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Abstract
We introduce the random intersection graph with communities, a new model for
networks with overlapping communities with arbitrary internal structure. We construct
the model from a list of arbitrary community graphs that are the building blocks, and a
separate list of individuals, each with a prescribed number of community membership
tokens. Randomness is introduced by matching these tokens uniformly at random to
vertices of the community graphs. We then identify the community members assigned
to the same individual, thus overlaps arise due to individuals having several tokens. This
gives a highly flexible model for networks with community structure.
We are able to derive a wide range of analytic results on this model. We derive an
asymptotic description of the local structure of the graph, which further yields the
asymptotic degree distribution, local clustering coefficient, and results on the
overlapping structure of the communities. For the global connectivity structure, we
identify a phase transition in the size of the largest component. When the largest
component constitutes a positive proportion of the graph, we can further characterize
its asymptotic local structure. Finally, we study how the connectivity structure changes
under a randomized attack, where we remove edges randomly, according to
independent coin flips.
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Introduction
Network science is an active and quickly developing field, due to joint efforts from practi-
tioners and theoretical researchers. Empirical studies allow us to understand how real-life
networks work in action, explore their defining features and build models based on our
findings. Theoretical studies allow us to make predictions or approximations when data
analysis is not feasible, and refine our understanding of the causality relations between
properties of the network. As such, both sides provide their invaluable contributions,
facilitating the progress of one another.
We introduce a new random graph model (for an introduction to random graphs, see

(Bollobás 2001; van der Hofstad 2017; 2018+; Janson et al. 2000; Newman 2010)) with
the aim to model networks with communities. The aim of this paper is to bring this
model to the attention of the community of network practitioners. As such, we present
the model and the available results in an intuitive way, focusing on examples, special cases
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and possible applications, and comparisons to existing models. For a mathematically pre-
cise definition of our model as well as the rigorous proofs of the results discussed here,
the reader is referred to (van der Hofstad et al. 2018; 2019) (preprints). Data analysis and
comparison to real-world networks are an interesting avenue for future research.
Our model is based on two key features, that we introduce shortly. The choice was

inspired by social networks, that serve as our primary motivation, which will also reflect
in the terminology used. However, ourmodel is more widely applicable. It has been shown
(Guillaume and Latapy 2004; 2006) that many other real-life networks also exhibit a com-
munity structure, more specifically, an underlying structure of ‘groups’ and ‘elements’ that
are part of these groups.
First, we need to specify what wemean by a community.With such a broad definition as

‘a more densely interconnected part of the network’, several different practical meanings
have been attached to this word. In this context, we think of communities as the building
blocks of the network, as in the household model (Ball et al. 2009; 2010) or hierarchical
configuration model (Stegehuis et al. 2016a; van der Hofstad et al. 2016; Stegehuis et al.
2016b). These communities may be families, workplaces, people with shared hobbies,
etc. We represent each one as an arbitrary ‘small’ graph; small means that the average
community size is finite, however an individual community, such as people working for a
large company, may be large.
The first key feature we want to model is that communities may overlap, i.e., the same

individual may be part of several communities. This is natural in the context of a social
network: people have their families, colleagues, and possibly several groups of friends
from school or from their different hobbies. Such networks are usually modeled by vari-
ants of the random intersection graph (RIG) (Bloznelis 2010; 2013; Deijfen and Kets 2009;
Godehardt and Jaworski 2003; Karonski et al. 1999; Newman 2003a; Rybarczyk 2011;
Singer 1996; Yağan 2016; Yaǧan and Makowski 2012) (see (Bloznelis et al. 2015) for an
overview of the topic), inspired by collaboration networks. However, the random inter-
section graph has the shortcoming that any two persons within the same community are
assumed to be acquainted. Considering a large company, this is unrealistic, as for example
the CEO will not know each and every office worker.
The second key feature is that each community has its own arbitrary, prescribed internal

