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Abstract
Information extraction (IE) is an important problem in Natural Language Processing
(NLP) and Web Mining communities. Recently, IE has been applied to online sex
advertisements with the goal of powering search and analytics systems that can help
law enforcement investigate human trafficking (HT). Extracting key attributes such as
names, phone numbers and addresses from online sex ads is extremely challenging,
since such webpages contain boilerplate, obfuscation, and extraneous text in unusual
language models. Assessing the quality of an IE system is an important problem that is
particularly problematic in this domain due to lack of gold standard datasets.
Furthermore, building a robust ground truth from scratch is an expensive and
time-consuming task for social scientists and law enforcement to undertake. In this
article, we undertake the empirical challenge of analyzing the quality of IE outputs in
the HT domain without the provision of laboriously annotated ground truths.
Specifically, we use concepts from network science to construct and study an
extraction graph from IE outputs collected over a corpus of online sex ads. Our studies
show that network metrics, which require no labeled ground truths, share interesting
and consistent correlations with IE accuracy metrics (e.g., precision and recall) that do
require ground-truths. Our methods can potentially be applied for comparing the
quality of different IE systems in the HT domain without access to ground-truths.

Keywords: Information extraction, Structural analysis, Human trafficking, Relational
analysis, Network theory, Attributed networks, Artificial intelligence

Introduction
Information extraction (IE) is a broad area in both theNatural Language Processing (NLP)
and the Web communities (Chang et al. 2006a, b). The main goal of IE is to extract use-
ful information from raw documents and webpages. Traditional IE, which is assumed
in this article, assumes a particular schema according to which information must be
extracted and typed. Domain-specific applications, such as human trafficking, generally
require the schema to be specific and fine-grained, supporting attributes of interest to
investigators, including phone number, address and also physical features such as hair
color and eye color (Fig. 1). As shown in the figure, some attributes may occur as ‘links’
(e.g., phone number) and are not directly visible in the text on the page. There is also
considerable heterogeneity, both across webpages in the same Web domain (e.g., two
individual webpages from backpage.com), and across Web domains (e.g., backpage.com
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Fig. 1 A truncated example of a webpage (images/key information are obfuscated) from the online sex
advertisement domain. White boxes indicate regions of the webpage containing critical attributes (e.g., age)
that need to be processed and extracted by an information extraction (IE) system

and liveescortreviews.com). All of these observations make IE a challenging problem in
an illicit Web domain such as online sex trafficking.
As with other AI approaches, quality tradeoffs of rival IE systems are determined by

applying them (after the appropriate training and validation, if applicable1) to a withheld
(but still manually labeled) test dataset (Freitag 2000). It is less clear how IE quality can be
evaluated without access to such ground-truths. This article probes the issue of whether
it is possible to use the relational structure of an IE system’s outputs to characterize its
quality (using well defined metrics) without the provision of ground-truths. Rather than
focus on a theoretical model, the article specifically considers quality evaluation in the
online sex advertisement domain. We hypothesize that, as with other relational systems,
network science could be used in support of this goal.
We exploit the following intuition in support of this goal. Since it is generally the case

that an attribute (such as city) is not extracted from a single document, but from multi-
ple documents, extractions tend to be ‘shared’ between documents. Furthermore, a single
document can yield more than one extraction per attribute, especially if the underlying IE
system is recall-favoring, and some extraction combinations are higher-probability than
others. For example, ‘Charlotte’ and ‘Raleigh’ have higher probability of being extracted
from the same document than ‘Charlotte’ and ‘Los Angeles’. In the same vein, some
extractions are more noise-prone than others e.g., Charlotte has higher potential to be
mis-extracted as a name (in some documents) than Raleigh. Such relational connections
can be used to model the set of documents and IE extractions as an attribute extraction
network. The AEN is constructed by modeling extractions as nodes in the network, and
by modeling shared extractions (within a single Web document) as network edges. Our
overarching hypothesis is that changes in the structure of this simple network can be used
to ‘track’ changes in the quality of the underlying IE system that yielded the extractions
in the first place. Specifically, we propose to answer the following research questions for
a domain-specific corpus of online sex advertisements:
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Research Question (RQ) 1 : When extractions from a corpus are represented as an
attribute extraction network (AEN), how does the structure of the network change as the
quality of the underlying IE system changes, where structure is measured using single-
point network-theoretic metrics such as algebraic connectivity and network diameter?
Research Question (RQ) 2: How does the degree distribution of an AEN change as IE

quality changes? Are degree distributions normal?
We note that, strictly speaking, RQ2 is a special case of RQ1, since the degree distribu-

tion is a function of network structure as well. However, for methodological reasons we
choose to separate the two questions with the first question covering single-point metrics
(such as connectivity metrics, diameter etc.) and the second, covering the degree distri-
bution itself. Potentially, any distribution (e.g., clustering coefficient distribution) could
be selected for investigation in lieu of the degree distribution. However, the motivation
in choosing the degree distribution is to specifically investigate if networks such as the
AEN obey (approximately) normal distributions. If not, then important concerns arise as
to whether simple random sampling and labeling is appropriate when constructing a gold
standard (or training dataset) for an IE. In fact, many theoretical treatments on machine
learning make critical assumptions about i.i.d (independent and identically distributed)
data. Similarly, when evaluating machine learning and NLP systems, it is often the case
that (when exhaustive ground-truths are not available) outputs are randomly sampled
and annotated, the hope being that the measured performance will generalize statistically
with finite, but sufficiently sized, samples.
By plotting the degree distribution of the AEN, we can directly analyze whether noise

in the IE system is i.i.d by verifying that the degree distribution is Gaussian. If, instead,
the distribution exhibits a power-law trend as with scale-free networks, for example,
non-normality would be strongly indicated, implying that we should revise our statistical
assumptions when deciding how to sample and annotate extractions for IE quality assess-
ments. Furthermore, by studying how (or whether) the degree distribution changes or
undergoes drift as the level of noise in the IE outputs increases, we hope to gain interesting
and direct insights into the nature of IE noise.
For conducting these empirical studies, we use sex advertisement data scraped from the

OpenWeb, and attributes extracted by a relatively advanced IE for an in-use investigative
search engine developed in our previous work (Kejriwal and Szekely 2017b). This search
engine is being used by multiple investigative agencies in the United States, and empirical
work conducted in support of this article is being directly applied (Kejriwal et al. 2018).
However, while our previous work was focused on describing and evaluating a search
engine for HT, as well as the information extraction programs that fed into the search
engine, this work centers on evaluating IE on an HT-specific corpus without access to a
ground truth.

Contributions

Specific contributions in this article are follows.We propose to empirically study Informa-
tion Extraction (IE) quality in the human trafficking (HT) domain using a novel network
science-based framework, without relying on traditionally required ground truths. This
HT-focused empirical study is a central contribution of the article, since an important
motivation for our research is to mitigate the expense of acquiring a laboriously anno-
tated ground-truth, without which an IE cannot be evaluated (and consequently, any
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system that relies on IE cannot be used with confidence by investigators). Specifically, we
empirically study two research questions, using a 10,000+ document corpus of sex adver-
tisements crawled from backpage.com2, and a variety of IE systems executed over three
attributes (name, city and phone). Our results show that there is a definite and consistent
correlation across standard quality metrics as defined by the IE community, and struc-
tural metrics defined by the network science community. To the best of our knowledge,
such a correlation has never been noted or exploited before in prior work. Our results also
suggest the possibility of using structural metrics, which can be deduced in an unsuper-
vised manner without access to a ground truth, to study whether a given IE is deviating
from the ground truth (compared to another IE) on a quality metric such as precision or
F-measure.

