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Abstract
Influence spread in multi-layer interdependent networks (M-IDN) has been studied in
the last few years; however, prior works mostly focused on the spread that is initiated in
a single layer of an M-IDN. In real world scenarios, influence spread can happen
concurrently among many or all components making up the topology of an M-IDN.
This paper investigates the effectiveness of different influence spread strategies in
M-IDNs by providing a comprehensive analysis of the time evolution of influence
propagation given different initial spreader strategies. For this study we consider a
two-layer interdependent network and a general probabilistic threshold influence
spread model to evaluate the evolution of influence spread over time. For a given
coupling scenario, we tested multiple interdependent topologies, composed of layers
A and B, against four cases of initial spreader selection: (1) random initial spreaders in A,
(2) random initial spreaders in both A and B, (3) targeted initial spreaders using degree
centrality in A, and (4) targeted initial spreaders using degree centrality in both A and B.
Our results indicate that the effectiveness of influence spread highly depends on
network topologies, the way they are coupled, and our knowledge of the network
structure — thus an initial spread starting in only A can be as effective as initial spread
starting in both A and B concurrently. Similarly, random initial spread in multiple layers
of an interdependent system can be more severe than a comparable initial spread in a
single layer. Our results can be easily extended to different types of event propagation
in multi-layer interdependent networks such as information/misinformation
propagation in online social networks, disease propagation in offline social networks,
and failure/attack propagation in cyber-physical systems.

Keywords: Influence spread, Phenomena propagation, Information diffusion, Initial
spreader selection, Seed selection, Multi-layer networks, Interdependent networks,
Social networks, Cyber-physical systems

Introduction
Multi-layer interdependent networks (M-IDNs) are systems composed of more than one
network with edges between them to form an interconnected environment. M-IDNs can
be used to model many real-world interdependent systems, such as cyber-physical sys-
tems and online-offline social networks. In recent years, we have seen an exponential
growth in the development and deployment of these systems. This growth is largely due
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to the increasing use of more technologies interfacing with one another — such as the
Internet of Things. The explosive expansion and scale of technologies that connect with
one another through the Internet provide further incentive to explore the interconnec-
tion of different real-world systems and their impacts on phenomena propagation in these
environments.
The interdependency between separate networks creates specific characteristics for

these systems that need to be investigated. Specifically, the interaction between separate
networks opens up potential for unique opportunities to design new selection strategies
that might not be as effective in a system made up of a single network. For example,
the attack that was launched by Stuxnet (Albright et al. 2010) in 2010 was the result of
a malicious computer worm that led to substantial damages to the programmable logic
controller (PLC) systems and the power plants. The main reason for such wide-spread
damage was the interdependency between the supervisory control and data acquisition
(SCADA) system controlling the nuclear enrichment plants and the enrichment plants.
This huge impact would likely not have been possible without the interdependency
between the cyber (controller) component and the physical component’s performance.
Recently, research aimed at investigating wide-spread phenomena propagation in M-

IDNs focuses on designing resilient and robust M-IDN systems. There is a considerable
amount of literature addressing the problem of modeling and analyzing the impact
of interdependency between different interdependent systems (such as cyber-physical
systems) and how to minimize phenomena propagation in these systems. Work inves-
tigating selection strategies of initial spreaders in M-IDN systems has been conducted
(as discussed in Related Work section). However, these works consider less general
propagation models like epidemic and independent cascade. Additionally, our work is
particularly interested in investigating how the evolution of affliction over time and a vari-
ety of interconnectivity and layer-based selection strategies for initial spreaders compare,
distinguishing our work from that in the literature.
In short, we will make the following contributions:

• We propose a modified version of the threshold-based phenomena propagation
model that was initially proposed in (Khamfroush et al. 2016) for a general
interdependent network and a single phenomenon, as a mathematical model to
quantify the impact of different strategies for selecting initial spreaders for
phenomena propagation in an M-IDN system.

• We perform extensive simulations to study the effectiveness of different types of
spread initialization including random/designed single-layer initial spread and
random/designed multi-layer initial spread in a M-IDN system.

• We provide guidelines on which network topologies and types of coupling between
the networks provide faster propagation when facing different strategies for spread
initialization. Due to the generality of the proposed model, our observations provide a
useful framework for further investigation and design of robust and reliable M-IDN.

Related work
Various works explore different approaches to either minimizing or maximizing phe-
nomena propagation in M-IDN systems, depending on the context of the problem. For
instance, in social networks, one may want to maximize the spread of critical information
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(Kim et al. 2014; 2015; Kandhway and Kuri 2017) or minimize the propagation of mis-
information (or “fake news”) (Papanastasiou 2018; Kimura et al. 2009; Shu et al. 2019).
Since our problem is general in nature, we do not consider a context that implies whether
the phenomena propagation has positive or negative ramifications. We are simply inter-
ested in how certain selection strategies of initial spreaders affect overall phenomena
propagation.
Securing an M-IDN goes beyond securing the separate networks composing the entire

interdependent topology. Adversaries are willing to use the interdependency of vul-
nerabilities to carry out multi-stage attacks. Each facet of an attack may not pose a
significant threat to a single network on its own; however, cumulative influences through
interdependency, may have catastrophic effects.
In the past few years, vulnerabilities in M-IDNs have been widely studied. In general,

there are two main approaches to study this vulnerability. The first approach typically
involves focusing on a certain application of M-IDNs to identify different forms of
attacks/threats and potential strategies to protect corresponding M-IDN systems. For
example, (Anderson and Fuloria 2010; McDaniel and McLaughlin 2009; Metke and Ekl
2010; Mo et al. 2012; Rahman et al. 2012) looked into financially motivated threats in
smart grids where a customer who wants to trick a utility company’s billing system tam-
pers with smart meters to reduce the electricity bill. Other studies, such as (Halperin et
al. 2008; Hanna et al. 2011; Rushanan et al. 2014), looked into the threats against medical
cyber-physical systems. Authors in (Brooks et al. 2008; Checkoway et al. 2011; Hoppe et
al. 2008) defined and investigated different threats in smart cars as another application of
cyber-physical systems.
In our prior work (Hudson et al. 2019), we investigate the effectiveness of standard