structure. This removes the assumption that any two members within the same commu-
nity are acquainted, and allows for the differentiation of roles within a community. Efforts
have been made to remove the restriction of complete graphs (Karjalainen et al. 2018;
Newman 2003a), however, the only model known to the authors incorporating arbitrary
communities as building blocks is the hierarchical configurationmodel (HCM) (Stegehuis
et al. 2016a, 2016b; van der Hofstad et al. 2016). The HCM randomizes connections
between communities, and consequently has the shortcoming that each person can only
be part of one community, i.e. communities do not overlap.
To the best knowledge of the authors, the first model to combine the above two key

features is the random intersection graph with communities (RIGC) that we introduce
here. The RIGC fills a gap in the literature to serve as a null model for networks with
communities that may overlap and have their own arbitrary internal structure at the same
time.
The building blocks of the network are arbitrary small graphs, and they are com-

bined through randomness. Such a model can be used to model networks where local
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structure is well-defined, but global structure is much more fluid. In our example of a
social network, the inner structure or working of a group is determined by its purpose,
but which groups a person is part of is determined by chance encounters. On the large
scale, the effect of adding microscopic structures in the form of communities becomes
negligible, and macroscopic effects are governed by the added randomness.
In addition to modeling vital aspects of networks with communities, the RIGC is ana-

lytically tractable. In the following, we introduce the exact setup of the model, and present
some of the available analytic results.

Introduction to the model

In this section, we explain how to generate the random graph from two given lists: a list
of individuals and a list of communities.
In the model, each community is represented by a ‘small’ graph, in the sense described

above. Each vertex of these small graphs represents a unique community role, and con-
nections between community members are represented by edges. These graphs may be
arbitrary, as long as they are connected, allowing for different applications. For example,
we may assume that each member has a bounded number of connections independently
of the community size, which means that the larger the communities grow, the sparser
they become. Modeling a network of computer networks may call for specific topolo-
gies, such as grids or hierarchical structures. Last but not least, one can take real-life
network data as input. We note that the given list may contain several communities with
the same structure, for example, each community that is a three-member family would be
represented by a triangle.
We also assume the number of community memberships of each individual is pre-

scribed, and give the individual as many membership tokens. Intuitively speaking, each
community membership represents an identity that the person has, possibly including
both offline identities such as a job or family role, and online identities such as an email
address or a social media account. We assume that the number of community member-
ships of each individual is at least one, otherwise we could remove that individual from
the model. Overlaps are induced by individuals who are part of more than one commu-
nity. Necessarily, the total number of tokens given to all individuals has to equal the total
number of community roles available, that is, the total size of all given community graphs.
The upcoming construction can be followed step by step in Fig. 1. The graph is random-

ized by matching the community roles with the membership tokens uniformly at random,
in a one-to-one fashion. This means that each possible outcome has equal probability to
be chosen, and this probability is one over the total number of possibilities. Such a match-
ing can be generated sequentially: in each step, we pick an arbitrary community role, and
match it with a membership token chosen uniformly at random. We then remove both
objects from the available pool, and repeat the procedure until the available pool becomes
empty.
Alternatively, we can pick an arbitrary membership token, and match it with a com-

munity role chosen uniformly at random; or may even arbitrarily pick one of these
two methods in each step. This in particular allows us to build the network from
the point of view of an individual, first finding the communities that the individ-
ual is part of, then finding further individuals that are part of these communities,
and so on.
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Fig. 1 A small example for constructing the RIGC model. From left to right, we see each step of the
construction. Leftmost, we represent the list of community graphs in different colors, and the individuals by
the numbered vertices; the number of stubs drawn for each individual corresponds to the number of
membership tokens. The second subfigure represents thematching, with the imaginary edges drawn dashed.
An imaginary edge between an individual and a vertex in a community means that one of the tokens of that
individual was matched with that community role. The third subfigure is simply a redrawing of the second for
the sake of clarity. Rightmost, we see the resulting RIGC, after the imaginary edges have been contracted