Related work
The primary problem that is being studied in this article is the evaluation of an impor-
tant AI approach (information extraction) in a domain with deep social impact (human
trafficking). Because we cannot assume a ground-truth, the evaluation is conducted
using network-theoretic techniques. All of these individual fields of study (information
extraction, computational investigations of human trafficking , and network science) have
individually received much research attention, as we describe in the sub-sections below.
However, we are not aware of any network science papers that are related to evaluation of
IE quality without potential access to ground truths, either within or without the context
of human trafficking. This article attempts to build such a bridge within the context of the
special domain of human trafficking.

Information extraction

Information extraction is a core component of any information integration pipeline over
Web and natural language corpora, as ‘unstructured’3 data must first be rendered into a
machine-readable, structured form in order for fine-grained queries to be executed over
them. With the initial advent of the Web, wrapper induction systems had proved suc-
cessful for several IE domains (Kushmerick et al. 1997). State-of-the-art work in the early
2000s (e.g. STALKER (Muslea et al. 1998)) used machine learning methods for the wrap-
per induction problem (Lerman et al. 2003). Such methods were inherently data-driven,
and were less brittle than rule-based wrapper architectures. IE systems have continued
to evolve since then; Chang et al. provide a comparative survey of many of the lead-
ing IE techniques along three dimensions (task domain, degree of automation and the
actual techniques used) (Chang et al. 2006a). A key finding of the survey is the depen-
dence of techniques on the actual input format. For example, while unsupervised and
semi-supervised methods are well-suited for template pages, regular expressions and
supervised approaches tend to be more robust for non-template pages (Lerman et al.
2003; Muslea et al. 1998). A consequent problem arising from such diverse methodologies
is evaluating precision and recall in a consistent way (Chang et al. 2006a).
There has been much research on IE in traditional domains, and on datasets that are

‘well-formed’ (e.g., newswire) with accuracy on attributes such as person names often
exceeding 80% (Nadeau and Sekine 2007). In contrast, it is well known that for more
complex extractions (including relation and event extractions), accuracy is much lower
(Ahn 2006). A similar problem occurs when one moves from newswire to social media
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and unusual domains that have not been well-studied, either socially or computationally
(Ritter et al. 2012).

Evaluation of IE

As with IE systems development, IE evaluation (in the research community) was also
predominantly designed for newswire-resembling corpora, with competitions and efforts
such as the Message Understanding Conference (MUC) and Text Retrieval Conference
(TREC) series involving the annotation of large corpora of data to ensure sufficient
resources for training, validation and testing (Chinchor 1998; Voorhees and et al 1999).
For illicit domains such as human trafficking, ground-truths do not exist and are hard to
acquire. We note also that one cannot crowdsource the annotations due to the sensitivity
of sex advertisement data. The cost of labeling is also an issue, since investigative agencies
are typically resource-strapped to begin with (and cannot dedicate additional resources
to an annotation service).

Domain-specific applications of IE

IE has many applications, one of which is knowledge graph construction (KGC). KGC
draws on advances from a number of different research areas, including information
extraction (Chang et al. 2006b), information integration (Doan et al. 2012), and inferential
tasks such as entity resolution (Elmagarmid et al. 2007). Good examples of architectures
that implement KGC principles are Domain-specific Insight Graphs (DIG) and DeepDive
(Niu et al. 2012; Szekely et al. 2015). Both of these architectures have a significant IE com-
ponent, and also rely (either directly or indirectly) on the quality of the extractions in
important sub-components such as search and analytics.
More recently, Open Information Extraction or OpenIE has become a popular topic of

research, owing to the need for IE techniques that do not rely on pre-specified vocabu-
laries (Banko et al. 2007; Etzioni et al. 2008). In a preliminary version of the system, we
tried state-of-the-art versions of OpenIE, including both old and new versions of the sys-
tem proposed by (Etzioni et al. 2008). Even when relevant extractions were obtained from
the corpus of webpages, the precision and recall were both judged to be too low to be
useful. This largely motivated our earlier research on focused knowledge graph construc-
tion for illicit domains, albeit only for keyword queries that were easily amenable to GUI
integration (Szekely et al. 2015).
The importance of domain-specific IE has also been rising through a series of ambi-

tious projects. For example, the Defense Advanced Research Projects Agency (DARPA)
MEMEX program4, which fundedmultiple institutions in the United States to build semi-
automatic, democratized domain-specific search systems, led to national efforts in using
such technology for combating human trafficking5. IE was a crucial step in setting up
such search engines.
Beyond human trafficking, investigators in other illicit domains, such as narcotics, secu-

rities fraud and illegal weapons sales, also expressed interest in using the technology.
However, before one can deploy IE and search technology to such agencies, it is impor-
tant to get some sense of the quality of multiple IE systems, and to also reason about
changes in quality with the tuning of parameters. For example, when extracting attributes
from text that has been scraped from webpages, it is intuitively plausible (and empirically
the case as well (Kapoor et al. 2017)), that the more text is scraped from the webpage, the
higher will be the recall of an extraction system’s output compared to the output if it were
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run on more conservatively parsed text. Precision tends to suffer, however, since extra-
neous text gets scraped and causes noise to creep into downstream extractors (such as a
phone number extractor executed on the scraped text).
An empirical study on capturing such tradeoffs systematically, particularly without

access to ground-truths, has thus far been lacking. This article attempts to address this
need. Specifically, in contrast with much of the prior work on IE, this work neither
proposes a new system nor algorithm, but instead describes a network science-based
framework that allows the evaluation and comparison of IE systems (for the HT domain)
without being restricted by the availability of large quantities of labeled data. Further-
more, the empirical data and findings described in this article shed new insights on the
nature of IE noise e.g., our evidence suggests that the i.i.d (independent and identically
distributed) assumption often used in machine learning may not be applicable to IE in the
HT domain.

Human trafficking (HT)

One of the most important aspects that separate this work from prior work is its focus
on a non-traditional domain such as human trafficking (HT) that has an outsize presence
on the Web. By some estimates, HT is a multi-billion dollar industry; however, due to
both technical and social reasons, it has largely been ignored by the computational sci-
ences till quite recently (Alvari et al. 2016; Hultgren et al. 2016). A notable exception in
the knowledge graph construction domain is the DIG (Domain-specific Insight Graphs)
system (Szekely et al. 2015). Similar to other systems such as DeepDive, DIG implements
KGC components, in addition to a GUI, and was evaluated on human trafficking data.
Those evaluations largely motivated this article, since extensive effort had to be expended
to annotate even small ground truths.
More broadly, semi-supervised and minimally supervised AI has been applied to

