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Abstract

Local pattern mining on attributed networks is an important and interesting research
area combining ideas from network analysis and data mining. In particular, local
patterns on attributed networks allow both the characterization in terms of their
structural (topological) as well as compositional features. In this paper, we present
MinerLSD, a method for efficient local pattern mining on attributed networks. In order
to prevent the typical pattern explosion in pattern mining, we employ closed patterns
for focusing pattern exploration. In addition, we exploit efficient techniques for pruning
the pattern space: We adapt a local variant of the standard Modularity metric used in
community detection that is extended using optimistic estimates, and furthermore
include graph abstractions. Our experiments on several standard datasets demonstrate
the efficacy of our proposed novel method MinerLSD as an efficient method for local
pattern mining on attributed networks.

Keywords: Complex networks, Attributed networks, Closed pattern mining, Network
analysis and mining, Graph mining, Community detection

Introduction
The analysis of complex networks, e.g., by investigating structural properties and iden-
tifying interesting patterns, is an important task to make sense of such networks, in
order to ultimately enable an understanding of their phenomena and structures, e.g.,
(Newman 2003; Kumar et al. 2006; Almendral et al. 2007; Mitzlaff et al. 2011; Silva et al.
2012; Mitzlaff et al. 2013; Atzmueller 2014; Pool et al. 2014; Galbrun et al. 2014; Mitzlaff
et al. 2014; Kibanov et al. 2014; Soldano et al. 2015; Atzmueller et al. 2016; Bendimerad et
al. 2016; Kaytoue et al. 2017; Atzmueller 2017; 2019). In this context, data mining on such
networks represented as attributed graphs has recently emerged as a prominent research
topic, e.g., (Moser et al. 2009; Silva et al. 2012; Atzmueller 2014; Galbrun et al. 2014; Sol-
dano et al. 2015; Atzmueller et al. 2016; Bendimerad et al. 2016; Kaytoue et al. 2017).
Methods for mining attributed graphs focus on the identification and extraction of pat-
terns using topological information as well as compositional information on nodes and/or
edges given by a set of attributes, e.g., (Atzmueller 2018; Wasserman and Faust 1994). In
particular, local pattern mining focuses on the identification of dense substructures in a
graph that are captured by specific patterns composed of the given attributes, e.g., for
detecting communities (Moser et al. 2009; Silva et al. 2012; Pool et al. 2014; Galbrun et al.
2014; Soldano et al. 2015; Atzmueller et al. 2016).
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In this paper, an adapted and substantially extended revision of Atzmueller et al. (2018),
we presentMinerLSD amethod for the efficientmining of local patterns on attributed net-
works. Compared to our work described in Atzmueller et al. (2018), we have added onto
the discussion of theMinerLSD algorithm, also considering further related approaches for
putting the proposed method into context. Furthermore, we have considerably extended
the evaluation and discussion of the proposed novel algorithm with new experiments,
also using new (larger) datasets, and by illustrating the pattern mining approach using
exemplary patterns.
MinerLSD focuses both on local pattern mining (e.g., for local community detection)

using the local modularity metric (Newman 2004; Newman and Girvan 2004; Atzmueller
et al. 2016), as well as graph abstraction that reduces graphs to k-core subgraphs (Soldano
et al. 2015). In order to prevent the typical pattern explosion in patternmining, we employ
closed patterns. In addition, we exploit optimistic estimates for the local modularity for
focussing pattern exploration inspired by community detection methods and for pruning
the pattern space. Essentially, the optimistic estimate technique provides two advantages:
First, it neglects the importance of a minimal support threshold which is typically applied
in pattern mining. Second, it enables a very efficient pattern exploration approach, given
a suitable threshold for the local modularity, as we will show below. Then, this threshold
can of course alternatively be entirely eliminated in a top-k approach.We demonstrate the
efficacy of our presented novel method MinerLSD by performing experiments on several
standard datasets, in relation to two baselines for local pattern mining.
Our contributions are summarized as follows:

1. For local pattern mining on attributed graphs, we analyze the impact of generating
closed patterns compared to standard pattern mining in terms of the search effort.

2. Using two baseline algorithms, we further investigate the impact of pruning the
pattern exploration space using an optimistic estimate of the local modularity
measure with different thresholds.

3. Finally, we propose the MinerLSD method for efficient local pattern mining on
attributed graphs. MinerLSD relies on closed pattern mining, optimistic estimate
pruning, and graph abstraction.

The rest of this paper is organized as follows: Section “Related Work” discusses
related work, before section “Background” introduces basic notions and concepts. After
that, “The MinerLSD Algorithm” section presents the novel MinerLSD method. Next,
section “Datasets” introduces the applied datasets. Section “Experiments and Results”
discusses our experimental results. Finally, section “Conclusions” concludes with a
summary and interesting directions for future work.

RelatedWork
The detection of local patterns is a prominent approach in knowledge discovery and
data mining, e.g., (Morik 2002; Morik et al. 2005; Knobbe et al. 2008). Below, we discuss
related work in the areas of local pattern mining, closed patterns, graph abstractions, and
community detection on attributed graphs.
In particular, the proposed novel MinerLSD algorithm builds on methods for those

fields. Thus, similar to the approaches discussed below, the proposedMinerLSD approach
also utilizes closed patterns, and graph abstractions, i.e., core subgraphs. However, it
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extends this using optimistic estimate pruning using an interestingness measure adapted
from (local) community detection. In section “Experiments and Results”, we perform
an extensive evaluation of the impact of closed patterns, optimistic estimates, and core
structures on the pattern mining effort.

Pattern Mining

In general, local pattern mining, e.g., (Agrawal and Srikant 1994; Han et al. 2000; Morik
2002; Morik et al. 2005; Knobbe et al. 2008; Lemmerich et al. 2012; Atzmueller 2015;
Lemmerich et al. 2016) has many flavors, including association rule mining, subgroup
discovery, and graph mining. At its core, it considers the support set of any pattern, i.e.,
the set of objects, often called transactions, in which the pattern occurs. The goal then
is to enumerate the set of all patterns that satisfy some constraint. In the case of associa-
tion rules (Agrawal and Srikant 1994; Han et al. 2000) typically the frequency of a pattern,
or the frequency of a contained implication in the pattern, respectively, are considered.
Whenever the constraint is anti-monotonic, as the frequency, a top-down search may be
efficiently pruned. Still this results in investigating a lot of patterns. In the field of sub-
group discovery, more complex constraints formalizx ed in quality (or interestingness)
functions have been proposed; here, these do not necessarily fulfill anti-monotonicity. To
handle that, optimistic estimates for those quality functions have been proposed (Wrobel
1997; Grosskreutz et al. 2008; Atzmueller and Lemmerich 2009; Lemmerich et al. 2016) in
order to efficiently prune the pattern search space. Closed patternmining (see for instance
(Pasquier et al. 1999)) reduces the search by considering patterns as equivalent when hav-
ing the same support set, and generating only closed patterns, i.e., a most specific pattern
among all equivalent patterns. Efficient enumeration algorithms have been provided, e.g.,
(Uno et al. 2004; Boley et al. 2010)). Various algorithms and methodologies using closure
operators have also been proposed in the domain of formal concept analysis (Wille 1982),
which goes further than the enumeration alone, being interested in the lattice structure
of the set of closed patterns (Ganter and Wille 1999).

Local Pattern Mining on Attributed Networks

For investigating complex networks, a popular approach consists of extracting a core
subgraph from the network, i.e., some essential part of the graph whose nodes satisfy a
local property. The k-core definition was first proposed in Seidman (1983). It requires
all nodes in the core subgraph to have a degree of at least k. The idea was further
extended to a wide class of so-called generalized cores (Batagelj and Zaversnik 2011).
The resulting subgraphs may be made of several connected components that are then
considered as structural communities. However, as this may be too weak to obtain cohe-
sive communities, some post-processing may then be necessary. A successful method,
for example, identifies k-communities (Palla et al. 2005) that are extracted from the
connected components of a graph derived from the original graph.
Recently an extension of the closed pattern mining methodology to attributed graphs

has been proposed. It relies on the reduction of the support set of a pattern to the core of
the pattern subgraph (Soldano and Santini 2014). This results in less and larger classes of
equivalent patterns, and hence less closed patterns. The MinerLC algorithm proposed by
Soldano et al. (2017) is a genericmethod to enumerate the set of such core closed patterns.
The algorithmMinerLSD that we propose in “The MinerLSD Algorithm” section, closely
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follows the MinerLC algorithm and adds requirements regarding the local modularity of
the pattern core subgraphs. This is performed efficiently using the optimistic estimate
pruning strategy of the COMODO algorithm for community detection, mentioned in
section “Community Detection on Attributed Graphs”.

