier in (Duvenaud et al. 2015), we chose to use the same classifier for all base-
lines. Furthermore, for a fair comparison, a grid-search was performed over the same set
of values for classifier-related parameters. In particular, for the neural network, we tested
various settings with hidden layer size selected from {70, 100, 140}, and ¢, regularization
chosen from {0.0001, 0.001,0.01, 0.1}.

All tests were conducted on a machine running Ubuntu with 160GB of memory and 48
CPU cores (Intel Xeon E5-2680 v3 @ 2.5 GHz).

Classification results

We show the classification accuracy of the different methods in Table 2. The proposed
method achieves top performance in all of the tested datasets. It is a little surprising,
however, to find that NeuralFPS performs slightly worse than ECFP. This seems to suggest
that it is overfitting the data as NeuralFPS is a generalization of ECFP and should, in
theory, be at least as good as ECFP. We find that the methods based on graph kernels
perform quite poorly. This may be due to the fact that we are using a combination of
the atom type and the additional node feature as the node “label" leading to an increase
in the number of possible features — which, in turn, causes sparsity where only a few
sub-structures are shared across graphs. This phenomenon has been shown in previous
experiments, see (Yanardag and Vishwanathan 2015) for instance.

Finally, we find that averaging the DeepWalk embeddings trained from random walks
generated from the entire training set can be a simple yet effective way to generate a graph
representation. When DeepWalk is run with window size set to 3, one can consider it to
be a special case of the proposed method where the sub-sequences are constrained to

Table 2 Summary of experimental results

Method Dataset
HIV NCI81 NCI83

ECFP 68.30% 68.90% 62.06%
NeuralFPS 67.48% 65.24% 59.91%
DeepWalk 69.90% 68.00% 63.89%
3-GK 61.78% 53.34% 53.01%
SP 59.10% 53.02% 56.26%
Skip-graph (ours) 72.77% 69.98% 63.80%

The best result(s) per dataset are highlighted.
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be of length 1. These results seem to show that in some cases aggregation at the node
level is sufficient. This may be the case, in particular, for graphs that are relatively small
with not too many different complex sub-structures. However, we see from the results
that focusing on the subgraph level can certainly be beneficial and can lead to better
performance.

Since it is possible to generate many different sets of random walks to train the encoder-
decoder model, we tried training five distinct encoders on five independent sets of
random walks. An ensemble (Opitz and Maclin 1999) of five classifiers is then created
with each classifier trained on the graph representations obtained from one of the five
encoders. We compare the predictive accuracy of the ensemble versus the single classifier
when all other settings are fixed. We observed a slight improvement (around 1 — 3%) in
the accuracy of the model. To maintain a fair comparison and to keep the method simple,
however, all the results reported above are for the single classifier case.

Parameter study

We tested the performance of the method using the various aggregation methods. The
performance was extremely poor when we trained the encoder-decoder model on long
random walks and used a single long walk to generate the graph representation. The
other three aggregation strategies yielded better results. Figure 6a shows the performance
of these methods. Averaging the hidden vector representations seems to yield the best
performance, calculating the component-wise maximum yielded the second best results

100 80.0
= maximum
= average
= cluster

-A- HIV

| - ncis1
-#- NCI83
80

725 4

accuracy
accuracy
2
=

HIV NCI81 NCI83 1 2 3 3 5 B 7 8 9 10
dataset number of epochs
(a) Performance of various aggregation meth- (b) Accuracy versus training epochs
ods

-A- HIV
-e- NCisl
751 -m- NCIs3

accuracy
3

l‘ % 1‘0 “5 2‘0
number of samples
(c) Accuracy versus number of samples used

for aggregation

Fig. 6 The performance of our proposed method under various settings. a Performance of various
aggregation methods, b Accuracy versus training epochs, € Accuracy versus number of samples used for
aggregation
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while the method that had the additional cluster pre-processing step performed slightly
worse.

We plot the accuracy of the method over the number of training epochs in Fig. 6b. With
the exception of the HIV dataset, which has a relatively few number of samples, the results
show a gradual increase in the classification accuracy as the number of training epochs
is increased. This is consistent with results in other work that show that given a large
number of training data, recurrent neural models generally achieve better results when
trained longer. Since we used a relatively large number of samples to train the encoder-
decoder model (K = 100 random walks were generated from each graph), the learned
embeddings already yielded good results even after a single epoch of training.

Figure 6¢ shows the accuracy in the classification task over different sample sizes K ,
or the number of samples aggregated to obtain the final graph representation. It is clear
from the results that a better graph representation is obtained if we use more samples to
calculate the final graph representation. This is quite intuitive as a limited sample may not
be representative and may fail to capture the properties of the graph well enough.

We tested several different values for /,,;, and [,,,4, and the one that seemed to perform
best in our case was /,;;;, = 7 and l,,,, = 12. This is a reasonable constraint on the random
walk length given that the average size of the molecular graphs was around 30. We used
K = 100 when generating a set of random walks to train the encoder-decoder. Finally, the
encoder-decoder model was trained using a batch-size of 64.

Visualization of graph embeddings

We show a scatterplot of the HIV graph embeddings learned by our model in Fig. 7. In
particular, we highlight two pairs of graphs that had very similar embeddings. We note
that the first pair of graphs (the one on the right) are structurally similar, that is they have
a large sub-structure in common. The graphs in the second pair each contain two similar
substructures that are joined by segments that appear to be “functionally” similar.