fight human trafficking in contexts beyond information extraction and search (Alvari
et al. 2017; Burbano and Hernandez-Alvarez 2017; Kejriwal et al. 2017; Rabbany et al.
2018). As one example, the FlagIt system, recently developed in our group, attempts
to semi-automatically mine indicators of human trafficking (which include movement,
advertisement of multiple girls etc.) (Kejriwal et al. 2017). As another example, Rabbany
et al. (2018) explore methods for active search of connections in order to build cases
and combat human trafficking. Finally, although this work deals primarily with linguis-
tic data (since it is focused on IE, which tends to work on linguistic data), there has also
been a steady stream of work on the non-linguistic characteristics of sex ads. For exam-
ple, recently, Whitney et al. describe how emojis can be used to add a layer of obfuscation
to sex ads to avoid getting investigated, caught and prosecuted (Whitney et al. 2018).
In part, this work is motivated by such findings: even if investigators invested the effort
to painstakingly construct ground-truths, the creative and dynamic ways in which traf-
fickers adapt (e.g., by using obfuscations such as emojis and misspellings) would soon
render those ground-truths stale and obsolete. Hence, there is a real need for developing
end-to-end unsupervised IE systems, both for acquiring and evaluating extractions.
Furthermore, although the research described herein is specifically designed to inves-

tigate and combat human trafficking, we believe that the core elements of the overall
problem and solution can be extended to other domains (e.g. from the Dark Web
Chen (2011)) that are highly heterogeneous, dynamic and that deliberately obfuscate
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key information. Because illicit domains are under-studied, and obtaining both raw
and ground-truth data are difficult, we use a rich trove of documents available to
us from the human trafficking domain to study the research problems in this arti-
cle. Currently, it is too early to tell if the findings can be empirically extended
to other illicit domains. On the other hand, multiple illicit domains share both
common challenges (e.g., information obfuscation), and common needs (e.g., pri-
oritization on extracting location-specific and identifier-specific attributes to assist
law enforcement). These commonalities suggest that some of our empirical findings
may be generalizable to other potential illicit domains such as securities fraud and
narcotics.
Finally, in the context of this paper, it is important to distinguish between causation,

correlation and prediction. Many of the results we explicitly describe are correlates; our
research question, in fact, can be framed in terms of finding metrics that do not require
labeled data but that are correlated with actual performance (captured properly by met-
rics that do require labeled data as a gold standard). However, we invoke a longitudinal
argument in claiming that, because the networks are constructed from extractions, they
are derivatives of real data and cannot (arguably) have caused the relational dependencies
between extractions. We do not claim causation in any form, however, only that the net-
work metrics are predictive of accuracy metrics by virtue of the correlation. More formal
models that go into depth into such theoretical issues were presented in (Hultgren et al.
2016, 2018; Whitney et al. 2018).

Network science

Network science is an actively researched, standard framework for studying complex sys-
tems that possess structure (Barabási and et al 2016). Such systems include networks of
protein-protein interactions (Gavin et al. 2002), citation networks (Hummon and Dereian
1989) and social networks (Borgatti et al. 2009), to only name a few. Recent research
has led to many exciting advances in the construction and study of complex networks,
especially from ‘Big Data’. For example, Chen and Redner study the community structure
of the physical review citation network from the mid-1890s to 2007 (Chen and Redner
2010). Other domain-specific examples include the study of patent citation networks in
nanotechnology (Li et al. 2007) and the creation and influence of citation distortions
(Greenberg 2009).
Another highly active sub-area of research in network science, and (arguably) one of

the original motivations for employing network science as a scientific methodology for
studying structure, is social networks. Work in this area can be traced back to at least
the 1940s (and possibly beyond), when Moreno first proposed the ‘sociogram’ as a way
of studying such systems at a structural level (Moreno 1946). Since then, there have been
tens of thousands of papers and articles on the subject; a standard, highly comprehensive
treatment on social network analysis was provided byWasserman and Faust (Wasserman
and Faust 1994), with a more recent book by Knoke and Yang (2008). More recently, pio-
neering work in this area include a study of networks, crowds and markets by Easley and
Kleinberg (Easley et al. 2010), social tie inference in heterogeneous networks (Tang et al.
2012), prediction of positive and negative links in social networks (Leskovec et al. 2010)
and even ethics and privacy-related challenges in mining social network data (Kleinberg
2007). Other important applications of network science include bioinformatics, with



Kejriwal and Kapoor Applied Network Science            (2019) 4:44 Page 8 of 26

research ranging from studies in systems pharmacology (Berger and Iyengar 2009) to tools
designed for fast network motif detection (Wernicke and Rasche 2006), (Schreiber and
Schwöbbermeyer 2005).
This article is differentiated from the papers above by not attempting to use network sci-

ence to study the properties of a domain bymodeling its structure as a network; rather, we
hypothesize that network science can be used to deduce (at least as a correlate) the levels
of noise and data quality in real-world IE systems applied to consequential domains such
as human trafficking. In that sense, the article presents a novel application of network
science compared to prior related work.

Technical preliminaries
In this section, we introduce the necessary technical preliminaries to place the (subse-
quently described) empirical studies in context. Because the formalism is interdisciplinary
and relies on both IE and network science, two constructs that do not traditionally
intersect in the academic literature, we define concepts from the ground-up.
The core elements in our framework are documents, which in our specific application

are blocks of text scraped from sex advertisements. A raw documentDmay be considered
to be a pair (id, text), where id is an identifier for the document, and text is usually just
a (potentially long) string. Some IE systems require a list of tokens, rather than a string,
in which case a tokenizer has to be applied to text to yield a list of strings. However, the
tokenizer is extraneous to the definition of a document itself. A corpus is simply a set of
documents.
For the purposes of this article, we consider a very simple definition of a schema, namely

as a set S of attributes. For the human trafficking domain, the set contains attributes
such as phone number, hair color, eye color etc.; in essence, anything that would allow an
investigator using these extractions to locate a potentially trafficked victim. More com-
plex schemas and attributes can also be considered (e.g., cluster classes such as Vendor
explored in Kejriwal and Szekely (2017b)), but will not change the formalism presented
herein.
Given an attribute a, we define an information extractor IEa for that attribute as a sys-

tem that takes as input the text field of a document, and outputs a set of tokens, each of
which is denoted as an instance of a or equivalently, as having type a. The data types of
the tokens may be strings, but could also be numbers or dates. Without loss of generality,
we assume strings.
Example: Consider the text ‘Hi, my name is Elsa and I am new in town.’ A machine-

learning based extractor for the attribute name would (ideally) yield the instance Elsa
when applied to text i.e. the extraction Elsa would have type name.
As the example above indicates, errors in IE can occur for two reasons. First, a cor-

rect instance of an attribute may not get extracted by the extractor. Second, an incorrect
instance may get extracted. Even here, there are two possibilities. The incorrect instance
may be a correct instance of a differently typed extractor e.g., imagine that Charlotte got
extracted in some sentence as an instance of the city extractor, when in actuality, Char-
lotte was the name of a person in that sentence. However, it is also quite possible that
the wrongly extracted instance is not a correct instance of any type. Some of our research
questions in a subsequent section will return to the issue of distinguishing between these
different types of ‘noise’.
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Given an IE IEa and document D, we can obtain an ‘enriched’ document (and corpus)
by applying IEa on D[ text] and obtaining D′ = (

id, text,
{
a1, . . . , am

})
, where the third

element is the set containing the m instances of attribute a as occurring in D. Similarly,
a sequence of IEs IEa1 , IEa2 , . . . IEan can be independently applied for the n attributes
a1, . . . , an in schema S to obtain a fully enriched document D′ that records all extracted
(from its text) instances of all attributes in its information set.
Given an attribute a, a corpus of enriched documents, and a ground-truth set G of true