Community Detection on Attributed Graphs

Communities and cohesive subgroups have been extensively studied in network sci-
ence, e.g., using social network analysis methods (Wasserman and Faust 1994). Fortunato
(2010) presents a thorough survey on the state of the art community detection algorithms
in graphs, focussing on detecting disjoint communities, e.g., (Newman and Girvan 2004;
Fortunato and Castellano 2007). In contrast to such partitioning approaches, overlapping
communities allow an extended modeling of actor–actor relations in social networks:
Nodes of a corresponding graph can then participate in multiple communities, e.g., (Palla
et al. 2007; Lancichinetti et al. 2009; Xie and Szymanski 2013). A comprehensive survey on
algorithms for overlapping community detection is provided in Xie et al. (2013). In con-
trast to the algorithms and approaches discussed above, the proposed approach utilizes
further descriptive information of attributed graphs, e.g., (Bothorel et al. 2015).
Attributed (or labeled) graphs as richer graph representations enable approaches that

specifically exploit the descriptive information of the labels assigned to nodes and/or
edges of the graph. Exemplary approaches include density-based methods, e.g., (Zhou
et al. 2009; Combe et al. 2015), distance-based methods, e.g., (Steinhaeuser and Chawla
2008; Ge et al. 2008), entropy-based methods, e.g., (Zhu et al. 2011; Smith et al. 2014),
model-based methods, e.g., (Balasubramanyan and Cohen 2011; Xu et al. 2012), seed-
centric methods, e.g., (Kanawati 2014a; Yakoubi and Kanawati 2014; Kanawati 2014b;
Belfin et al. 2018) and finally pattern mining approaches, which we will describe in the
following in more detail.
Patternmining approaches for community detection on attributed graphs typically con-

nect (local) pattern mining and community detection according to several interestingness
measures or optimization criteria. Moser et al. (2009), for example, combine the concepts
of dense subgraphs and subspace clusters for mining cohesive patterns. Starting with
quasi-cliques, those are expanded until constraints regarding the description or the graph
structure are violated. Similarly, Günnemann et al. (2013) combine subspace clustering
and dense subgraph mining, also interleaving quasi-clique and subspace construction.
Galbrun et al. (2014) propose an approach for the problem of finding overlapping commu-
nities in graphs and social networks, that aims to detect the top-k communities so that the
total edge density over all k communities is maximized. This is also related to a maximum
coverage problem for the whole graph. For labeled graphs, each community is required to
be described by a set of labels. The algorithmic variants proposed by Galbrun et al. apply
a greedy strategy for detecting dense subgroups, and restrict the resulting set of com-
munities, such that each edge can belong to at most one community. This partitioning
involves a global approach on the community quality, in contrast to our local approach.
Silva et al. (2012) study the correlation between attribute sets and the occurrence of dense
subgraphs in large attributed graphs. The proposed method considers frequent attribute
sets using an adapted frequent itemmining technique, and identifies the top-k dense sub-
graphs induced by a particular attribute set, called structural correlation patterns. The
DCM method presented by Pool et al. (2014) includes a two-step process of community
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detection and community description. A heuristic approach is applied for discovering the
top-k communities, utilizing a special interestingness function which is based on count-
ing outgoing edges of a community similar; for that, they also demonstrate the trend of a
correlation with the Modularity function.
The COMODO algorithm proposed by Atzmueller et al. (2016) applies an adapted

subgroup discovery (Atzmueller and Puppe 2006; Atzmueller 2015) approach for commu-
nity detection on attributed graphs. That is, COMODO applies subgroup discovery for
detecting interesting patterns (constructed from the set of compositional attributes) for
which their interestingness is evaluated on the graph topological structure. The algorithm
works on an edge dataset that is attributed with common attributes of the respective
nodes. Then, communities are detected in a top-k approach maximizing a given commu-
nity interestingness measure. This includes, among others, the local modularity, which
is derived from the (global) measure, i.e., the (Newman) Modularity (Newman 2004;
Newman and Girvan 2004). For an efficient community detection approach, COMODO
utilizes optimistic estimate pruning.
In this paper, we adapt the COMODOapproach integrating optimistic estimate pruning

for the local modularity as proposed by COMODO with closed abstract pattern mining
of the MinerLC algorithm. This results in the efficient and effective MinerLSD algo-
rithm, making use of efficient techniques based on abstract closed pattern mining and
branch-and-bound pruning according to the local modularity. At the same time, these
techniques allow effective selection strategies utilizing graph abstractions together with
local modularity, as we will show below.

Background
In the following, we outline the background on closed local pattern mining, introduce
pruning based on optimistic estimates, and discuss pattern exploration, abstraction, and
selection combining principles from pattern mining and graph mining, i.e., utilizing clo-
sure on the attribute space and topological criteria based on local modularity (estimates)
and k-cores.

Mining Closed Patterns to Enumerate Core Subgraphs

We consider the following general problem: Let G be an attributed graph, i.e., a graph
where each vertex v is described by an itemset D(v) taken from a set of items I. We want
to enumerate all (maximal) vertex subsets W in G such that there exists an itemset q
which is a subset of all itemsets D(v), v ∈ W . W is furthermore required to satisfy some
graph related constraints. In standard terminology, q is a pattern that occurs in all element
of W which is also called the support set or extension ext(q) of q. Efficient top-down
enumeration algorithms exist as far as the constraints are anti-monotonic: whenever the
constraint fails to be satisfied by some pattern, it also fails for all more specific patterns.
This is obviously the case for the minimum support constraint that requires the size of
ext(q) to be above some minimal support threshold s.
A first way to reduce the overall search space and the size of the solution set is to avoid

duplicates, i.e., patterns q, q′ that occur in the same subgroup, for which ext(q) = ext(q′).
This is obtained by only enumerating closed patterns. Given any pattern q the associated
closed pattern is the most specific pattern f (q) which occurs in the same subgroup as q,
i.e., ext(f (q)) = ext(q). Furthermore, since we consider the vertices of a graph, it is natural
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to consider graph related constraints, as for instance requiring that all vertices have a
degree of at least k in the subgroup graphGW . For that purpose, each candidate subgroup
X is reduced to its core p(X) = W using the core operator p.
We start with the definition of closure: The operator f that returns for any pattern q the

closed pattern f (q) is a closure operator (see below) defined by f (q) = int ◦ p ◦ ext(q); the
respective operators are defined as follows (note that ◦ denotes function composition):

• The intersection operator int(X) returns the most specific pattern occurring in the
vertex subset X.

• The core operator p(X) returns the core, according to some core definition, of the
subgraph GX of G induced by the vertex subset X. p is an interior operator (see
below).

Definition 1 Let S be an ordered set and f : S → S a self map such that for any x, y ∈ S,
f is monotone, i.e. x ≤ y implies f (x) ≤ f (y) and idempotent, i.e. f (f (x)) = f (x):
- If f (x) ≥ x, f is called a closure operator.
- If f (x) ≤ x, f is called an interior operator.

Essentially, core closed pattern mining relies on three main results:

1. It has been shown that whenever p is an interior operator, f = int ◦ p ◦ ext is a
closure operator (Pernelle et al. 2002).

2. Furthermore, core definitions rely on a monotone property of a vertex within an
induced subgraph (Batagelj and Zaversnik 2002). For instance, the k-core of a
subgraph GX is defined as the largest vertex subsetW ⊆ X such that in the induced
subgraph GW all vertices v have a degree of at least k. The property is monotone in
the sense that when increasing GX to GX′ the degree of v cannot decrease.

3. Finally, it has been shown that the core operator which returns the core of some
subgraph GX , according to a monotone property, is an interior operator (Soldano
and Santini 2014).

Overall, this means that f (q) returns the largest pattern which occurs in the core of the
vertex subset ext(q) in which q occurs. This is exploited in core closed pattern mining
(Soldano et al. 2017), performing a top-down search of the pattern space jumping from
closed pattern to closed pattern: each closed pattern q is augmented with some item x,
then the next closed pattern f (q ∪ {x}) is computed.

Pruning Local Patterns in Graphs Using Optimistic Estimates

Another way to reduce the solution set is to consider some interestingness measure M
and require a subgroupW to induce a subgraphGW with an interestingnessM(W ) above
some threshold. However such measures, for example, the local modularity (see below),
are usually not anti-monotonic. This difficulty may be overcome by using some optimistic
estimate ofM which is both anti-monotonic and allows an efficient pruning of the search
space. Optimistic estimates are one prominent option in local pattern mining to prune
search spaces by complementing non-(anti)-monotonic interestingness measures by their
respective optimistic estimators, e.g., (Grosskreutz et al. 2008;Wrobel 1997). Intuitively, if
for a given pattern (and all of its potential specializations) it can be proven that their qual-
ity is either below the quality of the current top patterns, or below a specified threshold,
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then pattern exploration does not need to continue for that pattern, and the search space
can often be pruned significantly.
In the scope of local pattern mining on graphs, several standard community quality

functions have been investigated, also specifying optimistic estimates for a number of
such community evaluation functions. As shown in Atzmueller et al. (2016) these lead to a
quite efficient approach for descriptive community detection using local pattern mining.
In summary, using optimistic estimates we can enumerate pairs (c,W ), of pattern c and
subgroup W inducing the subgraph GW . Then, we can select subgraphs according to an
interestingness measure M of the subgraph using an anti-monotonic optimistic estimate
of M to prune the search. Additionally, a minimal support constraint can also be applied
in order to improve the effectiveness of pruning.
Below, we summarize main results on using optimistic estimate pruning for community

detection, specifically addressing the (local) modularity quality measure. Here, the con-
cept of a community intuitively describes a group W of individuals out of a population
such that members ofW are strongly “connected” to each other but sparsely “connected”
to those individuals that are not contained in W. This notion translates to communities
as vertex sets W ⊆ V of an undirected graph G = (V ,E); in the following, we adopt the
notation of Atzmueller et al. (2016) for introducing the main concepts: n := |V |,m := |E|,
andmW := |{{u, v} ∈ E : u, v ∈ W }| denotes the number of intra-edges ofW.
There are different interestingness measures for estimating the quality of a commu-

nity 2V → R, also according to different criteria and intuitions about what “makes up” a
good community. One particular community quality function is theModularity (Newman
2004; Newman and Girvan 2004). In the context of local pattern mining, we aim tomax-
imize local quality functions for single communities. For that, we apply an adaptation of
the Modularity interestingness measure, which essentially is a global measure estimating
the quality of a community partitioning. Then, we focus on the modularity contribution
of each individual community in order to obtain a local measure for each community, cf.,
(Atzmueller et al. 2016), which we further call local modularity (MODL).
Overall, the Modularity MOD (Newman 2004; Newman and Girvan 2004; Newman

2006) of a graph clustering with k communities C1, . . . ,Ck ⊆ V focuses on the number of
edgeswithin a community and compares that with the expected such number given a null-
model (i.e., a corresponding random graph where the node degrees of G are preserved).
It is given by

MOD = 1
2m

∑

u,v∈V

(
Au,v − d(u)d(v)

2m

)
δ(C(u),C(v)) , (1)

where C(i) denotes for i ∈ V the community to which node i belongs. Au,v denotes the
respective entry of the adjacency matrix A. δ(C(u),C(v)) is the Kronecker delta symbol
that equals 1 if C(u) = C(v), and 0 otherwise.
The modularity contribution of a single community given by a vertex set W ,W ⊆ V

in a local context (e.g., in a subgraph induced by the pattern), i.e., the local modularity
(MODL), can then be computed (cf., (Newman 2006; Nicosia et al. 2009; Atzmueller et al.
2016)) as follows:

MODL(W ) = mW
m

−
∑

u,v∈W

d(u)d(v)
4m2 . (2)
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For the above (MODL), an optimistic estimate has been introduced in Atzmueller et al.
(2016). It can be derived based only on the number of edgesmW within the community:

oe(MODL)(W ) =
{
0.25, ifmW ≥ m

2 ,
mW
m − m2

W
m2 , otherwise.