Fig. 7 The embeddings for graphs in the HIV dataset visualized in 2D space (we used Kernel PCA (Mika et al.
1998) for dimension reduction). We highlight two different pairs of embeddings that are close to each other
- to show structurally and “functionally” similar graphs that have learned embeddings that are also similar.
We include the other embeddings to give the reader a sense of the proximity of the graphs in our example to
other graphs and to each other
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Related Work

One popular approach to measure similarity between various graph objects is to use a
graph kernel method. Kernel methods utilize a kernel function which corresponds to an
inner product in reproducing kernel Hilbert space (RKHS) (Vishwanathan et al. 2010) to
calculate similarity between pairs of graphs. The dot product (-, )3 in RKHS # is per-
formed between graph representations (i.e., vectors) which capture structural properties
of the graphs. Various structural properties have been considered, and these include the
shortest path between nodes (Borgwardt and Kriegel 2005), the count of various graphlets
or subgraphs (Shervashidze et al. 2009), decomposed directed acyclic graph patterns
(Martino et al. 2012), and even the structure of the graph at varying scales (Kondor and
Pan 2016).

More recently, various methods have been proposed that generalize over previous
approaches. These methods learn data-driven graph representations using deep learning
approaches (Duvenaud et al. 2015; Yanardag and Vishwanathan 2015; Ying et al. 2018;
Zhang et al. 2018). For instance, one can think of (Duvenaud et al. 2015) as an end-to-end
differentiable version of the Weisfeiler-Lehman graph kernel (Shervashidze et al. 2011).
In contrast to NeuralFPS (Duvenaud et al. 2015) which relies on flat “message-passing”
steps, DiffPool (Ying et al. 2018) and deep graph convolutional neural networks (Zhang et
al. 2018) are recently-introduced models with differentiable graph pooling operations to
learn a hierarchical set of representations for graphs. This is similar to how a conventional
convolutional neural network learns hierarchical features for images. For DiffPool, each
pooling step coarsens the input graph by clustering the nodes into a small set of clusters.
Since these work (Duvenaud et al. 2015; Ying et al. 2018; Zhang et al. 2018) are end-to-end
differentiable they can learn task-relevant graph embeddings. However, Skip-graph has
the advantage of being able to take a large number of graphs without task labels for train-
ing since the encoder-decoder is trained in an unsupervised fashion. This is particularly
useful since it is usually quite costly to label large datasets.

Perhaps the work that resembles this work the most is that of (Yanardag and Vish-
wanathan 2015). However, there are several key differences between their work and ours.
In our work, the use of RNNs as encoders and decoders allow us to more naturally learn
embeddings for sub-sequences that differ slightly. This is in contrast to (Yanardag and
Vishwanathan 2015) where each sub-structure is treated as a unique “word." Furthermore,
we utilize the skip-thought model (Kiros et al. 2015) which is comprised of an encoder
and two decoders to capture structural and also functional similarity in sub-structures.

The network embedding problem has also received much attention recently where
the goal is to learn embeddings for nodes in graphs using node co-occurrence patterns
(Grover and Leskovec 2016; Perozzi et al. 2014; Tang et al. 2015; Huang et al. 2017). In
their seminal paper, (Perozzi et al. 2014) trained a skip-gram model (Mikolov et al. 2013)
using random walks on a graph to generate node embeddings. Various extensions to the
original approach have been proposed, including node2vec (Grover and Leskovec 2016)
which introduced the concept of a biased random walk. Accelerated Attributed Network
Embedding (Huang et al. 2017) is another approach that calculates attribute-sensitive
embeddings for attributed networks. These methods learn node embeddings that are
suitable for node-level tasks such as link prediction (Miller et al. 2009), node clustering
(Vinayak et al. 2014), and item recommendation (Wang et al. 2016). In all of the above-
mentioned approaches, the node embeddings are learned for nodes on a single graph only.
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In this work, we consider multiple graphs. Furthermore, we study the problem of learning
representations for entire graphs (as opposed to individual nodes) which is more suitable
for graph-level tasks like graph classification.

Encoder-decoder models have been applied successfully to various tasks in the NLP
domain including machine translation (Cho et al. 2014), semantic relatedness prediction
(Kiros et al. 2015), paraphrase detection (Kiros et al. 2015), and image captioning (Vinyals
et al. 2015). To the best of our knowledge, this is the first work that uses an encoder-
decoder model for the task of graph representation learning.

Conclusion
We introduced an unsupervised method, based on the encoder-decoder model, for
generating compact feature representations for graph-structured data. The learned repre-
sentations were evaluated on the binary classification task on several real-world datasets.
The method outperformed several state-of-the-art algorithms on the tested datasets.
There are several interesting directions for future work. For instance, we can try training
multiple encoders on random walks generated using very different neighborhood selec-
tion strategies. This may allow the different encoders to capture different properties in the
graphs yielding better performance. We would also like to test the approach using other
deep learning architectures.

Endnotes
1We use the implementation in https://github.com/ryankiros/skip-thoughts.
2http://www.rdkit.org/
3https://github.com/HIPS/neural-fingerprint
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