extractions across all documents in the corpus, we can define accuracy metrics for the
extracted instances of a in the corpus.We consider three important metrics in this article,
widely used in the IE community, namely precision, recall and F1-measure (the harmonic
mean of precision and recall). The precision is the fraction of extractions the IE labeled
correctly as positives, while the recall measures how many of the positives in the ground
truth the extractor was able to retrieve. Note that each of the metrics can be individually
defined for each attribute a, assuming a ground truthGa of the correct extractions (called
the Positives) is available. Anything which is not in Positives is assumed to be in the set
Negatives. Clearly, when an IEa is applied to the corpus, any extraction has to be either in
Positives or Negatives.
In normal situations, these metrics can only be computed and trusted if a good ground

truth is available to begin with. Typically this is done by a human annotator who samples
some documents and annotates extractions within those documents. This is a labori-
ous process, and much harder to accomplish in the case of sex advertisements, since
techniques such as crowdsourcing cannot be effectively leveraged. One of the critical
motivations behind this article is to investigate how we can measure (at least in a relative
sense) the quality of systems’ extractions without access to ground truths. In support of
this motivation, we now introduce the simple concept of an attribute extraction network
(AEN). The AEN will serve as the central data structure on which empirical studies will
be conducted for each attribute.
Definition: An attribute extraction network (AEN) Na is an undirected graph (V ,E)

where the set of vertices V is defined such that there is one vertex for every id in the cor-
pus, and an undirected edge eij = {vi, vj} between vertices vi, vj (∈ V ) exists iff a common
instance was extracted (for attribute a) for the two documents with IDs corresponding to
vi and vj.
Figure 2 illustrates an example of how an AEN is defined for five documents (D1-D6)

and theName attribute. Each document is a vertex in this representation. The extractions
obtained from a given IE system are noted next to the vertex. There is an edge connecting
two vertices if their corresponding document representations share an extraction e.g., the
extraction ‘Mayank’ is shared between documents D1 and D2. An important point to note
is that a vertex can be a singleton for at least two reasons. First, it may be that no values for
attribute awere extracted from the corresponding document. In the figure, document D6
is an example of such a vertex (note that D6may have extractions for other attributes such
as phone number; it just doesn’t have an extraction for the attribute Name over which
this AEN was constructed). Second, it may be that the set of values that were extracted
did not get extracted elsewhere (i.e. another document). Thus, by definition that vertex
would not be connected to any other vertex in the network. Furthermore, since there is a
bijective (1-1) mapping between vertices and documents, we henceforth refer to vertices
(also, nodes) as documents for the sake of maintaining a uniform terminology.
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Fig. 2 An example of an Attribute Extraction Network (AEN), assuming the attribute Name. Vertices are
documents. D6 and D5 are singletons since D5 does not share extractions with any other document, and D6
does not have any extractions

In this article, we refer to a structural network metric as a function that takes an AEN
as input and returns either a single point (single-point metric) or a distribution. The only
distribution that we will consider in this article is the degree distribution, due to its impor-
tance. The structural single-point metrics under consideration are noted in Table 1. Note
that the structural network is completely agnostic to what the vertices and edges ‘mean’
(i.e. their underlying semantics) although, of course, the actual values that a structural
network metric would return would depend intimately both on how the network is con-
structed, and its semantics. One of the goals of this article is to assess the empirical nature
and extent of this dependence.

Empirical studies
Earlier in the introduction, we stated two research questions to study the relationship
between the network-theoretic metrics presented earlier, and the traditional IE metrics
(precision, recall and F-measure). Recall that the first of those questions was based on
measurements and comparisons between single-point metrics and the IE metrics, while
the second involves similar comparisons but uses an important distributional metric (the
degree distribution) rather than the single-point metrics. In this section, we present more
details on the data and the empirical methodology for exploring those questions on an
online sex trafficking corpus, followed by a report on the results of the analysis.

Table 1 Single point network-theoretic structural metrics considered in this article for some of the
empirical studies

Order

Power-law exponent

Number of connected components

Clustering coefficient

Degree correlation

Order (of largest connected component)

Algebraic connectivity

Vertex connectivity

Edge connectivity

Diameter

Average shortest path length
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Data

To validate whether network science can be used to assess changes in IE quality without
access to a ground truth, we test our hypotheses on IE extractions for which a reference
ground truth is available. Below, we describe these datasets and the ground-truth in more
detail. All datasets were constructed over a large corpus of online sex advertisements that
were crawled from (the now shut-down) backpage.com portal during the calendar year of
March 2016-2017.
We note that the corpus was collected by an independent contractor funded under the

DARPA MEMEX program (mentioned earlier in the Related Work), which minimizes
chances of dataset bias. The ground-truths were constructed semi-automatically by an
academic group of social and political science experts in human trafficking who were not
affiliated with the program during ground-truth construction. This ground-truth con-
struction procedure is described in more detail below. The raw HTML pages had to
undergo multiple steps of preprocessing and extraction before networks could be con-
structed. Technical details on webpage preprocessing were provided in our earlier work
on information extraction and indicator mining (Kejriwal and Szekely 2017a; Kejriwal et
al. 2017). A succinct summary of the datasets is provided in Table 2; further details are
provided below.

Ground-truths

In total, the corpus under consideration consists of 11,530 webpages. Multiple domain-
specific attributes were extracted from this corpus, including City, Name, Phone, Address,
Service Type, and even physical attributes such asHair Color and Eye Color. In other illicit
domains that we have studied (including securities fraud, narcotics, illegal weapons sales
online and counterfeit electronics sales), the first three of these were found to be always
present in the domain-specific schema that investigators defined. In contrast,Address and
Service Type were more rarely defined, while physical attributes seemed to be exclusive to
the online sex trafficking domain. Name and City are also common in non-illicit domains
subject to extraction pipelines e.g., both SpaCy6 and Stanford NER (two influential open-
source IEs tuned for non-illicit domains such as newswire) make available pre-trained
modules for Location and Person, which can be re-normalized to City and Name as we
have considered them in this article (Finkel and Manning 2009).
In keeping with these observations, and to ensure that our findings are relatively gen-

eralizable, we consider Name, City and Phone extractions obtained from the corpus. We
were provided a ground-truth set of extractions for each document in this corpus, and for
each attribute, by an independent group of domain experts and social scientists who had

Table 2 IE datasets (constructed per attribute) used in the empirical studies in this article

Dataset Explanation

Set1 Ground truth obtained from independent, highly-tuned extractors

Set2 Result of precision-favoring extractions

Set3 Result of recall-favoring extractions

Set4 Set1 ∩ Set2

Set5 Set1 ∩ Set3

Set6 Set1 ∪ Set2

Set7 Set1 ∪ Set3

Set8 Set1 + Random Noise
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developed highly tuned rule-based extractors (for all of these three attributes) specifically
for sex ads in backpage.com. Typically, such extractors try to encode domain knowledge
using unions of regular expressions, followed by post-processing checks. For example, the
phone extractor would try to match a sequence of either ten or eleven digits in the ad text,
with multiple rules accounting for such obfuscations as word representations of num-
bers (e.g., one instead of 1), the substitution of o for 0, and so on. Because the focus was
on extracting US phones, a post-processing step was to check that the extracted number
either had 10 digits, or started with 1 if it had 11 digits. Another step was to remove lead-
ing 0s. Checks were also run for numbers that were known to be spammy and occasionally
present in ads (e.g., a sequence of nine consecutive 9s or 1s). Similarly, extractors for
names and cities also used rules, but additionally, relied on glossaries such as Geonames
(Wick and Vatant 2012).
To verify quality, we randomly sampled a set of fifty web documents from the corpus to

verify that misclassification rates were low for all attributes. Thus, this dataset can be used
in lieu of an exhaustively labeled ground truth, which is not feasible to construct both
because of its scale and its real-world qualities. In Table 2, we refer to this dataset as Set 1.