Visually, we can represent the matching by imaginary edges (see the second picture in
Fig. 1): each imaginary edge represents a membership token and a community role that
are matched, and connects a vertex representing an individual to a vertex in a commu-
nity graph. That is, the community roles taken by an individual will be connected to the
individual by imaginary edges. An individual has as many imaginary edges as their pre-
scribed number of tokens, and since each community role is matched with exactly one
token, each is incident to exactly one imaginary edge. We note that this is not yet the ran-
dom network that we are looking for, but an important intermediate step. It reflects that
the only source of randomness is the matching, represented by the imaginary edges, and
is a great tool throughout the analysis.
Finally, we obtain the random network by identifying each individual with the set of

community roles that this individual takes. As these community roles, i.e., vertices in
communities, are connected to the vertex representing the individual by imaginary edges,
we can achieve this by contracting all imaginary edges (see the last picture in Fig. 1).
Note that in a randommatching, it might occur that wematch two ormore tokens of the

same individual to community roles within the same community. However, this is quite
unlikely. As we increase the network size, the probability for a typical individual to take
several roles within any community vanishes. Also note that this may also happen in the
real world, as some people may have separate work and private accounts for the same ser-
vice. It may also happen that two individuals are present in several communities together,
and are connected by two or more edges in the RIGC, which potentially makes the graph
a multigraph. Again, we can argue that this is not unrealistic, and can be interpreted as a
stronger interaction between those two individuals. Additionally, this phenomenon also
becomes rare as the network size grows, allowing us to study the network ‘as it is’, without
deleting duplicate edges and self-loops. Since the difference before and after deleting dupli-
cate edges becomes negligible in the large-network limit, our asymptotic results apply to
both variants of the model.
As hinted before, we study the model in the large-network limit, that is, when the

number of individuals tends to infinity. In this limit, we derive asymptotic results,
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that in turn serve as crude approximations for finite, but large, network sizes. (The
convergence takes place in abstract graph and distribution spaces, thus the validation of
these approximations is up to future empirical research.) To allow us to compare net-
works of different sizes, we assume some ‘consistency’ of the parameters, (the list of
communities and the list of individuals with their number of community memberships):

Assumption 1 (The parameters) We assume that in the large-network limit, i.e., as the
number of individuals N → ∞,

a) the number of communities equalsM = γN + ε(N) for some constant γ , and
ε(N) is an error term such that ε(N)/N → 0;

b) for every positive integer k, the proportion of individuals with k membership
tokens converges to some pk = P(T = k) ≥ 0, where T is a random variable with
finite mean E[T]< ∞. Intuitively, T represents the asymptotic distribution of the
number of membership tokens, arising as the limit of the empirical distributions;

c) for every finite connected graph H, the relative frequency of H in the list of
communities converges to some μH ≥ 0, such that the collection (μH) over finite
connected graphs H is a probability mass function. Thus, the proportion of
communities with size k, i.e., k members, converges to some qk = P(S = k) ≥ 0,
where S is a random variable with finite mean E[S]< ∞. Intuitively, S describes
the asymptotic distribution of community sizes.

Note that there necessarily is a relation between γ ,E[T] andE[S]. The reason is that the
total number of membership tokens must be equal to the total size of the communities:
N(E[T]+ε1) = M ·(E[S]+ε2), where the error terms ε1 → 0 and ε2 → 0 appear because
the empirical averagesmay be slightly different from their respective limits. Consequently,
γ = E[T] /E[S].
A good incentive for working with pre-assigned numbers of community membership

tokens for each individual is that this method allows us complete control over the distribu-
tion of T. An alternative approach inspired by the random intersection graph literature (in
particular, the “active and passive” model) (Bloznelis 2010; 2013; Godehardt and Jaworski
2003; Rybarczyk 2011) assigns each community role to a uniformly chosen individual.
While this approach makes generating the model easier, it has the disadvantage that T
always follows a Poisson distribution, which is light-tailed. This means that the number
of community memberships per individual has very small variability, which may be an
undesirable property. Certain applications may call for heavy-tailed or power-law distri-
butions (more on power laws later), where hubs appear: individuals that are part of a large
number of communities (up to Nα , for some 1/2 < α < 1). The existence of such hubs
is often crucial to the connectivity structure of the network or in making it a small world,
or even an ultra-small world (see (Newman (2003b), Section 3.1) for an introduction to
small and ultra-small worlds and further references). It is thus advantageous to use mem-
bership tokens, as this method allows for greater generality, including both light-tailed
and heavy-tailed distributions for T.