and interdependent centrality metrics to minimize cascade of failure. In that work, we
used random failure to select initially failed nodes to begin failure propagation. There
was no investigation, in this prior work, into how different strategies for initial spread
performed.
In the past, there have been studies conducted that investigate the effectiveness

of selection strategies in singular networks (Albert et al. 2000; Pastor-Satorras and
Vespignani 2001; Cohen et al. 2001). However, authors in (Salehi et al. 2015)
provide a thorough overview of prior works investigating this topic for M-IDN
networks. These prior works consider different models of phenomena propaga-
tion for the spread of a phenomenon through an M-IDN system. For example,
(Erlandsson et al. 2017) investigates seed selection strategies to maximize informa-
tion cascade in multi-layer social networks under an independent cascade model
(ICM), where nodes across different layers are one and the same — so if a
node iA is afflicted in layer A from an intra-neighbor in that layer, node iB in
layer B is afflicted as an immediate result. This work concluded that degree cen-
trality, out of the strategies considered by this work, is the overall most effec-
tive selection strategy for initial spreaders to maximize cascade in these environ-
ments. However, this work does not consider propagation over time as afflicted
nodes only have one chance to afflict their neighbors. The work in (Zhao et al.
2014) considers an epidemic propagation model, where the goal is to identify the
most influential nodes in the network. Also in the context of social networks,
there have been a large body of work investigating the influence maximization
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problem that focuses on choosing optimal seed set such that the spread of information is
maximized, e.g., (Michalski et al. 2014; Kempe et al. 2005; Chen et al. 2009; Chen et al.
2010).
In contrast to these prior works, our goal is not to find the most influential seed set,

instead we are looking at the impact that different choices of the seed set (single-layer
versus two-layer) could have on the propagation process. More specifically, we are inves-
tigating whether a single-layer seed selection could be as influential as a similar size
two-layer seed selection. Furthermore, our study incorporates a more general propaga-
tion model and takes into consideration the evolution of the spread of a phenomenon
over time. This consideration allows afflicted nodesmore opportunities to afflict neighbor
nodes, which is more realistic in many scenarios. For instance, in the context of informa-
tion cascade in social networks one user may be afflicted by some information and share
that with their friends. This person’s friends may not immediately adopt the information
that this person is propagating; however later in time this could change. The independent
cascade model does not consider such cases and is thus inapplicable for many scenar-
ios that involve delay. Further, linear threshold and linear probabilistic propagation are
special use cases of our model.

Problem statement
We consider an M-IDN system consisting of two interdependent networks, A and B.
Both layers A and B are represented by two undirected graphs GA = (VA,EA) and
GB = (VB,EB), where VA and VB represent the sets of vertices in layers A and B (respec-
tively) and EA and EB represent the sets of edges in layers A and B (respectively). It is
assumed that |VA| = NA and |VB| = NB. Though it is not contingent for NA to be equal
to NB, for our experiments NA = NB in all synthetic cases. The two networks are inter-
connected by means of directed edges. We refer to edges that connect nodes belonging
to the same networks as intra-edges and those that connect nodes belonging to differ-
ent networks as inter-edges. We use directed edges for inter-edges to capture different
models of inter-dependency between networks. Without loss of generality, it is assumed
that an initial set F0 = FA

0 ∪ FB
0 of nodes are afflicted initially, where FA

0 represents
the set of initial spreaders in network A and FB

0 represents the set of initial spreaders in
layer B. Phenomena can propagate among nodes belonging to the same network. In addi-
tion, phenomena can also propagate across networks, such as phenomena propagating
from a node in layer A to a node in layer B (or vice-versa) through inter-edges. Phe-
nomena propagation takes place with respect to a threshold-based propagation model
— as discussed in more detail in “Phenomena propagation model” section. Given an
M-IDN system with a known topology, we are interested in comparing the rate of phe-
nomena propagation with respect to time under different types of initial spreads. More
specifically, given an initial set of afflicted nodes F0 (“initial spreaders”), we will evaluate
phenomena propagation in an M-IDN system. The goal of this work is to provide use-
ful guidelines on how to design reliable M-IDN systems. Additionally, we are particularly
interested in the evolution of phenomena propagation in the case of single- and two-layer
affliction.
To model different types of initial spreads in M-IDN systems, we will define different

values for sets FA
0 and FB

0 and different selection strategies for these sets.More specifically,
we analyze the following four types of initial spreads in an M-IDN.
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• Random single-layer spread is represented by defining |FA
0 | = |F0| and |FB

0 | = 0,
where the nodes of FA

0 are chosen randomly1.
• Random two-layer spread is represented by defining |FA

0 | = |F0|/2 and |FB
0 | = |F0|/2,

where the nodes of FA
0 and FB

0 are chosen randomly.
• Designed single-layer spread is represented by choosing |F0| nodes belonging to layer

A with highest degree FA
0 , and setting |FB

0 | = 0.
• Designed two-layer spread is represented by choosing |F0|/2 nodes belonging to layer

A with highest degree FA
0 and |F0|/2 nodes belonging to layer B with highest degree

FB
0 .

Due to the general nature of our problem, we are not seeking to differentiate negative
and positive phenomena propagation. We are simply interested in how certain selection
strategies for initial spreaders affect overall phenomena propagation. For this reason, we
refer to nodes that have been affected by the phenomena propagation as “afflicted” and
the process by which nodes are afflicted as “affliction”. This language is used to avoid the
contextual effects of phenomena propagation for different domains. For an overview of
the notation defined throughout this paper, refer to Table 1.

Phenomena propagationmodel
Many threshold-based propagation models rely on deterministic behavior; wherein if a
proportion of a node’s neighbors are afflicted, then it will be afflicted definitively. While
this approach is appropriate for epidemic phenomena, this approach to phenomena prop-
agation is not as general and fails to consider cases with probabilistic propagation. Due
to this limitation we incorporate a modified version of probabilistic threshold-based phe-
nomena propagation used in our prior works (Khamfroush et al. 2016; Hudson et al.
2019). As in our prior works, we considered nodes belonging to the same network to have
peer roles and thus are connected through undirected edges. We refer to the adjacency
matrices that represent layers A and B as MAA ∈ {0, 1}NA×NA and MBB ∈ {0, 1}NB×NB ,
respectively. The interconnectivity between layers A and B can be represented as inter-
connection adjacency matrices MAB ∈ {0, 1}NA×NB and MBA ∈ {0, 1}NB×NA — with the

Table 1 Summary table of noteworthy notation introduced

Symbol Description

GA = (VA , EA) Graph for layer A.