(3)

For a detailed discussion, the derivation of the local measure, and the respective proofs,
we refer to Atzmueller et al. (2016).

Local Pattern Exploration, Abstraction, and Selection

Pattern mining commonly aims at discovering a set of novel, potentially useful, and ulti-
mately interesting patterns from a given (large) data set (Fayyad et al. 1996). For pattern
exploration, we apply local pattern mining, in particular, (abstract) closed pattern mining
(Pasquier et al. 1999; Uno et al. 2004; Boley et al. 2010; Soldano and Santini 2014; Soldano
et al. 2017) due to its efficient traversal of the search space for pattern enumeration and
abstraction as discussed above.
Regarding pattern selection, we discuss the choices of core abstraction and modularity-

based selection in the following: In contrast to many methods used in network analysis
and graph mining, pattern mining on attributed graphs specifically aims at a description-
oriented view, by including patterns on attributes, but also considering the topological
structure. Many community mining algorithms, for example, only collect sets of nodes
denoting the individual communities thus merely focusing on structural/topological
aspects of the graph; typically, then there is no simple and easily interpretable description,
such that a community would be represented mainly as a set of IDs, cf., (Atzmueller et al.
2016).
For local pattern mining, the goal is typically to detect a set of the most interesting pat-

terns according to a given quality function, e.g., with a quality above a certain threshold,
or the top-k patterns according to the ranking of the quality function denoting their inter-
estingness. For subgroup discovery, as an exemplary instance, the goal is then to obtain
the set of patterns covering subgroups that are “as large as possible and have the most
unusual statistical characteristic with respect to the property of interest” (Wrobel 1997).
Thus, the interestingness of a pattern can then be flexibly defined, e.g., by a significant
deviation from a model that is derived from the total population (Morik 2002; Morik
et al. 2005; Knobbe et al. 2008). Therefore, typically the size of a pattern or the size of
its extension, respectively, and the deviation compared to some null-model specifies the
interestingness which is formalized in the quality function for ranking the patterns.
For pattern mining on networks and graphs, there exist several quality measures, usu-

ally taking into account the support of the pattern, i.e., its size, similar to the criteria
discussed above. Furthermore, the topological structure of the subgraph induced by the
pattern is also taken into account. Here, standard quality functions include the segrega-
tion index (Freeman 1978), the average out degree fraction (Yang and Leskovec 2012), the
conductance (Leskovec et al. 2008) and theModularity (Newman and Girvan 2004), as we
have discussed in the previous section. In general, the core idea of the evaluation function
is to apply an objective evaluation criterion, for example, for the Modularity the number
of connections within the community compared to the statistically “expected” number
based on all available connections in the network, and to prefer those communities that
optimize the evaluation function.
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A thorough empirical analysis of the impact of different community mining algorithms
and their corresponding objective function on the resulting community structures is pre-
sented in Leskovec et al. (2010), based on the analysis of community structure in graphs
(as presented in Leskovec et al. (2008)). Furthermore, Atzmueller et al. (Atzmueller and
Mitzlaff 2010; 2011; Atzmueller et al. 2016) have empirically investigated different com-
munity quality functions in the scope of local pattern mining. As shown there for the
provided experiments, the local modularity quality function indicated the best results for
pattern filtering and pruning in local pattern mining applications, since it provides large
high quality communities, i.e., subgroups referring to the induced subgraphs, smaller
patterns in terms of their description, as well as statistically significant patterns com-
pared to the other mentioned quality functions which focus on smaller subgroups; those
were typically also not statistically significant as specifically presented in Atzmueller et al.
(2016).
Furthermore, the local modularity quality function (see Eq. 2) intuitively provides the

prominent property of assigning a higher ranking to larger (core) subgraphs under con-
sideration, if these are considerably more densely connected than expected by chance.
Therefore, these criteria conveniently capture the notion of larger subgraphs and hav-
ing the most unusual statistical characteristics with respect to the null-model. In the
following, we show how these criteria are directly implemented in the local modularity
measure.
Consider the local modularity MODL(W ) of a subgraphW :

MODL(W ) = mW
m

−
∑

u,v∈W

d(u)d(v)
4m2 = 1

m

⎛

⎝mW −
∑

u,v∈W

d(u)d(v)
4m

⎞

⎠ .

Since the first factor 1
m is a constant, we can consider the second factor of the former

expression: It is easy to see that this factor itself is order equivalent to the local modularity
function MODL, since it only depends on a fixed constant 1

m ; by not including that it is
thus not normalized relatively to the number of edges of the graph. Instead, it focuses on
the number of edges of the (core) subgraph (the minuend of the term) and its deviation
assessed by the null-model which is captured by the subtrahend of that term.
Thus, it is easy to see that the MODL function tends to focus on larger patterns (larger

subgraphs) having the most unusual statistical characteristics with respect to the null-
model. By utilizing appropriate constraints on the graph structure, e.g., using k-core
abstractions we can further focus on the unusual distributional characteristics. By apply-
ing k-core abstractions, for example, with increasing k we tend to focus on increasingly
denser pattern structures (subgraphs). We will also show this by our experiments in
section “Experiments and Results” when we discuss our results.
To sum up, we apply the local modularity measure MODL as introduced above for

focusing pattern exploration on the statistically most unusual subgraphs. Applying k-core
constraints helps due to its focus on denser subgraphs, as also theoretically analyzed in
Peng et al. (2014) for k-cores. Overall, we specifically focus on “nuggets in the data” (Klös-
gen 1996), i.e., on exceptional patterns according to the principles of local pattern mining.
In addition, the local modularity neglects the importance of a minimal support threshold
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which is typically applied in pattern mining, since it directly includes the size of the pat-
tern as a criterion. This enables a very efficient pattern mining approach, given either a
suitable threshold for the local modularity, or by targeting the top-k patterns.

TheMinerLSD Algorithm
In the following, we describe our proposed novel methodMinerLSD in detail. MinerLSD
integrates core subgraph closed pattern mining with pattern selection according to the
local modularity MODL function, and optimistic estimate pruning according to a specific
optimistic estimator, i.e., oe(MODL).
As input parameters, MinerLSD requires a graph G = (V ,E), a set of items I, a dataset

D describing vertices as itemsets and a core operator p. p depends on G and to any image
p(X) = W we associate the core subgraph C whose vertex set is vs(C) = W . In our
experiments, p(X) returns the k-core of X. As further parameters, MinerLSD considers
the corresponding value k as well as a frequency threshold s (defaulting to 0) and a local
modularity threshold lm. The algorithm outputs the frequent pairs (c,W ) where c is a
core closed pattern and W = p ◦ ext(c) its associated k-core. For evaluation purposes,
we also count the number of patterns above the local modularity threshold (#lm), and
the number of patterns for which their estimate is above the local modularity threshold
(#lme). It is important to note, that in the enumeration step MinerLSD ensures that each
pair (c,W ) is enumerated (at most) once.

MinerLSD (G, I, D, p, s, lm)
#lme← #lm← 0
W ← p(V )

// also defines the associated core subgraph C = GW
if | W | < s or oe(MODL)(W ) < lm then exit
enum(int(W ),C, ∅) // int(W ) is the closure of ∅

_
Function enum(c,C,EL)
ensure: outputs the frequent (c′,W ′) pairs
where c′ ⊇ c and contains no items of EL

Increase #lme
ifMODL(C) ≥ lm then
Increase #lm and Output (c, vs(C))

end if
for all x ∈ I \ c do
/* Generate all augmentations of c*/
W = p ◦ ext(c ∪ {x}) // with core subgraph Cx

c ← int(W )

if | W |≥ s and oe(MODL)(W ) ≥ lm and c ∩ EL = ∅ then
enum(c,Cx,EL)

// enumerate the subtree rooted on c
EL ← EL ∪ {x}

end if
end for

_
Function int(W )

return ∩v∈WD(v)



Atzmueller et al. Applied Network Science            (2019) 4:43 Page 11 of 33

Datasets
We performed our experiments utilizing a variety of attributed graph datasets ranging
from small to medium graphs with small to large sets of items. Table 1 depicts the main
characteristics of these datasets (see also (Galbrun et al. 2014)), which have been previ-
ously used in pattern mining tasks on attributed graphs. For each dataset, we indicate the
number of edges (|E|), vertices (|V |) and labels (|L|), the average vertex degree (deg(v))
and average number of labels per vertex (|l(v)|) in the table.

• S50 is a standard attributed graph dataset used in a previous work about graph
abstractions (Soldano and Santini 2014). 1 It represents 148 friendship relations
between 50 pupils of a school in theWest of Scotland; the labels concern the students’
substance use (tobacco, cannabis and alcohol) and sporting activity. The values of the
corresponding variables are ordered (see (Soldano and Santini 2014) for details).

• The Lawyers dataset concerns a network study of corporate law partnership that was
carried out in a Northeastern US corporate law firm from 1988 to 1991 in New
England (Lazega 2001). It concerns 71 attorneys (partners and associates) of this firm
who are the vertices of four networks. In the resulting data, each attorney is described
using various attributes. 2 We consider the advice network which is originally a
directed graph in a undirected version, so that two lawyers are connected if at least
one asks for advice to the other one.

• The CoExp dataset models a representative regulatory network for yeast obtained
from Microarray expression data processed by the CoRegNet(Nicolle et al. 2015)
program. In the CoExp dataset the vertices are co-regulators and they are linked if
they share a common set of target genes. The vertices are labeled with their influence
profile along a metabolic transition of the organism. Each influence value represents
the regulation activity of the considered co-regulator at some instant of the metabolic
transition.

• LastFM, DBLP.C and DBLP.XL were used in Galbrun et al. (2014). LastFM models
the social network of last.fm where individuals are described by the artists or groups
they have listened to. DBLP.C contains a co-authorship graph built from a set of
publication references extract from DBLP of researchers that have published in the
ICDM conference. The authors are labeled by keywords extracted from the papers’
titles. DBLP.XL is the complete labeled DBLP co-authorship network used in
Galbrun et al. (2014).