Extraction datasets

To test our hypotheses using measures of IE accuracy that are predominantly used in
the community (especially precision and recall), we considered two different extraction
systems, one of which is precision-favoring and the other of which is recall-favoring. In
Table 2, the outputs from these systems are denoted as Sets 2 and 3 respectively.
In illicit domains, structured attributes such as name and phone number are not present

in ‘infobox’ style layouts, but are typically embedded in the text, often in an obfuscated
format. This is to avoid direct investigative lookup of an advertiser’s street name and con-
tact details using a search engine such as Google. Therefore, in order to extract attributes
such as the ones considered in this work, onemust first extract the free text from the web-
page, following which NLP-centric extraction techniques can be applied on the extracted
(and pre-processed) free text. Text scraping from websites is itself a hard problem (due
to presence of inserted ad markup, dynamic changes, link structures and variability). We
used the Readability Text Extractor (RTE), currently available as the Mercury API7, to
perform the text scraping. We tuned RTE in two different modes. The first mode, which
is recall-friendly, is more aggressive and scrapes much of the relevant text, but may also
scrape irrelevant text and markup with it. The second mode, which is precision-friendly,
tends to be ‘cleaner’ in that almost all content is relevant, but maymiss relevant sentences,
especially if there are gaps or links between the relevant portions.
Next, we run identical extraction programs for all three attributes on the precision-

friendly and recall-friendly RTE outputs. City and name extractions are obtained using a
dictionary based extractor, using existing sets of popular cities and names from amanually
curated subset of the GeoNames knowledge base (Wick and Vatant 2012). However, for
phones, we used different programs for extracting precision-favoring and recall-favoring
phones, since our phone extractor (which has to deal with obfuscation) is based on rules.
The precision-favoring phone extractor is applied to the precision-favoring RTE output,
and similarly for obtaining recall-favoring phone extractions.
Using the ground-truth dataset (Set 1) and the precision-favoring and recall-favoring

datasets (Sets 2 and 3), we can construct other IE datasets expressing varying tradeoffs
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between noise and quality metrics. We create four new datasets by combining these exist-
ing datasets in various ways (e.g., by taking their union). Details on this construction (Sets
4-7) are succinctly formulated in Table 2.
Finally, we also created a synthetic dataset (Set 8) by adding random noise to the ground

truth (Set 1) such that quality metrics coincided with those of Set 2. Using the precision
and recall values from Set 2 and the number of actual extractions from Set 1, the desired
true positive, false positive and false negative values were calculated.
Specifically, for creating more false-positives, a two-step procedure was iteratively

employed: (1) a document was chosen at random, and (2) a false extraction, randomly
chosen from the dictionary of all extractions observed in the corpus, was added to the
extraction set for that document. Similarly, for creating more false-negatives, randomly
chosen true extractions are removed from randomly chosen documents in an iterative
two-step procedure. Iteration continues till the precision and recall of the constructed
dataset equal those of Set 2. Since the number of true positives is fixed, and we are able to
precisely control the numbers of false-positives and false-negatives, precision and recall
can both be decreased in a controlled and unbiased way. The reason for constructing this
dataset is that it proves especially important in assessing some of the results against a ref-
erence of random noise, since it allows us to consider whether our real-world IE systems
exhibit similar characteristics.
Tables 3, 4 and 5 show some key statistics about all the constructed sets. Since Set

1 is considered as our reference set, we consider it to have perfect quality (1.0 on all
quality metrics). In keeping with our intuitions, we find that (relative to Set 3) Set
2 tends to have higher precision (+18-39%), while Set 3 has higher recall (+0.45%-
17.8%), though the increase in recall of Set 3 is significantly more diminished by the
loss in precision, leading to considerably lower F-scores. Sets 4-8 express a range of
tradeoffs; for example, Set 4, which considers the intersection of the ground-truth
with an already precision-favoring Set 2, yields perfect precision but at the same level
of recall as Set 4. These datasets allow us to counterfactually investigate the differ-
ent effects of precision and recall on network-theoretic metrics, since they control for
one metric.
Finally, as explained earlier, Set 8 was synthetically created by adding random noise to

Set 1, such that the quality metrics coincided with those of Set 2; hence, the two sets
have expectedly near-identical quality metrics. This also illustrates that, even if a ground-
truth were available (such as Set 1) to a practitioner, she would not be able to distinguish

Table 3 Dataset characteristics for city extractions

Metric Set1 Set2 Set3 Set4 Set5 Set6 Set7 Set8

No. of unique extractions 328 1,685 1,489 253 253 1,760 1,563 1,865

No. of extractions per
advertisement

1.0 3.4720 17.1507 0.7862 0.7818 3.6858 17.3689 3.4722

No. of ads with no
extractions

0 64 65 2,465 2,516 0 0 178

No. of ads with at least 1
extraction

11,530 11,466 11,465 9,065 9,014 11,530 11,530 11,352

Precision 1.0 0.2264 0.0456 1.0 1.0 0.2713 0.0576 0.2264

Recall 1.0 0.7862 0.7818 0.7862 0.7818 1.0 1.0 0.7862

F-score 1.0 0.3516 0.0861 0.8803 0.8775 0.4268 0.1089 0.3516
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Table 4 Dataset characteristics for name extractions

Metric Set1 Set2 Set3 Set4 Set5 Set6 Set7 Set8

No. of unique extractions 925 631 900 468 594 1,076 1,218 1,169

No. of extractions per
advertisement

0.7563 0.6271 2.7060 0.3794 0.5140 1.0039 2.9484 0.6269

No. of ads with no
extractions

4,708 5,937 532 7,607 6,536 3,613 328 6,362

No. of ads with at least 1
extraction

6,822 5,593 10,998 3,923 4,994 7,917 11,202 5,168

Precision 1.0 0.6050 0.1899 1.0 1.0 0.7533 0.2565 0.6050

Recall 1.0 0.5016 0.6796 0.5016 0.6796 1.0 1.0 0.5015

F-score 1.0 0.5485 0.2969 0.6681 0.8092 0.8593 0.4083 0.5484

between Sets 2 and 8 based only on IE metrics. We show subsequently, however, that the
structural properties of the extraction graphs of Sets 2 and 8 markedly differ.

Experiments andmethods

To answer the first research question (RQ 1), we devised a set of quantitative experimen-
tal methods to record the variance in structural metrics for each of the eight datasets
listed in Table 2. Note that structural metrics are unsupervised, requiring mechanical
computations that depend only on the structure of the network. For each of the three
attributes under consideration, we compute the individual Pearson correlation between
the precision, recall and F-score, and several well-known network-theoretic structural
metrics such as described in Formalism using eight single-point measurements for the
correlations (one data point per metric per dataset in Table 2). We do not consider
non-single-point metrics such as the degree distribution, since its investigation falls
specifically within the purview of RQ 2. Because the eight datasets in Table 2 have vary-
ing qualities on the different IE metrics of interest to us (precision, recall and F-measure),
consistent changes in structure across all three attributes enable us to take a principled
approach to answering RQ 1.
Furthermore, with a view to assessing if noise in real-world IE systems exhibits signifi-

cantly non-random tendencies, we report the same structural metrics that we considered
in the methodology above for each set and attribute in Table 2, and study the specific dif-
ferences between Set 8 and Set 2, since Set 8 has the same accuracy as Set 8, but with
noise inserted randomly.