NA Number of nodes in layer A.

F0 Set of initial spreaders afflicted at the start of propagation.

FA0 Set of initial spreaders in layer A afflicted at the start of propagation.

MAA Adjacency matrix representing layer A.

MAB Adjacency matrix representing inter-edges directed from layer A to layer B.

Uintra
A (i) Set of intra-neighbors for node i in layer A.

Uinter
A (i) Set of inter-parents for node i in layer A.

α(i) Fraction of intra-neighbors of node i that are afflicted.

β(i) Fraction of inter-parents of node i that are afflicted.

π(i) Probability of affliction by an intra-neighbor of node i.

π ′(i) Probability of affliction by an inter-parent of node i.

T Time horizon (or number of time-steps) considered for experiments.

� Percentage of nodes in the M-IDN selected to be initial spreaders.

Certain notation (such as NA) applies to both networks, respectively with the network parameter designated
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former representing directed edges from layer A to layer B and the latter representing the
opposite.
We consider two nodes belonging to the same network with edges between each other

as intra-neighbors. Additionally, we consider a node i with a directed edge to a node j
that belongs to a different network as an inter-parent. Formally, the set of intra-neighbors
for node i in some layer A can be defined as Uintra

A (i) = {j ∈ A | (i, j) ∈ EA}, with
|Uintra

A (i)| representing the intra-degree of node i ∈ A. Further, we formally define the
set of inter-parents belonging to some layer B of a node i belonging to some layer A as
Uinter
A (i) = {j ∈ B | MBA(j, i) = 1}.
Under this model, a node has a probability that it will become afflicted only under the

case that the proportion of its afflicted neighbors reach or exceed the designated thresh-
old. This model relies on specified a pmax value for each set of connectivity between
networks — for our work, we consider pmax(AA), pmax(AB), pmax(BB), and pmax(BA). This
is a general parametric model that incorporates many previous models as special cases.
For the two networks composing the M-IDN topology for our study, we introduce two
different threshold functions: kaa(i) ∈ (0, 1] for i ∈ A, and kbb(i) ∈ (0, 1] for i ∈ B to
model the propagation across the nodes of the same network.We also introduce two other
threshold functions: kab(i) ∈ (0, 1] for i ∈ B, and kba(i) ∈ (0, 1] for i ∈ A, to model
propagation across the two interdependent networks, from layer A to layer B and vice
versa, respectively. We denote π(i) to be the probability of phenomena propagation to
afflict node i due to the propagation of intra-neighbors of i, and π ′(i) to be the probability
of phenomena propagation to afflict node i due to the propagation of inter-parents of i.
Assuming that a fraction α(i) of intra-neighbors of node i are already afflicted, the

probability that phenomena propagates to node i within one time-step is defined in Eq. 1,

π(i) =
{

α(i) · pmax(AA)(i) if α(i) ≥ kaa(i)
0 if α(i) < kaa(i)

(1)

where pmax(AA)(i) represents the probability that node i is afflicted within one time
step, when all of its intra-neighbors are already afflicted. Similarly, node i may become
afflicted due to the propagation of some of its inter-parents. Let β(i) be the fraction of
inter-parents of a node i that are already afflicted. Thus, the probability that phenomena
propagates from inter-parents of node i to node i within one time step is calculated as
defined in Eq. 2,

π ′(i) =
{

β(i) · pmax(AB)(i) if β(i) ≥ kba(i)
0 if β(i) < kba(i)

(2)

where pmax(BA) represents the probability that node i in layerA is afflicted within one time
step, when all of its inter-parents in B are already afflicted. We use a similar notation for
node j ∈ B by defining equations analogous to Eqs. 1 and (2), where we use the thresh-
olds kBB and kAB to express the required fraction of intra-neighbors and inter-parents
of node j that must be afflicted before j can become afflicted with positive probability.
Also, the probability that node j in layer B is afflicted within one time step, when all of its
inter-parents in A are already afflicted will be shown by pmax(AB). Note that pmax(AB) and
pmax(BA) are not necessarily equal.
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Generalization for many layers

This model can easily be extended to consider M-IDN topologies consisting of some
abstract m layers. In this work, we only consider M-IDN topologies with two layers, so
we provide notation to understand the formal definitions of this model with respect to
that (e.g., MAA, pmax(AB), etc.). However, this model can also be used to consider M-
IDN topologies made of more than two layers. For instance, in an M-IDN topology of
three layers (A, B, and C), you would consider all the same formal definitions, but include
parameter permutations that involve C — such asMCC ,MCA,MAC ,MCB,MBC , etc.
The decision to solely focus on M-IDN topologies of two layers for this work was moti-

vated by the curiosity to explore how varying interconnectivity, selection strategies, sizes,
and other parameters affect the evolution over time of the phenomena propagation pro-
cess. More specifically, we would like to study to what extent interdependency between
networks and the knowledge of network topology can help the speed of propagation in a
M-IDN network.

Phenomena propagation process
The temporal evolution of phenomena propagation is modeled as aMarkovmodel. This is
because the next state of the network will only depend on the current state of the network
and it is independent of how the network reaches its current state. In the following, we
describe the elements of our proposed Markov model.