Table 1 Datasets/Characteristics: Number of edges (|E|), vertices (|V|), labels (|L|), the average vertex
degree (deg(v)), and average number of labels per vertex (|l(v)|)
Nom |V | |E| |L| deg(v) |l(v)|
S50 50 74 14 2.96 7

Lawyers 71 556 42 15.66 20

CoExp 151 1849 36 24.49 18

LastFM 1892 12717 17625 13.44 40.07

Delicious 1867 7664 52800 8.21 123.47

DBLP.C 3140 10689 4588 6.81 15.02

DBLP.P 45131 228173 32 10.11 2.15

DBLP.S 108032 276658 23254 5.12 13.93

DBLP.XL 929937 3461697 92164 7.44 10.16
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• DBLP.P was used in Bechara-Prado et al. (Bechara Prado et al. 2013). It represents a
co-authorship graph built from a set of publication references extract from DBLP,
published between January 1990 and February 2011 in the major conferences or
journals of the Data Mining and Database communities. Three labels have been
added to the original dataset based on the scope of the conferences and journals,
respectively: DB (databases), DM (data mining) and AI (artificial intelligence).

• Delicious consists of the social (friendship) network of the resource sharing system
delicious where individuals are described by their bookmarks’ tags. The dataset is
publicly available and was obtained from the HetRec workshop (Cantador et al. 2011)
at Recsys 2011.3

• DBLP.S was used in Silva et al. (2012). It also represents a co-authorship network
from a set of publication references extracted from DBLP.

Experiments and Results
In the following, we first summarize the applied baseline methods that were used
in the comparison with the presented MinerLSD method. After that, we present our
experimental results on the datasets described in “Datasets” section.

Baseline Methods

The applied set of baseline methods consists of MinerLC – an efficient algorithm for
mining core closed patterns, and COMODO – an efficient algorithm for descriptive
community detection using optimistic estimates.

MinerLC

MinerLC4 (cf., (Soldano et al. 2017)) enumerates pairs (c,W ) where GW is the core sub-
graph of pattern c, i.e., subgroup W = p ◦ ext(c) where ◦ is the composition operator,
p is a core operator and c is the largest pattern that occurs in W and is called a core
closed pattern. A threshold on the core sizes allows to select frequent core closed pat-
terns and to accordingly prune the search. The selection process relies then partly on the
anti-monotonic support constraint and partly on the fact that there are less pattern core
subgraphs than pattern subgraphs as various pattern subgraphsGext(q) may be reduced to
the same core subgraph.

COMODO

The COMODO algorithm5 presented in Atzmueller et al. (2016) performs description-
oriented community detection in order to discover the top-k communities. In summary,
COMODO enumerates pairs (c,W ) where GW is the subgraph of pattern c for vertex
subsetW. It selects top k subgraphs according to an interestingnessmeasureM of the sub-
graph and uses an efficient anti-monotonic optimistic estimate ofM to prune the search.
Additionally, a minimal support constraint can also be applied in order to improve the
effectiveness of pruning.

Similarities and Differences in Pattern Selection

Both the considered baseline methods, i.e., MinerLC and COMODO output a set of pairs
(pattern, vertex subset). However, in order to compare their outputs we have to consider
the following differences:

• In COMODO the vertex subset W is obtained as the extremities of the set of edges
in which a pattern occurs and a pattern occurs in an edge whenever it occurs, in the
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original dataset, in both connected vertices. That is, for each edge we assign the set of
common items of both nodes, such that a pattern always covers two nodes connected
by an edge. As a consequence, W ignores isolated nodes in which p occurs. To
obtain the same vertex subset in MinerLC (and MinerLSD) it is necessary to remove
isolated nodes, which is enabled by applying a 1-core graph abstraction.

• Since COMODO does not enumerate closed patterns, the same subgroup may be
associated to several patterns. For that case, a post-processing is needed to eliminate
the duplicates from the list of subgroups which may then be compared to the
subgroups in the MinerLC pairs. This post-processing is one of the standard
post-processing options of COMODO.

• MinerLC is run with a core definition while COMODO uses various parameters to
limit the enumeration, as for instance the top-k parameter.

To compare the results, MinerLC (as well as MinerLSD) should be run with the same
minimum support threshold as COMODO and should only use a 1-core abstraction. The
other parameters of COMODO should then have a value that does not limit the enu-
meration, e.g., by providing a sufficiently large top-k parameter to enable an exhaustive
enumeration.
Furthermore, MinerLC and COMODO select patterns according to different criteria.

This is exemplified in Fig. 1, in which we have three graphs and three subgraphs induced
by three vertices (in red). The subgraph G123 of the top graph G is a 2-core with a local
modularity of 0.178. Within the central graph, the subgraph G123 is also a 2-core but with
a low local modularity of -0.15. Finally, within the bottom graph, G123 is not a 2-core
(since it has an empty 2-core subgraph) with a high local modularity of 0.16.

Results and Discussion

In our experiments below, we first investigate the impact of closure, before we focus on
the k-core abstraction. We perform a detailed analysis of the efficiency of using the local
modularity estimate for pruning the search space. Finally, we provide a structural pattern
set analysis considering different metrics, and discuss exemplary patterns for illustrating
the efficacy of the proposed approach.

Fig. 1 Three graphs (top, center, bottom) each with a subgraph displayed in red. The two topmost
subgraphs are 2-cores while the bottom subgraph has an empty 2-core. The top and bottom graphs have a
local modularity above 0.15 while the central one has a negative local modularity score of -0.15
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Parameters and Datasets

ForMinerLSD, it is important to note that in our experiments described below we did not
have to use the minimal support s, since the local modularity threshold is efficient enough
to strongly reduce the number of patterns.
Below, we consider the following pattern quantities, where the (closed pattern, support

set) pairs (c, e) are output by MinerLC unless specified; also, we consider a given local
modularity threshold lm.

• #c the number of pairs (c, e).
• #lme: the number of pairs (c, e) such that oe(MODL)(e) ≥ lm.
• #nec: the number of (necessary) pairs (c, e) a top-down search has to consider to

ensure that no pair with oe(MODL)(e) ≥ lm is lost. See “Pruning: Efficiency of the
Local Modularity Estimate” section for details and results on #nec.

• #lm the number of pairs (c, e) such thatMODL(e) ≥ lm
• #lmeSD: the number of pairs (c, e) such that oe(MODL)(e) ≥ lm as generated by

COMODO.

We ran the original COMODO and MinerLC programs as available. MinerLSD is
derived from the sources of MinerLC and is to be found on theMinerLC web site6. A new
MinerLC version integrates the MinerLSD developments. The experimental results pre-
sented here may then be obtained using appropriate parameters and options of the new
software.

Impact of Closed Patterns in Reducing the Search Space

MinerLSD searches a space of closed patterns while COMODO searches the whole
pattern space. Therefore, we will investigate the impact of the closure reduction, for
each local modularity threshold lm. For that, we first consider the quantity #lme of core
closed patterns with a local modularity estimate above lm, as provided by MinerLSD,
when using 1-cores. We consider then the quantity #lmeSD of patterns developed by
COMODO using the same threshold. Table 2 reports #lme and #lmeSD for our datasets
under investigation.
We observe two very different situations. In the Lawyers and CoExp datasets there is

a large difference between #lmeSD and #lme, while there are considerable but not so
strongly expressed differences in the other datasets compared to the former. Large dif-
ferences typically occur when items have strong dependencies hence leading to a large
reduction of the search space when applying a closure operator. For instance, in the
Lawyers dataset vertices are described by various numeric attributes. In our representa-
tion, a single numeric attribute x leads to a set of x ≤ si and of x > si items with various
thresholds si. This allows to include interval constraint as x ∈] sj, sk] within patterns. How-
ever there are then several equivalent patterns in which the same interval is represented
in various ways. For instance, consider 4 thresholds s1, . . . , s4, the interval x ∈] s2s3] is
represented by x > s2, x ≤ s3, x > s1, x > s2, x ≤ s3 and x > s1, x > s2, x ≤ s3, x ≤ s4.
The latter is the only one found in a closed pattern. COMODO has then to generate many
equivalent patterns while MinerLC, which applies a closure operator at each specializa-
tion step never generates two equivalent patterns, thus reducing the exploration of the
pattern space effectively.
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Table 2 Number of patterns to develop in MinerLSD and COMODO (according to the respective
local modularity threshold 0.005 ... 0.15) using a 1-core abstraction for MinerLSD

Data / #c 0.005 0.01 0.02 0.03 0.05 0.15

S50 83

#lmeSD 493 493 357 326 259 83

#lme 83 83 77 72 67 36

CoExp 196

#lmeSD 1232895 991231 806911 468991 285183 77823

#lme 178 166 150 133 114 64

DBLP.P 2396

#lmeSD 148 32 18 9 5 3

#lme 34 22 15 9 5 3

Lawyers 3221

#lmeSD 3021675 1535949 677089 420699 168689 10339

#lme 2929 2512 1970 1640 1146 295

DBLP.C 14820

#lmeSD 179 66 24 16 7 1

#lme 179 66 24 16 7 1

In the DBLP.P datasets at the contrary the items are tags, with no taxonomic order relat-
ing them. Therefore, the values of #lme and #lmeSD are much closer, and even identical
regarding the DBLP.C dataset.

k-core sizes of the various networks

Before considering how reducing support sets to k-cores affects the number of closed pat-
terns in each dataset, we consider the various networks and compute their k-core sizes for
a range of values of k. This pre-analysis aims to evaluate which level of k we should use in
our experiments. For small datasets for which computing closed patterns does needmuch
resources this is not that important. However, for large datasets with many attributes, i.e.,
potentially large numbers of closed patterns, it is much better to have a rough guideline
for selecting appropriate parameters for optimizing the computational effort.
In Fig. 2 we display the k-core sizes for a range of values of k, for each dataset. As we will

see below, the small but densest networks for which local-modularity-based pruning has
a weak efficiency, namely coExp and Lawyers, also exhibit a (relatively) slow decay with
respect to increasing k values, whereas for the other (larger) datasets we observe a quite
considerable decrease in terms of the k-core sizes.