Table 5 Dataset characteristics for phone extractions

Metric Set1 Set2 Set3 Set4 Set5 Set6 Set7 Set8

No. of unique extractions 2,298 1,756 3,668 1,697 1,716 2,355 4,248 2,206

No. of extractions per
advertisement

1.0850 0.9639 1.3004 0.9490 0.9649 1.0999 1.4206 0.9638

No. of ads with no
extractions

194 651 367 708 531 181 132 1,623

No. of ads with at least 1
extraction

11,336 10,879 11,163 10,822 10,999 11,349 11,398 9,907

Precision 1.0 0.9845 0.7419 1.0 1.0 0.9864 0.7638 0.9845

Recall 1.0 0.8746 0.8892 0.8746 0.6796 1.0 1.0 0.8745

F-score 1.0 0.9263 0.8089 0.9414 0.8092 0.9931 0.8661 0.9263
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The methodology for exploring RQ 2 is fairly straightforward; we compute and plot the
degree distribution of the extraction networks underlying the sets in Table 2. We also
refer to the power-law coefficient of each network, computed earlier in the data collected
for answering RQ 2, to assess to what extent each distribution obeys the power law. We
also study how the power law distribution for each network evolves for a given attribute
as performance changes gradually (across the spectrum from Set 1 to Set 8).

Results

We report results for both research questions enumerated earlier. Each research question
(RQ) is considered individually below.

Research question 1

Recall that the first research question involved detecting patterns in structural metrics’
changes with changes in IE quality. We note the primary observations that emerged from
conducting the RQ 1 experiments, using the methodology described earlier, below:

• First, precision was found to be strongly correlated with several structural metrics, as
quantified in Table 6, which records the Pearson correlation coefficient using the
8-point precision vector of the eight datasets in Table 2, and the corresponding
values of the single-point structural metrics computed over their respective
extraction networks. In some cases, the correlations seem intuitive and even obvious.
For example, the relatively strong negative correlation between Order and precision
can be explained as follows. Since the order corresponds to the set of all entities (for
an attribute) extracted over the entire set of documents, and since every unique
entity has, in practice, some non-zero probability of being noise, networks with a
higher order tend to have lower precision. This is especially true when an attribute in
question contains entities from some pre-specified ‘universal’ set, which is true for
names8 and cities. In contrast, phones, which are syntactically constrained, but tend
to accommodate many more possible unique values, show a weaker (but still quite
strong) negative correlation.

• Second, more interestingly, the ‘erroneous’ edges in less precise extraction networks
tend to serve as ‘weak ties’ that end up collapsing two or more connected
components into a single connected component, reducing the number of connected
components. In other words, less precise edges tend to straddle components (a rough
definition of what would constitute a weak tie in network science). This suggests a
potential line of attack in cleaning up noisy extractions, by exploiting hierarchical or
agglomerative clustering algorithms (Murtagh and Legendre 2014) that may be able
to detect such weak ties (e.g., by iteratively breaking up connected components into
clusters using mechanisms such as betweenness centrality for assigning weights to
edges). The empirical utility of such methods is an important agenda that we will
pursue in future work.

• Third, precision is positively correlated with the Clustering Coefficient of the
extraction network, but the correlation is not as strong as between precision and the
number of connected components. This implies that cleaner extraction sets yield a
smaller number of, but more tightly knit, groups (in the underlying extraction
network) as compared with noisier extraction sets. In other words, in aggregate, the
incorrect extraction edges tend to contribute to non-transitivity, since clustering
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Table 6 Pearson correlation coefficients between precision and network metrics

Network metric City Name Phone

Order -0.7292∗ -0.8219∗ -0.4537

Power-law exponent -0.6995 0.8628∗∗ -0.6169

Num. connected components 0.9741∗∗ 0.9624∗∗ 0.9886∗∗

Clustering coefficient 0.7010 0.9017∗∗ 0.8362∗∗

Degree correlation 0.3245 0.2297 0.157

Order (of largest connected component) -0.9839∗∗ -0.7776∗ -0.9958∗∗

Algebraic connectivity 0.9837∗∗ -0.5925 0.7055

Vertex connectivity 0.9838∗∗ 0.5204 0.6025

Edge connectivity 0.9834∗∗ 0.5204 0.7229∗

Diameter -0.5471 0.8368∗∗ -0.9950∗∗

Avg. shortest path length -0.1373 0.4637 -0.9964∗∗

Since the network is disconnected, all metrics listed below Order (of Largest Connected Component) are computed over the largest
connected component. * and ** respectively indicate statistical significance at the 95% and 99% level for the two-tailed test for
the correlation coefficient with null hypothesis ρ = 0

coefficient is related to the number of triadic closures (indicating high transitivity) in
the network. On average, therefore, given two links n1 − n2 and n1 − n3, all else being
equal, a third link n2 − n3 introduced by a real-world extraction system is more likely
to be correct than in the absence of either n1 − n2 or n1 − n3 (or both). This suggests
another potential line of attack in trying to clean up noisy extractions (or selecting a
system under the expectation of high precision without access to ground-truth) by
systematically making use of global information.

• Fourth, precision is also positively correlated with the Vertex and Edge Connectivity
of the largest connected component. Adding more incorrect extraction edges leads to
lower connectivity in the larger connected component compared to the original
closely connected component. This offers a finer-grained ‘check’ on systems’
precision, as opposed to a coarse-grained classification (of whether a given extraction
set is more precise than another extraction set) compared to the previous
observation, which would only check the size of the largest component.

• Interestingly, in contrast with precision, recall is not heavily correlated with any of
the metrics described above, whether positively or negatively. Table 7 shows the
correlation between recall and the various metrics discussed above in the context of
precision.

• Finally, because F-score is the harmonic mean of both precision and recall, it was
unsurprisingly found to be correlated positively with the number of connected
components, and also the clustering coefficient, of the network. The correlations
were not as strong as those of precision (Table 8).