State definition

We denote by ST the set of all possible states of the model, where each state is defined as

a vector s = (

A︷ ︸︸ ︷
s1, s2, . . . , sNA ,

B︷ ︸︸ ︷
sNA+1, sNA+2, . . . , sNA+NB), where si = 1 for i ≤ NA if node

i ∈ A is afflicted, and si = 0 if it is not afflicted. Similarly, for i > NA, si = 1 is one if
node i − NA of layer B is afflicted, and si = 0 otherwise. Therefore, the initial state of the
phenomena propagation process is S0 = (s1, s2, . . . , sNA , sNA+1, sNA+2, . . . , sNA+NB), where
sk = 1 if k ≤ NA ∧ k ∈ A ∩ FA

0 or k > NA ∧ k ∈ B ∩ FB
0 , while sk = 0 otherwise. FA

0 and
FB
0 are the set of initial spreaders in layers A and B, respectively.
According to our proposed model, a node can become afflicted only if the proportion

of its afflicted intra-neighbors and/or inter-parents exceed a given threshold. Therefore,
not all the binary vectors of NA + NB elements represent a feasible state of the process.
Note that a node of layer A may become afflicted due to the consequences of the initial
spreaders in layer A, layer B, or both. The goal of this paper is to analyze the impact
of concurrent phenomena propagation in M-IDNs to gain a better understanding of the
most robust interdependent network topology. Our propagation model and the Markov
model provide a general framework that allows for further investigation of different types
of phenomena propagation/impact.

Transition probabilities

Based on our previous definitions, we calculate the one-step transition probability matrix
of the process ℘ ∈ {0, 1}|ST |×|ST |, whose generic element ℘|s,s′ gives the probability that
the network transits from state s to state s′. We let �s = s′ − s. The j-th element of vectors
�s and s are represented by �sj and sj, respectively. In order to calculate ℘|s,s′ , we need
to identify two types of transitions: i) transitions where �sj = 0, and ii) transitions where
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�sj = 1. We denote an indicator function I(cond) where cond is a boolean value and
I(true) = 1, I(false) = 0. A formal definition for ℘|s,s′ is provided in Eq. 3,

℘|s,s′ =
NA+NB∏
j=1

[
f (j)I(�sj = 0) + f ′(j)I(�sj = 1)

]
, (3)

where f (j) denotes the probability that there is no change in the j-th component of the
network state when transitioning from state s to state s′, and f ′(j) is the probability that
there is a change of status for the j-th node of the network, going from a working node to
a afflicted node. It is important to note that �sj = 0 happens in two cases: i) the related
node is already afflicted, as we do not consider recovery or restoration of the network in
this paper, and ii) the related node is currently working and it will remain the same as
the proportion of afflicted neighbors/parents does not meet the threshold or, although
the propagation threshold is met, the propagation did not occur in the current time-step
(referring to the probabilistic nature of the propagation model).
We also calculate the value of f (j) and f ′(j) by separating the terms related to layers A

and B. In particular, the probability of having a change in the j-th element of the inter-
dependent network when the network state changes from s to s′ can be calculated in the
definition for Eq. 4.

f (j) =

⎧⎪⎨
⎪⎩
ga(j) if j ≤ NA ∧ sj = 0
gb(j) if j > NA ∧ sj = 0
1 if sj = 1

(4)

Then, ga(j) can be calculated as defined in Eq. 5,
ga(j) =I(α(j) < kaa(j)) · I(β(j) < kba(j))+

I(α(j) ≥ kaa(j)) · I(β(j) < kba(j)) · π̄(j)+
I(α(j) < kaa(j)) · I(β(j) ≥ kba(j)) · π̄ ′(j)+
I(α(j) ≥ kaa(j)) · I(β(j) ≥ kba(j)) · π̄ ′(j) · π̄(j)

(5)

where π̄(j) = 1 − π(j) and π̄ ′(j) = 1 − π ′(j), with π(j) and π ′(j) defined in Eqs. 1 and 2,
respectively.
The term gb(j), will be similarly calculated for the nodes located in layer B, by replacing

kaa with kbb, and kba with kab in Eq. 5. Note that according to our definition, the nodes
of the M-IDN system are enumerated from 1 to NA + NB, therefore, kaa and kba are only
defined for j ≤ NA and kbb, kab are only defined for NA < j ≤ NA + NB.
The term f ′(j) denotes the probability that there is a change in the j-th component of

the state vector, when the network is transitioning from state s to state s′. We split f ′(j) in
the contributions related to the two layers A and B. Therefore,

f ′(j) =

⎧⎪⎨
⎪⎩
g′
a(j) if j ≤ NA ∧ sj = 0
g′
b(j) if j > NA ∧ sj = 0
0 if sj = 1

(6)

Similar to our previous note, we can calculate the term g′
a(j) as follows,

g′
a(j) =I(α(j) ≥ kaa(j)) · I(β(j) ≥ kba(j))·(

π(j)π ′(j) + π̄(j)π ′(j) + π(j)π̄ ′(j)
)

+

I(α(j) < kaa(j)) · I(β(j) ≥ kba(j)) · π ′(j)+
I(α(j) ≥ kaa(j)) · I(β(j) < kba(j)) · π(j)

(7)
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Using a similar argument, we can write similar equations for the nodes in layer B, i.e. g′
b(j)

can be calculated.
Note: Based on the definition of transition probabilities, we observe that the speed of

phenomena propagation will increase, if and only if f ′(j) 	 f (j) in Eq. 3. This is because,
under this condition, the second term in Eq. 3 will dominate the transition probabil-
ity, meaning that the probability that �sj = 1 is much larger than that of �sj = 0,
therefore the number of afflicted nodes increases faster over time. Looking at f (j) and
f ′(j), we can see that both are functions of pmax(∗∗). By increasing the value of pmax(∗∗),
we will have f ′(j) > f (j), as f ′(j) is an increasing function of π and π ′, and thus an
increasing function of pmax(∗∗). On the other hand, f (j) is a decreasing function of these
probabilities.

Expected absorption time

Phenomena propagation in an M-IDN system can be seen as an absorbing Markov chain,
where the absorbing states are defined as one of the following: i) all nodes of the M-IDN
system are afflicted, and ii) no working node can meet the phenomena propagation con-
dition. The set of absorbing states depends on the sets of initial spreaders

(
FA
0 and FB

0
)

and the propagation thresholds. Therefore, we may get different absorbing states for the
same network topology when the set of initial spreaders in A and B are different. Given
that we have the states of the network and transition probabilities, we can use standard
techniques, used in (Charles et al. 1997), for analyzing our proposed Markov process
and to calculate the expected absorption time. However, the state space for a reason-
ably sized network would be very large as we are considering the state of a network’s
individual elements. Due to this limitation, we have only tested our model using net-
works of a relatively small size for the proposed Markov model. We then use this to
validate the correctness of our simulations that have been built to handle networks of
larger sizes while using the same phenomena propagation model. An example of sim-
ulation validation can be found in (Khamfroush et al. 2016). As the focus of this work
is to use extensive simulations to provide useful guidelines on the vulnerability of dif-
ferent network topologies, we focus on simulation setup and results in the following
sections.