Results
Next, we introduce our analytic results on the RIGC model. First, we focus on local
properties, that is, behavior in the neighborhood of a ‘typical’ vertex. This includes
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basic properties such as the degree distribution and local clustering, and model-specific
properties about the overlapping structure of communities. We then move to global
properties, that is, structural properties of the network. In particular, we study its con-
nected components, and how resilient the largest component is under randomized attack
to the network.

Degrees and clustering

The upcoming sections are based on (van der Hofstad et al. 2018). Degrees, i.e., the
number of connections an individual has, contain crucial information about the local
structure of a network, and are easy to measure in real-world networks. For several ran-
dom graph models, it has been proven that the degree distribution can make a difference
between a small-world graph, where distances scale as logN in a graph of size N, and
an ultra-small-world graph, where distances grow even slower than logN , often scaling
as log logN (see (van der Hofstad 2017), Section 1.4.3) for a rigorous definition); scale-
free networks (defined later) are often ultra small (Bollobás and Riordan 2003b; Cohen
and Havlin 2003). While there is no direct relation between degrees and distances, when
these predictions fail, that indicates the presence of further structure in the network. Thus
the degree distribution often serves as the first benchmark when tuning a model to fit a
network.
Thus, the first property of the RIGC model that we study is the empirical degree distri-

bution, which is random itself. There are twoways to represent this empirical distribution.
The conventional representation is the sequence of proportions (nk/N), whereN denotes
the total number of individuals, and nk denotes the random number of individuals with
degree k, for all positive integers k. However, in this case working with a random sequence
is not convenient. Alternatively, we can represent this empirical distribution with a sin-
gle random variable. Choose a vertex V uniformly at random, and denote its degree by
DV . Then, given a realization of the graph, the probability for DV to equal k is the prob-
ability of picking a vertex with degree k, which is exactly nk/N . Thus understanding the
distribution of DV is the same as understanding the random sequence (nk/N).
Note that in a random graph, there are two sources of randomness in DV : the choice

of the uniform individual, and the choice of the graph itself, and these are independent.
In fact, these two sources of randomness help us describe the asymptotic distribution
of DV . Choosing an individual randomly means that it has a random number of mem-
bership tokens. For each token, a random community role is assigned, which adds a
certain number of connections to V from that community. To formalize this, we intro-
duce the random variable �, such that P(� = c) is the limit of the proportion of
community roles that have c neighbors within their community graph. Recall the ran-
dom variable T that describes the limiting distribution of the number of membership
tokens.

Theorem 1 (Limiting degree distribution) Let �i, i ≥ 1 be random variables indepen-
dent of each other and of T, with the same distribution as � defined above. Then, for every
k ≥ 1, in the large-network limit N → ∞,

P(DV = k) → P

( T∑
i=1

�i = k
)
.
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We define the random variable D0 with the limiting distribution P(D0 = k) :=
P

(∑T
i=1 �i = k

)
. The proof of Theorem 1 relies on a more in-depth description of the

neighborhood of a uniformly chosen individual that we intuitively discuss in the next
section.
We discuss when the RIGC showcases a special type of degree distribution that has been

observed (Newman 2005) in real-world networks: power laws. We say that D0 follows a
power law with exponent δ > 1, if P(D0 > x) scales as x1−δ , that is, cx1−δ < P(D0 >

x) < Cx1−δ for some constants 0 < c < C and x large enough. Power laws are heavy-
tailed distributions, meaning that higher moments are infinite. The precise threshold is
δ − 1 (which may be a fractional moment): for s ≥ δ − 1,E

[
Ds
0
] = ∞, but for any

s < δ − 1,E
[
Ds
0
]

< ∞. That is, the smaller δ is, the “heavier” the tail is, and the fewer
moments exist. If for a random variable, the tail P(D0 > x) decays faster than any power
of x, we call the distribution light-tailed. In this case, all moments are finite, and we define
the “power-law exponent” of such a distribution as infinity.
If the empirical degree distribution of a network of size N follows a power law with

exponent δ, the maximal degree scales as N1/(δ−1). For the infinite-variance case δ < 3,
including the scale-free case 2 < δ < 3 when the mean is finite but the variance is infi-
nite, this means that the largest degree is much larger than N1/2. Such highly-connected
vertices, called hubs, heavily influence the structure of the network, making the study of
power-law and particularly scale-free degrees important. We identify a sufficient condi-
tion for the RIGC to have power-law degrees. Recall T, the asymptotic distribution of the
number of membership tokens, and �, the asymptotic distribution of within-community
neighbors.