Brief Summary. The results show that certain structural metrics are excellent pre-
dictors of the overall performance of an extraction system, especially if precision is of
interest. In contrast, recall cannot be predicted very accurately. We note that there is also
variance between the attributes, though not as strong as one might expect, given that
they are very different from one another. In general, we found that, in terms of evaluating
RQ1, the Name attribute tended to be more heterogeneous and less predictive compared
to City and Phone attributes. Other possible limitations of the study are described in the
“Discussion” section.
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Table 7 Pearson correlation coefficients between recall and network metrics

Network metric City Name Phone

Order 0.4816 0.5794 0.3993

Power-law exponent -0.06280 -0.1790 0.3877

Num. connected components 0.0228 -0.2304 -0.1901

Clustering coefficient 0.1563 -0.1438 -0.4472

Degree correlation -0.0443 -0.4175 -0.6218

Order (of largest connected component) 0.0752 0.4372 0.2662

Algebraic connectivity -0.0650 0.0182 0.1217

Vertex connectivity -0.0648 -0.4629 0.3248

Edge connectivity -0.0660 -0.4629 -0.0360

Diameter -0.1662 -0.5824 0.2573

Avg. shortest path length -0.0277 -0.7176∗ 0.2519

Since the network is disconnected, all metrics listed below Order (of Largest Connected Component) are computed over the largest
connected component. * indicates statistical significance at the 95% level for the two-tailed test for the correlation coefficient
with null hypothesis ρ = 0

Random vs. non-randomnoise

Recall that one of our goals had been to study the properties of real-world extraction
noise; namely, is the noise random?We proposed studying these properties by first intro-
ducing attribute-specific random noise in the ground-truth network (Set 8 in Table 2) till
it had the same precision, recall and F-scores as Set 2 (Tables 3, 4 and 5) for that attribute.
Using only the accuracy metrics, there is no difference, in aggregate, between Sets 2
and 8. However, our (subsequently described) observations show that there are consider-
able structural differences between the two networks, providing evidence that the noise
incorporated in real-world extraction settings is indeed significantly non-random. Fur-
thermore, in deviating from randomness, the noise exhibits some clear patterns, lending
credence to the observations and summary in the previous section as well.
First, we illustrate (in Fig. 3) the degree distribution of the Set 8 (i.e. random noise)

network and compare it to the Set 2 network (obtained from a real-world ‘high precision’
extraction system). The figure reveals that the number of lower-degree nodes tend to be
higher in the Set 8 network, as would be expected with random noise, while the number
of higher-degree nodes tend to be higher in the Set 2 network. In investigating RQ 1, we

Table 8 Pearson correlation coefficients between F-Score and network metrics

Network metric City Name Phone

Order -0.6284 -0.5268 -0.0769

Power-law Exponent -0.5918 0.7635∗ -0.1704

Num. Connected Components 0.9484∗∗ 0.8211∗ 0.6347

Clustering Coefficient 0.6395 0.7352∗ 0.3150

Degree Correlation 0.2693 0.0863 -0.3799

Order (of Largest Connected Component) -0.9401∗∗ -0.3578 -0.5885

Algebraic Connectivity 0.9413∗∗ -0.7014 0.6583

Vertex Connectivity 0.9415∗∗ 0.3980 0.7384∗

Edge Connectivity 0.9407∗∗ 0.3980 0.5411

Diameter -0.4459 0.3831 -0.5926

Avg. Shortest Path Length -0.3948 -0.1305 -0.5984

Since the network is disconnected, all metrics listed below Order (of Largest Connected Component) are computed over the largest
connected component. * and ** respectively indicate statistical significance at the 95% and 99% level for the two-tailed test for
the correlation coefficient with null hypothesis ρ = 0
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Fig. 3 (Log-log) Degree distributions of Set 2 (Dotted Red) and Set 8 (Solid Blue) extraction networks for all
three attributes. The Y-axis records the empirical probability of each degree value

saw earlier that noise in real-world networks can have a ‘weak link’ effect in that noisy
links end up connecting otherwise disconnected components than might be expected
by chance. The figure agrees with this intuition, in that higher-degree nodes continue
to increase in degree (thereby seeming to obey scale-free assumptions) with addition in
real-world noise, in contrast with random noise that skews the degree distribution in the
reverse direction.
Second, the clustering coefficient of the Set 8 network is consistently lower than that

of the Set 2 network (see Tables 9, 10, and 11), providing more evidence that real-world
erroneous extractions are more localized than would be true for random errors. Not only
that, but the same errors seem to recur consistently across documents, which leads to
their clustering by means of common (error-prone) extractions. We also note that the
largest connected component of the Set 2 network has a smaller diameter for two out
of the three attributes (Phone and Name) compared to the random network. As is true
for other real-world networks exhibiting (approximately) power-law degree distributions
(such as social networks), a real-world noise network also tends to exhibit ‘small world’
properties (in comparison with random networks).
Brief Summary. Real-world extraction systems are not noisy in random ways, which

(arguably) provides a compelling reason for using network science in the first place for
studying their noise. More practically, it explains why active learning approaches lead to
super-linear (with respect to labeling effort) gains when properly used, since the same

Table 9 Single-point structural network metrics for City extraction datasets

Metric Set1 Set2 Set3 Set4 Set5 Set6 Set7 Set8

Order 11492 11460 11465 9039 8988 11525 11530 11352

Power-law exponent 0.6431 2.2155 1.3639 0.5924 0.5889 2.3504 1.3709 3.1598

Num. connected components 290 11 2 227 227 7 2 1

Clustering coefficient 0.9944 0.8387 0.8377 0.9947 0.9947 0.8367 0.8367 0.5493

Degree correlation 1.0 0.5641 1.0 1.0 0.5542 0.5542 0.6397 0.6275

Order (of largest connected
component)

533 11430 11463 533 513 11510 11528 11352

Algebraic connectivity 532.9999 0.8757 0.4989 533.0 513.0 0.7767 FAIL 7.8806

Vertex connectivity 532 1 3 532 512 1 FAIL 8

Edge connectivity 532 1 3 532 512 1 FAIL 8

Diameter 1 7 5 1 1 7 FAIL 4

Avg. shortest path length 1 3.4945 1.9510 1 1 2.6403 FAIL 2.3603

Since the network is disconnected, all metrics listed below Order (of Largest Connected Component) are computed over the largest
connected component. FAIL indicates that the metric could not be computed for that set, usually due to a program timeout or
memory issue
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Table 10 Single-point structural network metrics for Name extraction datasets

Metric Set1 Set2 Set3 Set4 Set5 Set6 Set7 Set8

Order 6603 5429 10987 3776 4833 7716 11185 5095

Power-law exponent 2.7054 1.5843 0.8963 2.4881 2.5301 2.1872 0.8970 2.8074

Num. connected components 195 153 3 193 201 147 4 138

Clustering coefficient 0.9273 0.9162 0.8439 0.9440 0.9355 0.8986 0.8410 0.8502

Degree correlation 0.7681 0.7612 0.9803 0.7651 0.8203 0.6552 0.3280 0.6340

Order (of largest connected
component)

4859 4376 8406 1829 2892 6842 11005 4622

Algebraic connectivity 0.0595 0.0842 0.9967 0.0123 0.0294 0.1280 0.9989 0.0738

Vertex connectivity 1 1 1 1 1 1 1 1

Edge connectivity 1 1 1 1 1 1 1 1

Diameter 11 11 5 17 15 9 4 13

Avg. shortest path length 0 4.0801 1.7173 5.7881 5.3785 3.8888 5.1463 4.7180

Since the network is disconnected, all metrics listed below Order (of Largest Connected Component) are computed over the largest
connected component

errors seem to be occurring ‘independently’ in multiple documents (Thompson et al.
1999). If the noise had been truly random, active learning would be much less effective,
since there would be a higher probability of sampling lower-degree nodes in Fig. 3.