Description of experiments
We investigate how different initial spreader selection strategies affect phenomena prop-
agation in M-IDN systems. To study this, we perform and analyze extensive simulations.
To be thorough, we consider the time evolution of phenomena propagation of M-IDN
systems with varying network topologies, coupling strategies, inter-edge density, average
degree, and the choice of initial spreaders. For this work, we are particularly interested
in how single-layer initial spread in Scenarios 1-1 and 2-1 compares to multi-layer initial
spread in Scenarios 1-2 and 2-2.

Tested scenarios

For this work, we consider an M-IDN topology composed of two layers A and B. For our
simulations, we considered four possible scenarios for initial spreader selections. In each
scenario considered, we designate |F0| = �� · (NA + NB)� where � is the percentage of
nodes we select to be initial spreaders. These scenarios incorporate what we call “single-
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layer selection” or “two-layer selection”. If a scenario uses the former, then layer A will
have |F0| nodes selected as initial spreaders; if a scenario uses the latter, then layers A
and B will both have |F0|/2 nodes selected as initial spreaders. Below are the scenarios
considered:

• Scenario 1-1: Single-layer selection, initial spreaders chosen at random.
• Scenario 1-2: Two-layer selection, initial spreaders chosen at random.
• Scenario 2-1: Single-layer selection, initial spreaders chosen by high degree

centrality.
• Scenario 2-2: Two-layer selection, initial spreaders chosen by high degree centrality.

Interconnectivity models

For our simulations, we consider a variety of interconnectivity for thorough examination
of our core question. With this in mind, we consider the notion of inter-connections (rep-
resented by directed inter-edges) being established at random or by design. Additionally,
we also aim to explore how low or high numbers of inter-connections affect phenomena
propagation.
There are a lot of considerations in our interconnectivity model. First, we introduce the

four interconnectivity cases considered in our experiments:

• Sparse & Random: In this model, 8% of nodes are selected to have inter-edges
directed to nodes in the other network. 4% of nodes in layer A (chosen at random)
have inter-edges to nodes in layer B (chosen at random), and vice versa.

• Dense & Random: In this model, 20% of nodes are selected to have inter-edges
directed to nodes in the other network. 10% of nodes in layer A (chosen at random)
have inter-edges to nodes in layer B (chosen at random), and vice versa.

• Sparse & Designed: In this model, 8% of nodes are selected to have inter-edges
directed to nodes in the other network. 4% of nodes in layer A (based on degree
centrality) have inter-edges to nodes in layer B (based on degree centrality), and vice
versa.

• Dense & Designed: In this model, 20% of nodes are selected to have inter-edges
directed to nodes in the other network. 10% of nodes in layer A (based on degree
centrality) have inter-edges to nodes in layer B (based on degree centrality), and vice
versa.

Additionally, in the case of designed interconnectivity (Sparse-Designed or Dense-
Designed), we consider how nodes are chosen to have inter-edges. We are interested in
exploring how nodes of high degree and low degree affect the evolution of phenomena
propagation. For this, we consider three cases of how designed selection of nodes with
inter-edges takes place:

• Max-Max:Nodes of highest degree in the currently considered network are designed
to have inter-edges to nodes of the highest degree in the other network, and vice versa.

• Max-Min: Nodes of highest degree in layer A are designed to have inter-edges to
nodes of the lowest degree in layer B and nodes of lowest degree in layer B have
inter-edges to nodes of highest degree in layer A.

• Min-Min: Nodes of lowest degree in the currently considered network are designed
to have inter-edges to nodes of the lowest degree in the other network, and vice versa.
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Tested network topologies

Synthetic topologies

For synthetic topologies, we use three well-studied random generative models for net-
work topologies: Erdös-Rényi (ER) model (Erdos and Rényi 1960), Barabási-Albert (BA)
model (Barabási and Albert 1999), and the Watts-Strogatz (WS) model (Watts and Stro-
gatz 1998). The ER model produces what are commonly referred to as purely random
graphs; the BAmodel produces topologies that maintain a power law degree distribution;
and the WS model produces topologies with the small-world property.
To be thorough, we consider all permutations of the random generative models for a

two-layer M-IDN topology. For instance, an M-IDN topology composed of two layers A
and B that are both constructed by the ER model will be referred to as an ER-ER topology
(coinciding with A-B). It is important to note that network topologies are not transitive
in our experiments — i.e., an ER-SW topology is not equivalent to an SW-ER topology.
The reason for this is that a single-layer selection scenario only selects initial spreaders
in layer A, thus a simulation using an ER-SW topology is not comparable to a simulation
using an SW-ER topology. To be clear, in all of our experiments, we generate a synthetic,
randomM-IDN topology in each Monte-Carlo run.

Real-world topologies

For comparison, we also run simulations using real-world multiplex topologies. These
topologies come from different domains — social networks, genetic networks, etc. A key
difference between these topologies and our synthetic topologies is the inter-connection
between layers A and B. In our synthetic topologies, we consider Sparse/Dense and
Designed/Random inter-connections. In our real-world topologies, each node exists
across all layers with inter-edges to each other node corresponding to it across all layers.
For a concise description o fhte real-world topologies considered for this work, refer to
Table 2.

Simulation setup

Here, we review some of the constants that are maintained across all simulations consid-
ered for our experiments and review some other experimental choices that have not been
addressed thus far. For any simulation setup, we consider the evolution of phenomena
propagation over a time horizon of T = 200 time steps. In the plots presented for our
results, we let the x-axis represent the time steps comprising the time horizon T ; while
the y-axis represents the number (or percentage) of afflicted nodes in the entire M-IDN
topology.