Corollary 1 (Power laws) If T or � (or both) follow a power-law distribution, then the
asymptotic degree distribution D0 also follows a power law, and its exponent is the smaller
of the two exponents; intuitively speaking, the “heavier tail wins”.

When the asymptotic average degree E[D0] is finite, the number of edges in the graph
scales as E[D0]N/2, that is, the RIGC is sparse. This happens exactly when E[�] is finite.
Next we study clustering, also known as transitivity, in the RIGC model. It has been

observed (see e.g. Watts and Strogatz (1998)) that real-world networks often contain
significantly more triangles than traditional random graphs with the same degree dis-
tribution. In social networks, this can be explained by the fact that people who share a
common friend are more likely to meet each other, through this common friend, than
other people in the network. The local clustering coefficient aims to capture this. For a ver-
tex v with degree Dv ≥ 2, its local clustering coefficient Cl(v) is the proportion of pairs of
neighbors of v that are also directly connected. This is the same as the number of triangles
that v is part of, divided by

(Dv
2
)
, the total number of pairs of neighbors (if the vertex has

less than two neighbors, we set Cl(v) = 0). We describe the network by the average local
clustering coefficient, which is the average of local clustering coefficients of each vertex.
We study the random empirical distribution of the local clustering coefficient in the

RIGC. Again, we represent the random empirical distribution by a single random variable,
with two sources of randomness. Recall that V denotes an individual chosen uniformly at
random, and consider its local clustering coefficient Cl(V ). With this representation, the
average local clustering is E[ Cl(V )].
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We continue to describe the distribution of Cl(V ). Again, we recognize that due to
the uniform choice of V, it has a random number of membership tokens. Due to the
random matching, we match these tokens to a set of community roles chosen uniformly
at random, and each community role is part of a certain number of triangles within its
community.We find and show that the number of otherwise arising triangles is negligible,
due to the structure of neighborhoods explained in the next section.
To formalize the result, we introduce the random variable �, such that P(� = d) is the

limit of the proportion of community roles that are part of d triangles within their own
community. Note that a community role with c within-community neighbors is part of
at most

(c
2
)
triangles. Thus, with the random variable � that describes the limiting distri-

bution of within-community connections, (�,�) form a random vector with dependent
coordinates. Recall that the random variable T describes the asymptotic distribution of
the number of membership tokens.

Theorem 2 (Asymptotic local clustering) Let (�i,�i), i ≥ 1 be independent copies of
the dependent random vector (�,�), also independent of T. For any x ∈[ 0, 1], in the large-
network limit N → ∞,

P(Cl(V ) ≤ x) → P

⎛
⎝∑T

i=1 �i(∑T
i=1 �i
2

) ≤ x

⎞
⎠ = P

(∑T
i=1 �i(D0
2
) ≤ x

)
=: P(Cl(0) ≤ x),

where we introduce the random variable Cl(0) to describe the limiting distribution. The
average local clustering also converges: in the large-network limit N → ∞,

E[ Cl(V )]→ E[ Cl(0)] .

For many real-life networks, the average local clustering coefficient is positive (Watts
and Strogatz 1998). It is thus a desirable property for network models to have posi-
tive asymptotic clustering, i.e., a positive limit of average clustering as the network size
N → ∞. The simplest random graph models, the Erdős-Rényi random graph (Erdős
and Rényi 1959; Gilbert 1959) and the configuration model (Bollobás 1980; Molloy and
Reed 1995) have vanishing clustering, i.e., the average clustering goes to 0 as the network
size grows. On the other hand, classical random intersections graphs and the hierarchical
configuration model (with adequate parameters) produce positive asymptotic clustering.
This raises interest in where the RIGC falls on this scale.

Corollary 2 (Condition for positive asymptotic clustering) The RIGC produces positive
asymptotic clustering exactly when there is a positive asymptotic proportion of community
graphs that contain one or more triangles.