Research question 2

Finally, in investigating the dependency of the degree distribution on the varying levels
of noise and precision-recall tradeoff, we present degree distribution (log-log) plots in
Figs. 4, 5 and 6. Contrary to social networks and other ‘natural’ networks, noise in the
extraction networks does not follow a clear power law. However, with the exception of the
phone extraction network’s degree distributions, which are fairly uniform across all sets
(an artifact that may be the result of phone extractions being of generally higher qual-
ity than other extractions9), we note that the networks for Sets 3 and 7 are most erratic
(compared to the Set 1 ground truth network). Considering the data in Tables 3 and 4,
we find that these are the two sets with the lowest F-scores. In contrast, Sets 5 and 6 for

Table 11 Single-point structural network metrics for Phone extraction datasets

Metric Set1 Set2 Set3 Set4 Set5 Set6 Set7 Set8

Order 10286 9863 10252 9817 9993 10313 10488 8989

Power-law exponent 0.9887 1.5696 1.5910 0.9975 1.0085 1.5389 1.5800 1.3138

Num. connected components 656 610 350 619 633 650 368 589

Clustering coefficient 0.9476 0.9547 0.9314 0.9563 0.9551 0.9463 0.9273 0.9370

Degree correlation 0.9816 0.9779 0.9803 0.9869 0.9865 0.9730 0.9788 0.9780

Order (of largest connected
component)

189 189 8406 189 189 189 8636 199

Algebraic connectivity 2.9177 2.9730 0.0046 1.9555 1.9570 3.9630 0.0047 0.2295

Vertex connectivity 4 3 1 2 2 4 1 1

Edge connectivity 3 3 1 3 3 4 1 1

Diameter 3 3 19 3 3 3 19 5

Avg. shortest path length 1.6318 1.5709 6.9405 1.6518 1.6417 1.5537 6.8760 1.9739

Since the network is disconnected, all metrics listed below Order (of Largest Connected Component) are computed over the largest
connected component
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Fig. 4 Degree distributions of the City extraction network for the eight datasets described in Table 3, in
support of the findings in Research Question 2. The X-axis and Y-axis respectively plot the degree and its
empirical frequency in the network. Scales are log-log

both attributes have F-scores greater than 80%. Correspondingly, the degree distributions
for these sets are much smoother. Although difficult to quantify, the results show that
the degree distribution could potentially be used to diagnose whether the F-score of an
extraction set is abnormally low.
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Fig. 5 Degree distributions of the Phone extraction network for the eight datasets described in Table 5, in
support of the findings in Research Question 2. The X-axis and Y-axis respectively plot the degree and its
empirical frequency in the network. Scales are log-log

Discussion
In exploring the research questions, we utilized a select set of networkmetrics on the AEN
as an approach for evaluating the quality of rival IE systems without access to ground-
truth, in an unusual domain such as human trafficking where ground-truths are difficult
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Fig. 6 Degree distributions of the Name extraction network for the eight datasets described in Table 4, in
support of the findings in Research Question 2. The X-axis and Y-axis respectively plot the degree and its
empirical frequency in the network. Scales are log-log

to acquire across the Web. These network metrics were found to be correlated with some
IE accuracy metrics, particularly precision. Although it is not currently feasible to provide
a mathematical justification for why this turned out to be the case (although in future
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work, we are looking to develop a theoretical model explaining this finding), we posit two
intuitive reasons below:

1 Noise in IE is non-random i.e. if a word or phrase got mis-extracted in one
document, there is a higher-than-normal probability that it will get mis-extracted
in another document. This occurs despite the observations that both documents
were generated independently, the contexts surrounding the word are distinct in
both documents, and the training data was sufficiently representative. Intuitively,
this occurs because there is an extraneous property that leads to the noise. For
example ‘Charlotte’ may be getting mis-extracted more often than ‘Los Angeles’ by
a Named Entity Recognition system (Nadeau and Sekine 2007), despite
representative training data, because Charlotte is also a common name. Charlotte
is what a practitioner would define as a ‘difficult’ example, even though it is hard to
formalize what makes one example more difficult than another.

2 In aggregate, noise seems to have macroscopic structure that can be formally
quantified using concepts from network science. One reason for this is that the
universe of extractions (i.e. all possible extractions) tends to be bounded in
practice. For example, there is a finite number of locations in the world, and
although any string could potentially be a name, the number of names in a corpus
tends to be bounded. Because extractions (and also mis-extractions) are repeated
across documents, certain regular structures and patterns may emerge. Consider
again the case of ‘Charlotte’ statistically: assuming it gets incorrectly extracted by a
recall-friendly system, along with the true city extraction, it is statistically unlikely
that the true extraction will also be a city in North Carolina. In the broader AI
community, probabilistic techniques (such as Probabilistic Soft Logic or PSL) have
exploited this observation to ingest extractions from multiple independent IEs, and
identify true extractions by probabilistically reasoning about such patterns
(Kimmig et al. 2012). However, PSL needs clear domain rules (which is beyond
reach of non-technical investigative experts), and knowledge graph identification
systems that rely on PSL try to combine multiple IE and Entity Resolution systems
to leverage such statistical knowledge.

We also note that the study is not without its limitations, which must be borne in
mind before applying the findings to other HT datasets, or to datasets from similar illicit
(or even non-illicit domains). Importantly, while the systems and datasets considered in
this article are real-world, the structural metrics are ‘global’, meaning that, in general,
it is considerably more difficult to predict precisely when a given system is wrong (i.e.
pinpoint individual wrong extractions or links). In the future, it may be possible to use
the concepts developed in this work in a machine learning setting to make such micro-
scopic predictions; however, at present, the network metrics are computed over the full
network rather than on a per-node or per-edge basis. However, because the network met-
rics capture an aggregate property of the performance of the underlying IE system (e.g.,
whether it is precision-favoring or not), they could be used to configure the IE system
through hyperparameter optimization (Bergstra et al. 2011; Eggensperger et al. 2013).
Intuitively, each set of hyperparameters yields a ‘different’ IE system, expressing a per-
formance tradeoff typically captured through ROC curves (plotted using a validation set)
in the machine learning literature. However, the network metrics are computed in an
unsupervised fashion, and do not need labeled data.
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Conclusion
In this article, we addressed the problem of assessing and profiling data quality in compet-
ing information extraction systems over domains that are unusual, have no ground truth
annotations, but are consequential in the real world. We conducted a detailed empir-
ical study using extractions covering three attributes, and different IE precision-recall
tradeoffs, over a large corpus of webpages in the sex advertisement domain. The empir-
ical studies illustrate some interesting aspects of noise in IE systems. For example, we
found that, in real-world extraction systems, edges introduced in the attribute extrac-
tion network due to erroneous extractions tend to be of the ‘weak tie’ variety and lead
to larger connected components. Recall was not found to exhibit strong dependencies
on any structural metrics. Finally, noise distributions were found to exhibit non-random
tendencies, with more predictable patterns emerging for lower levels of noise.
In current ongoing research, we are looking to release a software package that is able

to use regression analysis to predict precision, recall and F-Measure scores for different
configurations of an IE system, given baseline scores with respect to a default configura-
tion. This package is expected to serve a useful purpose both in active learning and for
determining system improvement with small or no ground truths.

Endnotes
1Although state-of-the-art IE is still supervised, unsupervised approaches have come a

long way (Nadeau and Sekine 2007).
2Now shut down and under investigation by federal authorities.
3 This term is widely regarded as being a misnomer by many practitioners in NLP, since

the data does have structure, although it is not parseable (with guaranteed high quality)
by machines.

4 https://www.darpa.mil/program/memex
5 https://www.scientificamerican.com/article/human-traffickers-caught-on-hidden-

internet/
6 https://spacy.io/
7 https://mercury.postlight.com/web-parser/
8Most name extractions in our corpus could be derived from a broad lexicon of English

names.
9No phone extraction set has F-score below 80%, while name and city extraction sets

exhibit considerably more variety.
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