Table 2 Overview of the real-world multiplex network topologies considered for simulations in this
work

Title |V| |E| 〈k〉
FAO Multiplex Trade Network (De Domenico et al. 2015) 214 31,8346 37.6

CKM Physician Innovation Social Network (Coleman et al. 1957) 246 1551 4.74

Human HIV Multiplex Genetic Network (Stark et al. 2006) 1005 1355 2.21

Arabidopsis Multiplex GPI Network (Stark et al. 2006) 6980 18,654 3.45

These network topologies all include more than two layers. For this work, we simply consider the two layers with the most edges.
Note: Since these are multiplex networks and each node is in each layer, |VA| = |VB| = |V|



Khamfroush et al. Applied Network Science            (2019) 4:40 Page 12 of 21

Additionally, for our synthetic networks, we consider cases where NA = NB = 100
and NA = NB = 500. For all synthetic topologies, we consider an average degree
〈k〉 = 4. We evaluated how average degree affects phenomena propagation before mak-
ing this decision. For our considered threshold parameter values, we observe that higher
average degree corresponds with significantly less affliction throughout the phenomena
propagation process — refer to Fig. 1.
Additionally, we are interested in the cases where values for our probabilistic threshold-

based model are i) the same for layer A and B and ii) where they are different. The
former case is what we refer to as homogeneous propagation while the latter case is
referred to as heterogeneous propagation. For heterogeneous propagation, we use the
following threshold values: kaa = 0.5, kbb = 0.2, kab = 0.3, and kba = 0.8. For homo-
geneous propagation, we use the following threshold values: kaa = kbb = 0.3 and
kab = kba = 0.5. These threshold values are used for all simulations, both synthetic and
real-world.

Results
To reiterate, we consider a variety of parameters for a simulation. To cope for random-
ness, each simulation setup is run a number of M = 100 Monte Carlo runs, with results
being averaged across these runs. Due to the sheer number of parameters considered, our
results span hundreds of simulation setups. Therefore, we want to highlight important
pieces of data analysis in hopes that key conclusions can be made. So, we elect to show
plots of some of the more interesting simulation results and will describe general trends

Fig. 1 Effect of Average Degree. Visualization of affliction resulting from homogeneous phenomena
propagation under varying average degree, 〈k〉. For these data NA = NB = 500, � = 3%
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throughout. For brevity, we say “single-layer selection” to refer to Scenarios 1-1 and 2-1
and “two-layer selection” to refer to Scenarios 1-2 and 2-2.
Interestingly, for the interconnectivity cases we consider for this work, a noteworthy

trend across most synthetic simulation setups is that two-layer selection of initial spread-
ers appears generally to bemore effective than single-layer selection in affecting the entire
M-IDN topology. In many cases, this selection strategy afflicts the entireM-IDN topology
early in the propagation process; whereas the propagation under single-layer selection
commonly saturates early in the propagation process without afflicting the entire topol-
ogy (or full affliction is attained after two-layer selection). As an additional observation,
we observed that as we experimentally increased average degree 〈k〉, single-layer selec-
tion outperforms two-layer selection — this was observed before designating 〈k〉 = 4 but
we felt worth mentioning. We also note that as � increases, generally two-layer selection
outperforms single-layer seleciton.

Homogeneous simulations

Here we investigate the results of our homogeneous simulations. As a reminder, we refer
to homogeneous simulations as simulations where the threshold values for our prop-
agation model are constant across both layers A and B in the layers of our M-IDN
topology.
Intuitively, Sparse interconnectivity essentially dampens the possible effects of phenom-

ena propagation under our model. Our results reflect this intuition. Refer to Fig. 2 for
a sample of these simulation results. For a detailed overview of affliction w.r.t. to time
evolution, refer to Table 3. Overall, we see in the homogeneous case, that Scenario 2-2
(two-layer selection by degree centrality) is the most effective (w.r.t. to time and per-
centage of affliction) at reaching near full affliction across most interconnectivity cases
considered.

Designedmax-max

We observe for homogeneous simulations with Dense interconnectivity that the variance
across Monte-Carlo runs is incredibly small across all considered topologies, network
sizes, and �. This observation makes sense upon further consideration. Consider the BA
random model for network topologies. Due to preferential attachment, nodes are more
likely to coalesce and associate with nodes of high degree (forming “hubs”) — which are
selected to exhibit interconnection under Scenarios 2-1 and 2-2. If the central, highly

Fig. 2 Homogeneous Simulations. Phenomena propagation simulations with Dense-Designed (Max-Min)
interconnectivity, where � = 10% of nodes are selected via two-layer selection. For these results,
NA = NB = 100
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Table 3 Homogeneous data for when NA = NB = 500 and � = 3%

Single-Layer Selection Multi-Layer Selection

Scen. Interconnectivity t = 50 t = 100 t = 150 t = 200 t = 50 t = 100 t = 150 t = 200

1 Dense (Max-Max) 806 934 942 942 638 853 874 876

Dense (Max-Min) 492 740 789 798 602 874 915 919

Dense (Min-Min) 503 725 785 794 298 615 720 741

Dense (Random) 738 962 971 971 545 864 907 912

Sparse (Max-Max) 645 906 928 929 323 659 717 724

Sparse (Max-Min) 438 501 511 513 341 621 694 715

Sparse (Min-Min) 440 497 504 505 205 415 491 513

Sparse (Random) 484 680 761 776 259 592 688 706

2 Dense (Max-Max) 994 994 994 994 994 994 994 994

Dense (Max-Min) 723 840 846 846 997 997 997 997

Dense (Min-Min) 666 818 829 830 998 998 998 998

Dense (Random) 986 994 994 994 994 994 994 994

Sparse (Max-Max) 993 993 993 993 992 993 993 993

Sparse (Max-Min) 531 533 537 538 996 997 997 997

Sparse (Min-Min) 525 527 530 531 997 998 998 998

Sparse (Random) 626 780 812 816 994 994 994 994

Each value corresponds to the average number of afflicted nodes at the respective time-step, t, across all considered Monte-Carlo
runs for all synthetic topologies

connected node of this hub is afflicted, its lesser connected neighbors are more vulner-
able to affliction because that high degree node likely makes up a sizable proportion of
its neighbors (thus having more impact on its threshold to affliction). For homogeneous
simulations with Sparse interconnectivity, we also see very little variance — though not
as small.
For Dense interconnections, generally the single-layer selection of initial spreaders out-

performs the two-layer selection strategy. The difference between these two strategies
in this setup is not particularly notable, but the general trend is that single-layer selec-
tion is slightly more effective. Meanwhile, for Sparse interconnections, the general trend
holds. However, the difference between single-layer and two-layer selection strategy is
more prominent. Additionally, it is important to note that as � increases, the two-layer
selection strategy begins to outperform the single-layer selection strategy. This implies
that if you have more budget to select more initial spreaders under these parameters, two-
layer selection would be most effective. However, if you have a more conservative budget,
single-layer selection would be more appropriate.