Modularity Distributions

As a prerequisite for the further analysis of the local modularity optimistic estimate, we
aimed to get a more detailed insight into the distribution, similar to our pre-analysis for
the k-cores discussed above. Figures 3-4 show the detailed results. The plots indicate
the “meaningful” values for estimating the local modularity thresholds, which support
our selections of parameters in the subsequent evaluations. Furthermore, Fig. 3 also
indicates the pruning potential of the local modularity threshold, even using our rather
approximating sampling strategy.

Pruning: Efficiency of the Local Modularity Estimate

For investigating the efficiency of pruning using themodularity estimate, we compare our
proposed algorithm MinerLSD to the MinerLC algorithm, which applies no optimistic
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Fig. 2 k-core sizes of the networks associated to our datasets versus k

estimate pruning. For the other baseline, i.e., COMODO we already investigated the effi-
ciency of MinerLSD which showed a considerable reduction in the number of considered
patterns, cf., section “Impact of Closed Patterns in Reducing the Search Space”. Regarding
the number of output patterns, both actually yield the same numbers, if a postprocessing
step of COMODO is applied for keeping only the subset of closed patterns (as discussed
in section “Similarities and Differences in Pattern Selection”), i.e., by considering all pairs
(c, e) with the same (vertex) subgroup e and only keeping the most specific ones. With
this postprocessing COMODO returns exactly the same patterns as those output byMin-
erLSD in our experiments. However, this approach is quite inefficient, cf., section “Impact
of Closed Patterns in Reducing the Search Space”, since the number of considered patterns
is typically considerably larger for COMODO compared to MinerLSD.
Regarding the modularity estimate, we first investigate how the local modularity con-

straint affects the number of output pairs. In general, as oe(MODL) is an optimistic
estimator, we may consider the best possible optimistic estimator which would only
develop the #nec nodes that have at least a descendant (c, e) with local modularity
MODL(e) ≥ lm. We have then #lm ≤ #nec ≤ #lme. Whenever #lm is far from #nec this
means that there does not exist any good optimistic estimator. Whenever #lm is close to
#necwhich in turn is far from #lme this means that there could be some optimistic estima-
tor that is much better than oe(MODL). By computing these numbers, we can then state
separately for each dataset whether the oe(MODL) estimate is efficient in pruning the
search with respect to the best possible estimator nec and whether nec would be efficient
in pruning the search, if such an estimator would be found.

Small Datasets In a first step, we first considered several rather small datasets using no
minimal support parameters, and a 1-core abstraction in MinerLSD aiming to provide a
comparable setting for COMODO. We also checked the number of patterns retrieved by
COMODO with additional postprocessing as discussed above - only keeping the closed
patterns. We used parameters that do not limit the enumeration in COMODO, i.e., for
an exhaustive search only using the local modularity threshold for pruning. Likewise, for
MinerLSD, we select and count vertex subgroups whose induced subgraphs satisfy a local
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Fig. 3 Detailed Estimated/Observed Modularity Distributions: We consider the unlabeled graph of the
dataset. We generate 100 random subgraphs of the unlabelled graph picking randomly half of the vertices.
For each random graph, we compute the local modularity of the abstract 5-core subgraph and we report the
survival distribution of the local modularity over the 100 experiments (in orange), i.e., for each local
modularity (lm) level, the probability of having at least that level in our sample. In blue, we report the
(empirically observed) survival distribution of the local modularity, i.e., the respective MODL values of the
core subgraphs of the abstract patterns discovered using the 5-core abstraction

modularity threshold lm. In this way, we could confirm (again) that the final number of
output patterns is the same for both algorithms, as discussed above.
Figure 5 depicts the results of the applied five datasets, with the detailed results in

Table 3. Overall, the local modularity estimate is efficient in pruning the pattern explo-
ration, on different levels. For instance, in the Lawyers dataset, MinerLSD finds #c=3221
patterns at level lm=0.005 and most of them, i.e., 2929, have an oe(MODL) value above
0.005, not too far from the #nec = 1792 patterns any top-down search would have to
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Fig. 4 Distribution of the local modularity of the 5-core abstraction in samples of 100 unlabelled random
subgraphs having half of the size (number of vertices) of the original graph

develop anyway to select the 1238 patterns with local modularity MODL above 0.005.
There is then a slow decrease of #lme while the decrease of #nec and #lm is much faster.
Yet, pruning does still work, reducing the search effort considerably.
In contrast, for the larger datasets, e.g., for DBLP.P among the #c = 2396 patterns only

34 have a local modularity estimate above 0.005, 29 of them have to be developed and 28
do have a local modularity above 0.005. Furthermore, in the DBLP.C dataset among the
#c = 14820 patterns only 179 have a local modularity estimate above 0.005, 145 of them

Fig. 5 Numbers of patterns with #lme, #nec and #lm values (on the Y-axis), above the local modularity
threshold (on the X-axis) for 5 attributed networks, using a 1-core abstraction
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Table 3 Number of patterns total, developed, necessary and with required local modularity
(according to the respective threshold 0.005 ... 0.15) using a 1-core abstraction

Data / #c / 0.005 0.01 0.02 0.03 0.04 0.05 0.15

S50 83

#lme 83 83 77 72 67 67 36

#nec 83 79 72 66 62 48 0

#lm 81 77 68 63 55 46 0

CoExp 196

#lme 178 166 150 133 125 114 64

#nec 146 137 104 64 34 10 0

#lm 83 65 35 16 8 1 0

DBLP.P 2396

#lme 34 22 15 9 7 5 3

#nec 29 21 8 5 4 4 0

#lm 28 20 7 4 3 3 0

Lawyers 3221

#lme 2929 2512 1970 1640 1365 1146 295

#nec 1792 1131 495 201 99 38 0

#lm 1238 738 308 87 39 5 0

DBLP.C 14820

#lme 179 66 24 16 9 7 1

#nec 145 43 15 4 3 2 0

#lm 144 42 14 3 2 1 0

have to be developed and 144 do have a local modularity above 0.005. When the local
modularity threshold increases, #lme keeps being close to #lm.
Overall, the Lawyers dataset displaysmoderate pruning efficiency, still allowing to avoid

to develop many nodes, and this is also the case for the S50 and CoExp datasets. In con-
trast, DBLP.C and DBLP.P indicate a very efficient optimistic pruning in terms of the
numbers of patterns.
Tables 4 and 5 show the runtime results of MinerLSD for the larger of the small datasets

(Lawyers, CoExp, DBLP.C, DBLP.P, runtime in seconds). Here, we observe that Min-
erLSD is either in the same range or slightly faster than MinerLC for the small datasets,
i.e., for Lawyers and CoExp. For DBLP.C, we observe a strongly reduced number of
patterns, while the runtimes are always in the same range, especially for stronger (graph-
)constraints. Here, we considered k-cores, k = 1, 2, 3, 5, 7. Therefore, while strongly
reducing the number of patterns the additional computation using the estimate still keeps
the runtime of the algorithm in the same range as MinerLC most of the times.
In contrast to the other smaller datasets, for the larger DBLP.P dataset we observe

an increase in the runtime of MinerLSD compared to MinerLC. However, this can be
explained by some special characteristic of DBLP.P. The DBLP.P dataset contains an
extremely limited number of labels (32) which are used in the dataset. Here, the extra
effort of the estimation does not help too much in decreasing the runtime, because the
enumeration in the label space is extremely fast, and hence the check of the patterns is
mainly determined by the core abstraction.

Medium Size Datasets Overall, MinerLSD detects closed patterns with the benefit of
pruning using the oe(MODL) ≥ lm condition, i.e., only developing the #lme nodes
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Table 4MinerLSD #lm, #lme and execution time - small datasets, compared to #c of MinerLC for
same core constraints

Lawyers 1-core #c = 3221 time = 1

l 0.005 0.01 0.02 0.03 0.04 0.05 0.15

#lme 2929 2512 1970 1640 1365 1146 295

#lm 1238 738 308 87 39 5 0

time (s) 0 1 0 0 0 0 0

2-core #c = 2080 time < 1

#lme 2080 1938 1670 1454 1265 1089 291

#lm 1262 775 322 104 41 7 0

time (s) 0 0 1 1 0 0 1

3-core #c = 1302 time < 1

#lme 1302 1302 1215 1118 1024 920 282

#lm 1030 746 348 108 43 7 0

time (s) 0 0 1 0 0 0 0

5-core #c = 463 time < 1

#lme 463 463 463 459 449 432 202

#lm 413 366 253 119 36 9 0

time (s) 0 0 1 1 0 0 0

7-core #c = 155 time < 1

#lme 155 155 155 155 155 155 115

#lm 147 133 97 62 36 13 0

time (s) 1 1 0 0 0 1 0

CoExp 1-core #c = 196 time < 1

l 0.005 0.01 0.02 0.03 0.04 0.05 0.15

#lme 178 166 150 133 125 114 64

#lm 83 65 35 16 8 1 0

time (s) 0 0 0 0 0 0 1

2-core #c = 172 time < 1

#lme 162 153 141 125 118 108 64

#lm 89 78 51 26 12 3 0

time (s) 0 0 0 1 0 0 0

3-core #c = 138 time < 1

#lme 134 129 118 109 102 95 56

#lm 75 64 42 23 12 0 0

time (s) 0 0 0 0 0 0 0

5-core #c = 62 time < 1

#lme 62 60 57 51 48 47 31

#lm 31 23 12 4 2 1 0

time (s) 1 0 0 0 1 0 0

7-core #c = 37 time < 1

#lme 37 37 36 34 33 32 19

#lm 27 22 17 5 3 2 0

time (s) 0 0 0 0 0 0 0

according to Table 2. Furthermore, applying both the k-cores and local modularity
constraints makes it possible to find some balance between the k-core and the local mod-
ularity constraint to apply when facing large datasets that are difficult to mine. This is
investigated on the two datasets LastFM and Delicious, i.e., those with the largest number
of closed core patterns when considering the 1-core and no local modularity thresholds
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Table 5MinerLSD #lm, #lme and execution time - DBLP.C and DBLP.P, compared to #c of MinerLC
for same core constraints