It has also been observed (see e.g. Vázquez et al. (2002)) in real-world networks that
local clustering of a vertex scales inversely with the degree of the vertex. If all commu-
nities are complete graphs, i.e., the special case of the traditional random intersection
graph, and sufficient regularity (the asymptotic community size S has finite variance), the
RIGC reproduces this property. This is also true for other variants of the classical random
intersection graph (generalized RIG) (Bloznelis 2013). However, this is a non-trivial open
question in the general case, when the communities are arbitrary.
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Neighborhoods and overlapping structure

In this section, we provide a more in-depth description of neighborhoods in the graph.
As demonstrated by our results on degrees and (local) clustering, this is useful in deriving
various properties of the graph. However, such neighborhoods are also of independent
interest, to gain insight into the structure of the graph, or to measure similarity of graphs.
The asymptotics of the local neighborhood structure can be conveniently described using
local weak convergence (Benjamini and Schramm 2001). We provide a brief, intuitive
description here; for details and rigor of applying this notion to the RIGC, the reader is
referred to (van der Hofstad et al. (2018), Sections 2.2, 4.1).
Our aim is to describe the asymptotic behavior of the neighborhood of a typical vertex

in the large-network limit, and we do so by considering finite neighborhoods (see Fig. 2
for a small example) of an individual chosen uniformly at random. To understand such
neighborhoods, we now recall how we construct the random graph, and in particular, a
neighborhood. The list of individuals, each with a given number of membership tokens,
and the list of community graphs are given. Randomness solely comes from matching the
membership tokens with community roles uniformly at random.We can match these two
types of objects sequentially, and in each step, we can arbitrarily pick an unmatched object
of either type, as long as its match is chosen uniformly at random from the unmatched
objects of the other type.
As we are in a random graph, we can explore the neighborhood of an individual by

building it, according to the construction rules of the random graph. Given an individ-
ual whose neighborhood we want to explore, we distinguish it as the root, and we start
by matching each of its membership tokens (in some arbitrary order) to community roles
chosen uniformly at random. To focus on the larger-scale structure, we enclose each
community by a supervertex, and preserve the community graph itself as a decoration of
the supervertex. Further, we give the supervertex as many distinguished community role

Fig. 2 A neighborhood in the RIGC model. We demonstrate a small neighborhood of the red vertex in the
middle, cut off before the second neighbors; the colorful backgrounds illustrate different communities. The
figure sheds light on the local structure of the model: note that the red vertex is part of two communities,
which consequently overlap with each other. Through these communities, we reach the neighbors of the
red vertex. Through the neighbors, we may again enter new communities, and so on
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tokens as the size of the enclosed community. In our structural graph, the supervertices
representing communities that the root is part of become direct neighbors of the root and
form layer 1.
Next, we explore all further individuals in the communities of layer 1; we match each

community role (in some arbitrary order) to a uniformly chosen membership token.
These membership tokens belong to some individuals, and these individuals form layer 2.
Matching the remaining membership tokens of the layer 2 individuals, we reach another
set of communities, that become the supervertices of layer 3, and so on. Every odd layer
contains supervertices that represent communities first entered through individuals in
the previous layer; every even layer contains individuals first found in communities in the
previous layer. In the structural graph that we build this way, edges represent a match
between a membership token and a community role token, thus they correspond to
imaginary edges from the construction.
This structural graph is locally tree-like: up to a finite number of layers, it is less and

less likely to see a cycle as the network size grows. (Note that this holds on the structural
level only; cycles contained in the community graphs are preserved in the network.) The
reason behind this phenomenon is that we match membership tokens and community
roles uniformly at random, thus the probability of choosing from a set is proportional to
its size. The community sizes and the number of tokens are small relative to the network
size, thus the set of tokens within a finite number of layers becomes negligible compared
to the total pool that increases with the network size. Consequently, re-connecting to an
already seen individual or supervertex and thus creating a cycle becomes unlikely.
This observation suggests that in the limit, the neighborhood of a typical vertex