Designedmax-min

For both Dense and Sparse interconnectivity, we observe that our averaged data shows
that two-layer selection notably outperforms single-layer selection in all cases. Under
Dense interconnectivity, the variance of the resulting phenomena propagation for single-
layer selection is notably large; while the variance of the resulting phenomena propagation
for two-layer selection in this case is very small. However, under Sparse interconnec-
tivity, the variance of the resulting phenomena propagation for single-layer selection is
significantly smaller than under Dense interconnectivity.
It is important to note, that under this interconnectivity, two-layer selection results

in full-affliction in nearly every case. Single-layer selection is not as effective, with no
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simulation using single-layer selection having comparable affliction rates to two-layer
selection. The performance of single-layer selection is starkly less impressive under Sparse
interconnectivity — with propagation saturating early on with about 50% affliction across
all cases. This is likely due to initial spreaders exclusively selected in layer A propagate
affliction to nodes minimum degree nodes in layer B. As a result, layer A is roughly 90%
afflicted whereas layer B roughly 10% afflicted.

Designedmin-min

With an increase in the size of the networks, single-layer selection is notably more effec-
tive than in smaller network sizes — reaching full affliction (on average) in some cases.
Otherwise, results for this set of experiments is very comparable to Designed Max-Min.
However, there does appear to be less variance for single-layer selection. In the Max-Min
case, some nodes in the layer B can cross-propagates though maximum degree nodes
under two-layer selection. However, in the case of Min-Min, it this does not happen. This
is likely why the difference is not as initially prominent.

Random

There is a stark difference between Dense interconnectivity and Sparse interconnectivity
in this case. In Dense interconnectivity, the performance between single-layer selection
and two-layer selection is marginal — though two-layer selection has a slight edge. Both
selection strategies, on average, result in full affliction (or very close to it) in all cases
considered — when NA = NB = 500 all experiments reached full affliction. Additionally,
variance of performance was very low under Dense interconnectivity. It should be noted
that when� is a low value (e.g.,� = 3%), there is a split in certain topologies where single-
layer selection performs better in terms of overall affliction. However, as � increases,
two-layer selection begins to close the gap in these topologies and eventually overtakes it
in terms of affliction w.r.t. to time.
These remarks cannot be made for this experiment under Sparse interconnectivity.

When NA = NB = 100, the performance of single-layer selection would typically hover
in the range of about 50%-70% affliction.

Heterogeneous simulations

Here we investigate the results of our heterogeneous simulations. As a reminder, we refer
to heterogeneous simulations as simulations where the threshold values for our propaga-
tion model are unique across both layers A and B in the layers of our M-IDN topology.
There are no standout trends across the different models of interconnectivity. Below is
a brief summary of the general behavior of these simulations. Generally, for the Het-
erogeneous case (under the threshold values we use), the most apparent trend is that
single-layer selection seems to be a more potent selection strategy overall than two-layer
selection. It is important to note that this trend is not guaranteed to hold for different
threshold values under this propagation model.
For this work, under single-layer selection, initial spreader selection takes place in

layer A, which is more robust to affliction by inter-parents and intra-parents. Since the
selection is concentrated in the more robust layer, the results show that we get more
affliction in that layer. Subsequently, the cross-propagation is not as difficult since the
layer A is more vulnerable. As for two-layer selection, less affliction occurs in layer A
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due to its robustness since half of the resources for selection are used on the vulner-
able layer. For a more detailed overview of affliction w.r.t. to time evolution, refer to
Table 4.
For both Sparse andDense interconnectivity, whenNA = NB = 100, the general trend is

that two-layer selection outperforms single-layer selection when the percentage of nodes
selected to be initial spreaders is smaller. Once 10% of the nodes are selected to be initial
spreaders, for both cases, the single-layer selection strategy begins to overtake the two-
layer selection strategy. However, the difference in performance ismarginal and not highly
significant.
However, when NA = NB = 500, under Dense interconnectivity, the strategies perform

nearly identically until 10% of nodes are selected as initial spreaders. In which case, single-
layer selection begins to have the advantage. The advantage in this case, is notable and
is quite significant when compared to the experiments where NA = NB = 100. Also,
the variance in the resulting phenomena propagation is very high when the percentage of
nodes selected to be initial spreaders is small.

Real-world simulations

Results for real-world simulations depart from the general trend we observe in our
synthetic simulations. In our real-world simulations, under designed initial spreader
selection (Scenario 2), we observe that single-layer initial spreader generally outperforms
multi-layer initial spreader selection. However, the important detail to note is that the
difference is not as notable as with our synthetic simulations. Additionally, the propaga-
tion process converges in a few time steps over the entire time horizon T. The amount of
affliction that occurs varies based on value of �. In Scenario 2-2, typically the affliction
struggles to afflict additional nodes beyond the set of initial spreaders. However, in the
other Scenarios considered, we see that affliction typically saturates at around 2 · |F0|. The

Table 4 Heterogeneous data for when NA = NB = 500 and � = 3%

Single-Layer Selection Multi-Layer Selection

Scen. Interconnectivity t = 50 t = 100 t = 150 t = 200 t = 50 t = 100 t = 150 t = 200