DBLP.C 1-core #C = 14820 time = 31

l 0.005 0.01 0.02 0.03 0.04 0.05 0.15

#lme 179 66 24 16 9 7 1

#lm 144 42 14 3 2 1 0

#time (s) 41 36 31 30 25 25 17

2-core #c = 1991 time = 20

#lme 101 35 19 10 6 5 1

#lm 78 29 11 4 2 1 0

#time (s) 23 22 21 20 18 19 15

3-core #c = 319 time = 11

#lme 46 23 11 5 4 2 1

#lm 39 15 5 3 2 1 0

#time (s) 12 11 11 11 10 10 9

5-core #c = 20 time = 2

#lme 8 3 2 2 2 1 1

#lm 7 3 2 2 1 1 0

#time (s) 3 3 3 3 3 3 3

7-core #c = 2 time = 1

#lme 1 1 1 1 1 1 1

#lm 1 1 1 1 1 1 0

#time (s) 1 1 0 1 1 1 0

DBLP.P 1-core #c = 2396 time = 9

l 0.005 0.01 0.02 0.03 0.04 0.05 0.15

#lme 34 22 15 9 7 5 3

#lm 28 20 7 4 3 3 0

time (s) 42 42 42 40 38 37 33

2-core #c = 661 time = 7

#lme 31 21 12 9 7 5 3

#lm 25 19 7 4 3 3 0

time (s) 38 39 39 38 37 37 33

3-core #c = 261 time = 7

#lme 27 20 10 7 6 5 3

#lm 21 12 5 4 3 3 0

time (s) 32 33 34 34 32 33 30

5-core #c = 84 time = 6

#lme 12 9 7 7 5 4 5

#lm 12 9 6 4 4 3 0

time (s) 20 21 20 20 19 19 17

7-core #c = 42 time = 5

#lme 10 8 7 4 4 4 2

#lm 10 7 5 4 4 3 0

time (s) 12 12 12 12 11 11 10

– these were not investigated in Tables 2 and 3, respectively. For these medium sized
datasets, we performed experiments using 1-cores, 2-cores, 3-cores, 5-cores and 7-cores
with local modularity thresholds 0.01,0.02, 0.03, 0.04, 0.05, and 0.15; the results regard-
ing the number of closed patterns and the total CPU time (including pruning/optimistic
estimation) are shown in Fig. 6 (runtimes in seconds).
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Fig. 6 Number of patterns and execution time of MinerLSD on the DBLP.C, DBLP.P, Delicious and LastFM
datasets with 3-cores, 5-cores and 7-cores and local modularity thresholds ranging from 0.01 to 0.15. The
Y-axis of the topmost figure represents the number of closed patterns outptut by MinerLSD while the
bottom figure displays the CPU time. Both Y-axis are displayed using a logarithmic scale

The benefit of applying local modularity constraints in the resulting number of closed
patterns is, as expected, quite impressive. When no constraint (outside the 1-core) is
applied, MinerLC in comparison finds 1,555,292 and 11,833,577 closed patterns, respec-
tively. For MinerLSD, in the LastFM case there are no strong differences when using
1-cores, 2-cores and 3-cores while we know from Fig. 2 that using 4-cores does have an
important effect. Corresponding results are also observed for larger sizes of the respec-
tive k-cores. Regarding the Delicious dataset, we observe a smaller number of patterns at
local modularity levels 0.04 and 0.05 with 1-cores than with 2 and 3-cores. When no local
modularity constraint is applied the closed patterns with 2 and 3-cores are a subset of the
closed patterns with 1-cores, therefore the results seem counterintuitive at first. However,
for the same pattern the 3-core subgraph is smaller than the 1-core subgraph and may
have better local modularity, which happens in the Delicious case.
Regarding the CPU times, we observe a considerable decrease using appropriate local

modularity thresholds for both LastFM and Delicious which is especially important for
weaker (graph-)constraints, i.e., with respect to the applied k-cores. Using the appro-
priate modularity thresholds the runtime can be considerably decreased which enables
new approaches already for medium sized datasets, e.g., concerning pattern exploration.
Specifically, if we compare the extra computation performed by MinerLSD for comput-
ing the estimate, in the Delicious case, the benefit is immediately obvious: MinerLSD is
always much faster than MinerLC. The LastFM dataset shows a somewhat different pic-
ture: with weaker core-constraints and at local modularity level of 0.01 MinerLC (which
does not consider local modularity) is (slightly) faster than MinerLSD. This is not that
surprising, since MinerLSD has to compute local modularity estimates and local modu-
larities for all the developed patterns during search. However, first this happens only for
weak constraints, and second, when using MinerLC all these computations (in fact much
more as there is no pruning), would have to be made anyway in post-processing fashion
for obtaining the patterns according to a local modularity threshold. Furthermore, the
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runtime behavior of LastFM here is similar to DBLP.P and can also be explained by the
smaller number of labels compared to Delicious. Overall, this shows that if we consider
appropriate local modularity thresholds MinerLSD already allows the analysis of larger
datasets, especially in terms of larger sizes of the labels, while comparable results (with
respect to MinerLC) are usually obtained for weak (graph-)constraints. However, the effi-
cient pruning of MinerLSD is important, e.g., for exploration, and also for the processing
of larger datasets, as we will also discuss in the next section for large datasets. Detailed
results are presented in Table 6 which also displays the #lme numbers.

Large Datasets In this section, we present experiments of MinerLSD on two large
datasets, namely DBLP.S and DBLP.XL (see Table 1 for their characteristics) to fur-
ther explore the scalability of MinerLSD when using both k-core and local modularity
constraints. Again we do not use any threshold on the pattern supports.
In Table 7, we report the results onDBLP.S andDBLP.XLwith the same local modularity

thresholds as in the previous section and applying k = 1, 2, 3, 5, 7 and 7 k-core constraints,
respectively. The scalability of MinerLSD depends obviously on the size and density of
the network but also heavily depends on the size of the attribute set and on the average
number of labels per vertex. DBLP.XL is then a real challenge as it is a large network
made of 929,937 vertices related by 3,461,697 edges and described by more than 90,000
items, with an average number of 10.16 labels per vertex. The efficiency of the optimistic
pruning is then of primary importance.
As can be seen in the results table, optimistic estimate pruning using local modular-

ity is quite effective in achieving an efficient pattern mining approach. For both datasets,
we observe large reductions in the number of patterns, while focussing on the interesting
ones according to the applied local modularity interestingness measure and the utilized
local modularity thresholds. In particular, the results for DBLP.S indicate the enormous
pruning efficiency - here the dataset for weaker constraints cannot be handled by Min-
erLC at all, where the computation did not terminate after 36 h. The DBLP.XL results
indicate the same trend. Overall, this indicates the huge impact of optimistic estimate
pruning using local modularity as provided by MinerLSD for handling large datasets.

Structural Pattern Set Analysis

In the following, we analyze the results of the proposed pattern mining method Min-
erLSD in more detail, focussing on different graph statistics. We report exemplary results
on three datasets with different characteristics as outlined in section “Datasets”, i.e., the
Lawyers, the CoExp, and the DBLP.C datasets. We consider all patterns above a given
local modularity threshold, combined with different core abstractions. For computing the
graph statistics, we analyze the respective induced subgraphW of each pattern, and con-
sider the following: (1) the vertex count NW , (2) the edge count EW , (3) the scaled density
(cf., (Lancichinetti et al. 2010)) of subgraph W, i.e., the ratio of EW divided by the num-
ber of edges of a complete graph with the same number of vertices as W and multiplied
(scaled) by the total number of vertices; this measure approximately estimates the aver-
age degree of the nodes contained in the community, cf., (Lancichinetti et al. 2010). (4)
Furthermore, we also consider the fraction of outgoing edges, i.e., the edges connecting
nodes contained in the pattern with others not being part of the pattern subgraph, to the
set of edges EW . The results are shown in Tables 8, 9, 10 and 11.
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Table 6MinerLSD #lm, #lme and execution time compared to #c of MinerLC for same core
constraints

LastFM 1-core #c=1555292 time=2874

l 0.005 0.01 0.02 0.03 0.04 0.05 0.15
#lme 59528 16163 6817 3475 1920 52
#lm 17627 3633 1238 575 276 0
time (s) 5816 3400 2252 1605 1187 196

2-core #c = 471546 time = 2320
l 0.005 0.01 0.02 0.03 0.04 0.05 0.15
#lme 50507 14752 6464 3349 1856 52
#lm 16751 3646 1252 583 282 0
time (s) 4668 2915 1995 1452 1073 178

3-core #c = 161764 time = 1878
l 0.005 0.01 0.02 0.03 0.04 0.05 0.15
#lme 87211 39127 12694 5753 3039 1720 50
#lm 46400 14637 3377 1219 572 276 0

time (s) 4149 3422 2262 1596 1174 885 147

5-core #c = 26312 time = 1069

l 0.005 0.01 0.02 0.03 0.04 0.05 0.15

#lme 24807 18103 8224 4272 2352 1412 46

#lm 20562 9507 2680 1035 496 239 0

time (s) 2148 2013 1580 1206 857 706 117

7-core #c = 5859 time = 531

l 0.005 0.01 0.02 0.03 0.04 0.05 0.15

#lme 5854 5620 4031 2533 1517 994 39

#lm 5814 4482 1737 775 402 189 0

time (s) 902 953 877 738 594 486 87

Delicious 1-core #c=11833577 time=121934

l 0.005 0.01 0.02 0.03 0.04 0.05 0.15

#lme 5655 776 255 121 71 4

#lm 2214 165 31 6 1 0

time (s) 5296 2018 1173 825 643 179

2-core #c = 130458 time = 1845

l 0.005 0.01 0.02 0.03 0.04 0.05 0.15

#lme 7251 1421 288 116 65 37 3

#lm 5440 879 138 39 11 6 0

time (s) 1499 920 569 426 358 298 129

3-core #c = 11076 time = 269

l 0.005 0.01 0.02 0.03 0.04 0.05 0.15

#lme 1729 430 114 51 25 17 1

#lm 1419 311 71 25 9 6 0

time (s) 331 259 208 182 158 149 87

5-core #c = 576 time = 68

l 0.005 0.01 0.02 0.03 0.04 0.05 0.15

#lme 296 89 25 14 7 6 1

#lm 241 70 19 10 5 4 0

time (s) 77 71 66 64 62 61 55

7-core #c = 77 time = 21

l 0.005 0.01 0.02 0.03 0.04 0.05 0.15

#lme 67 41 13 7 4 1 1

#lm 66 34 10 5 2 1 1

time (s) 23 23 20 20 19 18 18
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Table 7MinerLSD #lm, #lme and execution time compared to #c of MinerLC for same core
constraints