becomes a decorated random tree, where the tree describes the membership relations of
individuals and communities, and the decorations describe the communities. In the fol-
lowing, we explain the law of this decorated tree, which is in fact a branching process (see
(Athreya and Ney 2004) for an introduction to branching processes). For our purposes
here, it is sufficient to think of it as a random tree that is constructed layer by layer from
a root, and each vertex has an independent random number of offspring in the next layer.
The root corresponds to a individual chosen uniformly at random, thus the number of

its offspring is drawn from the asymptotic distribution of tokensT. However, the offspring
distribution of further layers is affected by the fact that we match the membership tokens
and community roles uniformly at random. Thus, a community with size k is k times more
likely to be chosen than a community of size 1. This effect is called size-biasing. Also
note that a community of size k produces k − 1 individuals as offspring, since one of its
members is in the previous layer.
Thus, for the asymptotic distribution of community sizes S, we introduce its size-biased

version S̃ with mass function P
(̃
S = k − 1

) = kP(S = k)/E[S]. Similarly for the asymp-
totic number of tokens T, we define T̃ with mass function P

(
T̃ = k − 1

) = kP(T =
k)/E[T]. This describes the random tree, and we decorate it as follows. Given that a com-
munity has size k (offspring k − 1), its community graph is chosen with probabilities
proportional to the limiting frequencies μH (see Assumption 1), for connected graphs H
on k vertices. That is, the probability of choosing a particular graphH on k vertices equals
μH/P(S = k).
Above, we have described a decorated branching process, which is the limit of the struc-

tural graph. We now explain how to obtain the limit of the RIGC, and we refer to this
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step as the projection. First, we ‘blow up’ the supervertices into the communities they rep-
resent. This graph corresponds to the intermediate step in the construction, where the
matching is represented by imaginary edges; the role of the imaginary edges is now taken
by the edges of the random tree. Thus, the second step is to contract the original edges of
the random tree, and we obtain the limit of the network, from the perspective of a typical
individual.
Next, we discuss how the locally tree-like nature of the structural graph impacts the

overlapping structure of communities. We say that two communities overlap, or are
neighbors, when they share one or more individuals; the size of the overlap is the number
of individuals shared.

Theorem 3 (Single-overlap property) The number of overlapping pairs of communities
scales linearly with the network size N, that is, a community chosen uniformly at random
overlaps with constantly many others.
The “typical” overlap between overlapping communities is a single individual.

More precisely, with probability tending to 1 in the large-network limit N → ∞:

i) an individual chosen uniformly at random is not part of an overlap larger than 1,
i.e., it is not part of several communities together with any other individual;

ii) a community chosen uniformly at random does not overlap in more than one
individual with any other community.

This means that overlaps of size 2 or higher may still occur, but their number is sublinear
in the network size N, and consequently also sublinear in the number of communitiesM,
as well as the total number of overlaps.
The single-overlap property allows for community detection with good accuracy in a

special case, inspired by clique-percolation (Derényi et al. 2005). We say that a graph is
triangle-connected, if we can connect any two vertices by a chain of triangles such that
each consecutive pair shares an edge. (This is a special case of k-clique-connected graphs
for k = 3.) Assume that all community graphs are triangle-connected; this is a slightly
stronger condition than assuming that the graph is connected and each vertex is part of
at least one triangle. In fact, such a graph can be constructed by adding triangles one by
one so that each new triangle shares an edge with one of the old ones. This construction
can serve as a greedy algorithm to find such a community. If an arbitrary community only
shares overlaps of size 1 with any neighboring community, it cannot share an edge with
them, and thus our greedy algorithmwill detect the boundaries of this community exactly.
Considering the RIGC with triangle-connected communities, with probability tending to
1, the graph realization is “nice” and only a sublinear proportion of communities share an
overlap of 2 or larger. Thus only a sublinear proportion of communities are misdetected.