1 Dense (Max-Max) 821 902 913 917 834 891 899 901

Dense (Max-Min) 539 711 737 743 817 862 872 874

Dense (Min-Min) 552 586 586 586 571 571 571 571

Dense (Random) 573 617 620 620 612 613 613 613

Sparse (Max-Max) 527 546 546 546 708 713 713 713

Sparse (Max-Min) 275 341 347 348 677 691 693 693

Sparse (Min-Min) 350 421 425 425 539 539 539 539

Sparse (Random) 394 434 437 437 554 554 554 554

2 Dense (Max-Max) 793 813 823 825 791 812 822 825

Dense (Max-Min) 777 793 801 802 779 794 801 802

Dense (Min-Min) 740 756 757 757 719 723 723 723

Dense (Random) 797 852 869 874 755 755 755 755

Sparse (Max-Max) 715 715 715 715 690 693 693 693

Sparse (Max-Min) 718 718 718 718 674 685 686 686

Sparse (Min-Min) 596 646 648 648 672 691 694 694

Sparse (Random) 685 720 721 721 700 708 708 708

Each value corresponds to the average number of afflicted nodes at the respective time-step, t, across all considered Monte-Carlo
runs for all synthetic topologies



Khamfroush et al. Applied Network Science            (2019) 4:40 Page 17 of 21

time evolution of the propagation process for these real-world topologies can be seen in
Fig. 3.
The reasoning for this is likely due to the interconnection of the real-world topologies. It

is very difficult to find publicly availableM-IDN topologies. ComuneLab provides publicly
available topological data for multiplex networks, from which we acquired real-world M-
IDN topological data. However, a key distinction between the real-world topologies we
run simulations on from this resource is that they aremultiplex networks. Refer to Table 2
for an overview of the real-world multiplex topologies considered for this work.
Multiplex networks are topologies with numerous layers, with each nodes existing

across every layer. These multi-layer network models allow for interesting relationships
between entities. For instance, a layer in a multiplex network can have edges that rep-
resent who retweets who on Twitter, while another layer in the same multiplex network
can have edges that represent who replies to who on Twitter. In this example, each node
is shared across each layer and inter-edges are only between each node to itself in every
other layer. For instance, Donald Trump’s Twitter account would be a node shared across
all layers in amultiplex Twitter network. The inter-edges this node has will be to the other
nodes representing Donald Trump’s Twitter account across all other layers. These nodes
will have no inter-edges to nodes representing Twitter user accounts other than Donald
Trump’s.

Fig. 3 Real-World Homogeneous Simulation Results. Results are for when � = 20%. Refer to Table 2 for
details pertaining to the network topo- logies. Each line represents the percentage of afflicted nodes at the
respective time-step, t, across all considered Monte-Carlo runs for each real-world topo- logy. We use
percentage here due to varying topology sizes of these networks
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This detail is in stark contrast to our synthetic networks. We vary the level
of interdependency across our synthetic topology through Sparse/Dense and Ran-
dom/Designed interconnections. A visualization of what these topologies look like can
be found in Fig. 4. Due to this high interconnection between layers, it makes sense
that these networks do not exhibit the same behaviors of affliction as our synthetic
topologies.

Degree single-layer vs. randommulti-layer

For this work, we are interested in how designed, single-layer selection and random,
two-layer selection compare. The interest in this is motivated by the notion that it is the-
oretically easier to obtain topological structure of one layer within an M-IDN topology.
With this knowledge, one could target highly connected nodes in this layer for affliction.
With this in mind, we want to compare how a single-layer selection of initial spreaders
by degree centrality (Scenario 1-2) compares to a two-layer selection of initial spreaders
chosen at random (Scenario 2-1).
From analyzing the results from Tables 4 and 3, we see that single-layer selection by

degree centrality (Scenario 2-1) generally outperforms two-layer selection at random
(Scenario 1-2) in both the heterogeneous and the homogeneous cases in the vast major-
ity of experiments considered. However, it should be reiterated that single-layer selection
selects nodes to be initial spreaders in layerA.With this inmind, kab = 0.3 (and kba = 0.8)
for heterogeneous cases. The results of this analysis for the heterogeneous simulations
depend largely on the inter-thresholds. If the inter-threshold values are sufficiently large,
then Scenario 1-2 would very likely outperform Scenario 2-1.

Fig. 4 Multiplex Network. An example of a two-layer multiplex social net- work where each node is
represented in each layer. Each node iA has an inter- edge to node iB and each node iB has an inter-edge to
node iA . Layers “Classes Network” and “Student Housing Network” are social network layers where nodes
(students) have edges to one another if they have a class together and if they live in the same student
housing facility, respectively
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Conclusions
In closing, we studied how initial spreader selection strategies compare by analyzing the
evolution of phenomena propagation over time using a state-of-the-art threshold-based
propagation model. The benefit of our propagation model is that it is general enough
to encapsulate other models of propagation (such as epidemic, linear probabilistic, lin-
ear threshold, etc.). Our results show that, if you have knowledge about the topological
structure (such as degree of nodes), multi-layer designed selection outperforms single-
layer designed selection in most cases considered by our experiments. However, if you
are in a situation where topological information is unavailable, random selection in a
single-layer is more effective than multi-layer random selection. Additionally, from our
work, we observe that single-layer selection by degree centrality (Scenario 2-1) generally
outperforms two-layer selection at random (Scenario 1-2) most cases considered for this
work.
Prior works investigating initial spreaders (or seed selection) in multi-layer networks

are often interested in how phenomena propagation can be maximized or minimized
given the context of the problem at hand (such as the influence maximization problem).
In this work, our results are focused on analyzing how different interconnectivity cases
and selection strategies with respect to layers considered for selection affect phenom-
ena propagation. The general nature of our problem allows our work to provide insights
to problems that aim to either maximize or minimize the overall affliction of a M-IDN
topology as a result of phenomena propagation.
For future works in this direction, it is of interest to investigate the effectiveness of selec-

tion strategies in M-IDN topologies consisting of m layers. With insight from how these
varying strategies compare w.r.t. topological structure and interconnectivity, studying
affliction in M-IDNs ofm layers may be easier to investigate.

Endnotes
1We do not consider random (or designed) single-layer spread with phenomena initially

spreading in because it is essentially the same scenario, since these are general network
components.

2 https://github.com/khamfroush-lab/initial-spreaders-project
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