DBLP.S 1-core #c ≥ 3457143 time = STOPPED AFTER 36h

l 0.005 0.01 0.02 0.03 0.04 0.05 0.15

#lme 1150 351 103 50 26 18 1

#lm 778 230 68 25 12 6 0

time (s) 59989 37645 24906 20634 17299 16167 8332

2-core #c ≥ 3584834 time = STOPPED AFTER 36h

l 0.005 0.01 0.02 0.03 0.04 0.05 0.15

#lme 958 303 94 44 24 16 1

#lm 722 218 64 24 12 6 0

time (s) 36302 25949 19065 16068 13869 12907 7073

3-core #c = 1576164 time = 45720

l 0.005 0.01 0.02 0.03 0.04 0.05 0.15

#lme 621 208 72 28 17 9 1

#lm 533 165 49 20 9 6 0

time (s) 19799 15531 12329 10221 9149 8276 5143

5-core #c = 44345 time = 3791

l 0.005 0.01 0.02 0.03 0.04 0.05 0.15

#lme 200 71 26 10 6 4 1

#lm 180 59 21 7 3 2 0

time (s) 4410 3760 3173 2877 2709 2533 2044

7-core #c = 5659 time = 881

l 0.005 0.01 0.02 0.03 0.04 0.05 0.15

#lme 62 24 10 4 2 1 1

#lm 62 23 10c 3 1 1 0

time (s) 1005 908 812 784 756 687 689

DBLP.XL 7-core #c = 9206 time = 93906

l 0.005 0.01 0.02 0.03 0.04 0.05 0.15

#lme 10 5 4 3 2 1 1

#lm 9 5 3 1 1 1 0

time (s) 113790 111079 110142 107967 103363 97326 96811

Considering the results shown in Tables 8 and 9 we observe that, as expected, increas-
ing numbers of k tend to focus on larger communities, which is especially the case for
weaker core constraints and larger local modularity thresholds. In particular, we observe
those trends for the local modularity for the Lawyers and the DBLP.C datasets, while this
is also pronounced for CoExp regarding stronger constraints. For the DBLP.C network,
in particular, we observe a rather strong effect. Overall, with no constraints quite small
patterns are detected. When the k-core constraint and the local modularity threshold are
increased, then larger patterns are detected which are also considerably denser than those
with no constraints. This can clearly be observed in Table 10 for increasing k-core and
local modularity threshold values. Furthermore, when we consider the ratio of outgoing
edges vs. in-edges of a pattern shown in Table 11, then we also observe the trend that the
proposed approach focuses on selecting denser pattern subgraphs with a stronger con-
nectivity structure in terms of the links within the subgraph, i.e., the in-edges. This is
especially obvious for higher k-core and local modularity threshold values, as exemplified
by the CoExp and DBLP.C datasets, e.g., for k = 5 and lm = 0.04 where the number of
in-edges strongly “dominates” the number of outgoing edges.
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Table 8 Vertex Counts: Mean and standard deviation (in brackets) of the number of vertices of the
pattern support, i.e., of the induced pattern subgraphs, for different values of k and the local
modularity threshold lm

k No lm lm=0.005 lm=0.01 lm=0.02 lm=0.04

Lawyers: n = 71m = 556

1 12.7 (9.6) 17.2 (9.5) 20.11 (9.6) 24.4 (9.5) 29.8 (4.59)

2 15.3 (10.0) 16.8 (9.4) 19.35 (9.3) 23.4 (9.2) 27.7 (5.6)

3 18.0 (10.6) 18.0 (9.5) 19.49 (9.2) 22.9 (9.0) 26.8 (6.3)

5 23.2 (11.9) 21.7 (10.1) 21.50 (9.0) 23.7 (8.3) 27.3 (5.6)

CoExp: n = 151,m = 1849

1 59.5 (44.0) 51.9 (35.8) 51.5 (32.8) 54.6 (31.6) 53.9 (21.9)

2 56.9 (41.5) 49.2 (31.9) 51.9 (29.4) 57.2 (25.9) 63.0 (18.5)

3 54.7 (37.9) 47.2 (31.6) 47.4 (28.8) 52.2 (24.7) 60.2 (18.3)

5 50.0 (36.2) 48.3 (34.2) 51.6 (33.1) 54.9 (28.9) 85.5 (9.2)

DBLP.C: n = 3140,m = 10689

1 8.3 (30.8) 124.0 (106.1) 231.3 (144.0) 373.9 (163.6) 631.0 (63.6)

2 12.5 (68.3) 124.6 (325.9) 159.5 (103.9) 248.0 (119.0) 434.5 (64.4)

3 21.7 (126.4) 117.3 (350.3) 250.7 (549.6) 604.6 (906.4) 1256.5 (1366.8)

5 62.6 (199.6) 164.9 (327.7) 351.3 (480.6) 511.0 (555.8) 904.0 (0.0)

Pattern Selection and K-Core Abstraction

In this section, we provide examples of patterns demonstrating the benefits of pattern
selection using local modularity and k-core abstraction. In particular, we discuss illus-
trative examples from two different datasets – the Lawyers and the (larger) DBLP.C
dataset.

Lawyers Dataset In order to demonstrate the effectiveness of the pattern exploration
and selection methodology using abstract closed pattern with k-cores and local mod-
ularity, we exemplify that with the two patterns shown in Fig. 7. Here, we show two
similar patterns in terms of Jaccard similarity (0.52) considering the nodes of the respec-
tive pattern-induced subgraphs. While the patterns are very similar regarding the overlap

Table 9 Edge Counts: Mean and standard deviation (in brackets) of the number of edges of the
pattern support, i.e., of the induced pattern subgraphs, for different values of k and the local
modularity threshold lm

k No lm lm=0.005 lm=0.01 lm=0.02 lm=0.04

Lawyers: n = 71m = 556

1 38.2 (58.0) 61.4 (61.4) 78.4 (64.0) 103.2 (67.1) 25.6 (63.9)

2 53.8 (66.3) 62.7 (61.9) 78.3 (64.4) 104.1 (67.3) 126.1 (68.1)

3 73.2 (75.4) 72.9 (65.5) 82.2 (64.4) 104.5 (65.0) 124.8 (67.9)

5 121.7 (95.5) 109.9 (77.0) 108.2 (67.7) 123.7 (62.6) 135.7 (59.8)

CoExp: n = 151,m = 1849

1 365.4 (473.9) 323.1 (512.8) 327.1 (497.0) 392.0 (579.7) 448.6 (653.1)

2 404.7 (488.8) 317.2 (492.9) 325.0 (483.7) 352.2 (492.9) 377.4 (529.4)

3 445.1 (496.5) 385.1 (535.0) 375.7 (525.1) 394.6 (529.5) 481.5 (598.9)

5 525.4 (499.6) 551.8 (563.1) 625.0 (548.9) 729.3 (544.9) 1495.0 (132.9)

DBLP.C: n = 3140,m = 10689

1 7.4 (91.4) 164.9 (192.5) 347.3 (282.5) 627.8 (340.3) 1278.0 (356.4)

2 22.8 (240.5) 316.81 (1183.3) 349.2 (271.3) 577.7 (328.6) 1126.0 (357.8)

3 66.7 (531.01) 419.7 (1487.5) 945.3 (2350.3) 2393.0 (3924.2) 5229.0 (5897.3)

5 347.3 (1246.9) 950.4 (2066.5) 2101.3 (3055.2) 3085.0 (3586.5) 5621.0 (0.0)
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Table 10 Scaled Graph Densities: Mean and standard deviation (in brackets) of the scaled densities
of the pattern support, i.e., of the induced pattern subgraphs, for different values of k and the local
modularity threshold lm

k No lm lm=0.005 lm=0.01 lm=0.02 lm=0.04

Lawyers: n = 71m = 556

1 4.59 (2.63) 6.34 (2.51) 7.26 (2.46) 8.13 (2.61) 8.98 (3.27)

2 5.92 (2.56) 6.63 (2.47) 7.50 (2.38) 8.50 (2.42) 9.43 (2.82)

3 7.23 (2.47) 7.42 (2.32) 7.92 (2.27) 8.80 (2.27) 9.45 (2.67)

5 9.89 (2.28) 9.74 (2.10) 9.82 (1.96) 10.38 (1.80) 11.38 (1.95)

7 12.23 (2.08) 12.15 (2.05) 11.99 (1.86) 12.20 (1.40) 13.14 (1.20)

CoExp: n = 151,m = 1849

1 9.58 (8.34) 9.38 (9.54) 10.14 (9.83) 11.17 (11.12) 12.19 (13.90)

2 11.15 (8.37) 9.78 (9.09) 10.14 (9.18) 10.41 (9.85) 10.19 (11.46)

3 13.07 (8.60) 12.02 (9.66) 12.15 (9.83) 12.22 (10.44) 13.22 (13.20)

5 17.92 (8.25) 18.40 (9.00) 20.68 (8.50) 25.22 (5.72) 35.42 (0.71)

DBLP.C: n = 3140,m = 10689

1 1.73 (0.57) 2.60 (0.82) 2.93 (0.75) 3.38 (0.65) 4.02 (0.73)

2 3.15 (0.68) 4.15 (0.98) 4.33 (0.72) 4.66 (0.68) 5.13 (0.89)

3 4.73 (0.87) 5.90 (0.78) 6.35 (0.79) 6.74 (1.14) 7.89 (0.80)

5 7.30 (1.57) 8.55 (1.94) 10.16 (2.02) 10.92 (2.17) 12.45 (0)

and their size, they have quite different local modularity values referring to their connec-
tivity structure. The left pattern described by 35 < Age ≤ 65 AND Seniority < 5 AND
Status = Partner, with a size = 24 of the set of nodes in its subgraph, is considerably
denser with a local modularity of MODL = 0.058, compared to the pattern on the right;
the latter is described by Age < 40 AND Seniority ≤ 30, with a size = 23 of the pattern
support and a local modularity of onlyMODL = 0.013. Therefore, while both patterns are
abstract closed patterns according to similar support criteria and the 5-core abstraction,
a higher modularity threshold, e.g., MODL ≥ 0.05 would only select the first (left pattern
in Fig. 7) instead of the right pattern. From the description, we can also observe that the

Table 11 Ratio of outgoing edges to edges in the pattern subgraph (in-edges): Mean and standard
deviation (in brackets) of that ratio of the pattern support, i.e., of the induced pattern subgraphs, for
different values of k and the local modularity threshold lm

k No lm lm=0.005 lm=0.01 lm=0.02 lm=0.04

Lawyers: n = 71m = 556

1 10.99 ( 9.07) 4.90 (2.55) 3.68 (1.72) 2.68 (1.19) 1.80 (0.65)

2 6.58 (4.40) 4.81 (2.53) 3.67 (1.72) 2.64 (1.16) 1.81 (0.65)

3 4.62 (2.81) 4.14 (2.18) 3.46 (1.58) 2.58 (1.10) 1.84 (0.66)

5 2.74 (1.62) 2.82 (1.53) 2.69 (1.32) 2.19 (0.89) 1.56 (0.52)

CoExp: n = 151,m = 1849

1 4.95 (8.72) 2.46 (1.59) 2.13 (1.36) 1.62 (1.11) 0.69 (0.34)

2 3.88 (4.76) 2.69 (1.79) 2.48 (1.52) 2.24 (1.35) 1.69 (1.10)

3 3.58 (4.48) 2.83 (2.33) 2.58 (1.77) 2.41 (1.49) 1.82 (1.14)

5 3.75 (4.12) 2.89 (2.75) 2.24 (2.04) 1.57 (1.07) 0.16 (0.10)

DBLP.C: n = 3140,m = 10689

1 14.23 (13.72) 6.85 (1.94) 5.28 (1.19) 3.94 (0.80) 2.39( 0.41)

2 11.29 (10.37) 5.99 (2.09) 4.88 (1.17) 3.78 (0.77) 2.44 (0.50)

3 11.44 (8.04) 5.96 (1.90) 4.57 (1.64) 2.96 (1.82) 1.27 (1.68)

5 10.99 (8.22) 5.99 (3.07) 3.13 (2.53) 1.99 (2.22) 0.42 (0)
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Fig. 7 Example patterns from the Lawyers dataset: Both patterns are similar 5-cores, with a Jaccard similarity
considering the nodes of the respective pattern-induced subgraphs of 0.52. The pattern on the left
(described by 35 < Age ≤ 65 AND Seniority < 5 AND Status = Partner, with size = 24) is considerably denser
with a local modularity of MODL = 0.058, compared to the pattern on the right (described by Age < 40 AND
Seniority ≤ 30, with size = 23) which only has a local modularity of MODL = 0.013. In the figures, we depict
in red the edges and the vertices in the pattern extension, in gray the out-edges of the pattern (i.e., one
vertex of a gray edge is contained in the pattern subgraph and the other vertex is not) and in light gray the
rest of the graph

selected (left) pattern is more interesting, since it provides a more precise description. In
the figures, we depict in red the edges and the vertices in the pattern subgraph; in gray,
we show the out-edges of the pattern (i.e., one vertex of a gray edge is contained in the
pattern extension and the other vertex is not); in light gray we depict the rest of the graph.

DBLP.C Dataset In order to show the impact of pattern selection and k-core abstrac-
tion, we first consider the local Modularities on k-cores with increasing k. For analyzing
the impact of the k-cores we firstly consider the empty pattern, thus only focussing on
the abstraction by the applied k-core. For the local modularity values of the empty pat-
tern, for k = 2, 3, 4, 5 we observe MODL = 0.0075, 0.0430, 0.0915, 0.1223, respectively.
Thus, we observe the clear trend that increasing k yields patterns with higher connec-
tivity structures as shown by the increasing local modularity values; similar trends are
obtained for the other datasets. This complements our results in the last section, where
we discussed, how increasing k for the k-core abstraction together with increasing local
modularity thresholds focuses on larger and more “interesting” patterns as measured by
the local modularity quality function.
Figure 8 illustrates these findings: The two left graphs show examples of the k-cores for

the empty pattern, specifically, for the 5-core with the highest local modularity, and the
corresponding 3-core pattern. Areas in red indicate the core graph – both vertices and
edges, blue color shows the remaining edges incident to the nodes of the core graph, while
gray depicts the edges of the rest of the graph. It is easy to see that both the 3-core (2223
vertices and 9399 edges) as well as the 5-core (904 vertices and 5621 edges) demonstrate a
considerably strong connectivity structure. Finally, the graph plotted on the right of Fig. 8
shows a specialization of the empty pattern on the 3-core, i.e. the pattern given by the
label “mine”. This pattern is obviously smaller (covering 290 vertices and 1059 edges) than
the empty pattern, while its modularity structure is slightly better (MODL = 0.0503). The
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Fig. 8 Illustrative patterns (DBLP.C). Left: 5-core empty pattern with a local modularity of MODL = 0.1223;
middle: 3-core empty pattern with a local modularity of MODL = 0.0430; right: 3-core “mine” pattern with a
local modularity MODL = 0.0503. In the plots, red color indicates the core graph (i.e., the in-edges of the
pattern), blue color shows the edges incident to the nodes of the core graph, gray depicts the edges of the
rest of the graph

left plot in Fig. 9 shows the “mine” pattern in detail, as a “zoom-in” focussing on all edges
incident to nodes contained in the pattern subgraph.
Figure 9 illustrates the selection process for different 3-core patterns in detail, provid-

ing the “mine” pattern (covering 290 vertices and 1059 edges, MODL = 0.0503) that is
selected according to a local modularity threshold lm = 0.04 and the “algorithm” pattern
(covering 45 vertices and 93 edges, MODL = 0.0072) which is a further specialization
of the 3-core empty pattern. As we can clearly observe for the “mine” pattern, its struc-
ture is more interesting concerning its connectivity – i.e., its distributional unusualness
compared to the expectation modeled by the null-model. This is a representative illustra-
tion, how the proposed approach using local modularity pruning achieves a better pattern
selection method for the same core constraint(s).

Conclusions
In this paper, we have proposed the novel MinerLSD method for efficient local pattern
mining on attributed networks. It enumerates local patterns and associated subgroups in

Fig. 9 Detailed view:“mine” pattern (left), with local modularity MODL = 0.0503 vs. the lower-quality
“algorithm” pattern (right), MODL = 0.0072. In-edges (red), out-edges (blue)
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attributed networks, utilizing different pattern and graph mining techniques. In particu-
lar, MinerLSD is based on three main basic ideas: First, enumerating only closed patterns,
which is particularly beneficial whenever items have dependencies. This occurs as soon
as some attributes, either numeric or hierarchical, have to be translated into various items
to express interesting patterns, e.g., interrelated intervals and hierarchical dependencies.
Second, we focus on reducing pattern subgraphs to core subgraphs which allows both to
strongly reduce the number of patterns and to focus on essential parts of graphs. Third,
we select cohesive subgraphs during the search according to topological quantities as
local modularity and, above all, to allow pruning by using optimistic estimates of the local
modularity measure.
We performed a set of experiments in order to estimate the impact of the investigated

approaches, for which we included two baseline methods, i.e., MinerLC and COMODO
for comparison. The purpose was then to investigate i) the pruning efficiency of Min-
erLSD using the local modularity estimate as implemented in COMODO, ii) the impact
of searching for closed patterns (as implemented in MinerLC) and therefore enumerat-
ing only the cohesive subgraph associated to the patterns, and iii) the added potential for
pattern selection based on the combination of both k-core abstraction and local modular-
ity selection. The latter allows to strongly reduce the number of patterns while focussing
on essential parts of the graph which leads to more interesting high quality patterns. For
our experiments we used a number of datasets with different characteristics, also ranging
from small to large datasets in order to estimate the scalability of MinerLSD. Overall the
result indicated effects that were always positive, and sometimes even crucial, for allow-
ing to handle even rather complex and large datasets with reasonable pattern set sizes
and computational effort – without using any minimum support threshold. Specifically,
the results of our experiments show the efficiency of the presented method. Further-
more, we have presented exemplary results showing the benefit of pattern selection and
abstraction which demonstrate the efficacy of the proposed MinerLSD approach. Over-
all, by implementing the different ideas. and techniques summarized above in the novel
MinerLSD method, i.e., utilizing closed patterns, graph abstractions, optimistic estimate
pruning using local modularity), we obtain a very flexible tool that allows to handle large
graphs with adequate constraints on the subgroups and patterns to discover.
For future work, we intend to characterize the attributed graphs in terms of which prun-

ing method is especially efficient, and to investigate other measures than local modularity
in order to estimate their pruning efficiency. Furthermore, we aim to investigate other
core definitions than k-cores as well. Also, focussing on sets of (local) patterns, and their
relations, in order to obtain, e.g., the most diverse, representative, interesting, and rele-
vant results, cf., (Knobbe and Ho 2006; Lemmerich et al. 2010; Van Leeuwen and Knobbe
2012; Atzmueller et al. 2015) is a further interesting research direction to consider.

Endnotes
1Available at:

http://www.stats.ox.ac.uk/~snijders/siena/s50_data.htm
2Available at:

https://www.stats.ox.ac.uk/~snijders/siena/Lazega_lawyers_data.htm
3https://grouplens.org/datasets/hetrec-2011/
4 https://lipn.univ-paris13.fr/MinerLC/

http://www.stats.ox.ac.uk/~snijders/siena/s50_data.htm
https://www.stats.ox.ac.uk/~snijders/siena/Lazega_lawyers_data.htm
https://grouplens.org/datasets/hetrec-2011/
https://lipn.univ-paris13.fr/MinerLC/
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