Connected components

The upcoming sections are based on (van der Hofstad et al. 2019).Wemove onto studying
the global structure of the model, in particular, the connected components. A connected
component represents a set of individuals that are able to communicate, interact and
influence one another; it is thus a natural question to ask how large these interacting
sets are.
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First, we observe that the internal structure of the communities does not have any influ-
ence on the global connectivity structure. The reason behind is that we have assumed
each community to be connected in itself, thus it provides a path between any two com-
munity members, even if they are not directly connected. Indeed, our results below
only depend on the community sizes and the distribution of membership tokens of
individuals.
We find that component sizes are closely related to the decorated branching process,

introduced in the section above (p. 10). Recall that this branching process captures the
local structure of the graph, treating communities as supervertices, and the network is
obtained by a projection: ‘blowing up’ the supervertices into the communities they rep-
resent, and then contracting the tree edges. For simplicity, we will utilize and refer to the
random tree, keeping in mind this distinction. Intuitively, the component of an individ-
ual is its neighborhood, for which a corresponding decorated branching process provides
an approximate description. Roughly speaking, if the tree is small, then the component
is small; if the tree grows unbounded, i.e., is infinite, then the component is large com-
pared to the network size. (We omit the technicalities why this reasoning stands even
when the component size is not negligible compared to the network size; however, this
is not surprising, as similar phenomena appear in commonly used random graph mod-
els such as the Erdős-Rényi random graph (Alon and Spencer (2008), Section 10.5) or the
configuration model (Molloy and Reed 1995)).
Thus, we first investigate the behavior of this random tree, which is largely defined by

the offspring distributions T̃ and S̃, and we discuss the effect of the root having offspring
T later. It is well known that a branching process undergoes a phase transition, i.e., it
shows largely different behavior based on the choice of a parameter. The behavior we are
interested in is whether the tree has a positive probability of growing infinitely. The phase
transition happens at E[T̃]E[̃S]= 1.
The reason for this is that E[T̃]E[̃S] is the expected growth ratio between two consec-

utive layers that contain individuals. Thus, if E[T̃]E[̃S]> 1, the expected size of layers
containing individuals grows exponentially; in this case, the tree is infinite with some
positive probability ξ , and we say that the branching process is supercritical. On the
contrary, if E[T̃]E[̃S]< 1, the expected size of layers containing individuals decreases
exponentially, and the random tree is almost surely finite; we call the branching process
subcritical.
The phase transition of the branching process translates to the component sizes in the

RIGC model as follows. In the subcritical case, when the random tree is almost surely
finite, the graph consists of small components; most are of constant size, and all are sub-
linear in the network size. In the supercritical case, the random tree has probability ξ to
be infinite, and a ξ proportion of individuals has such a corresponding branching pro-
cess. Clearly, individuals within a finite graph cannot have an infinite component, instead
all such vertices join together and form a giant component: a unique linear-sized com-
ponent. The remaining components are all ‘small’, in the same sense as in the subcritical
case.
We summarize our findings in the theorem below:

Theorem 4 (The largest component of the RIGC) The size of the largest component in
the RIGC exhibits a phase transition, depending on the choice of the parameters:
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i) In the subcritical (and critical) case E[̃S]E[T̃]≤ 1, all components of the RIGC are
sublinear in the network size N.

ii) In the supercritical case E[̃S]E[T̃]> 1, the largest component contains a
proportion ξ of all individuals. This component is unique: all other components are
sublinear in the network size N.

The statements above hold with probability tending to 1 as the network size N → ∞.

Wenote that there is a lower order probabilistic error in the size of the giant component;
in particular, ξ = 1 does not necessarily mean that the whole graph is connected, but
the individuals outside the giant only make up a sublinear proportion. (Identifying the
conditions under which the RIGC is connected is outside the scope of this paper.)
In fact, we can identify ξ , the probability that the branching process produces an infinite

tree, in terms of probability generating functions (PGF). We define the PGF of a non-
negative integer valued random variableX as PGFX(z) := ∑∞

k=0 zkP(X = k). Recall that T
denotes the asymptotic distribution of tokens, and the root of the branching process has
offspring T. Also recall that, due to matching membership tokens and community roles
uniformly, the rest of the offspring are size-biased, and we introduced the distribution
P

(
T̃ = k − 1

) = kP(T = k)/E[T]. Similarly, for the asymptotic community size S, we
introduced S̃. Denote by η the smallest non-negative solution to the fixed-point equation
z = PGF̃S

(
PGFT̃ (z)

)
, then ξ is given by ξ = 1 − PGFT (η).

In the following, we obtain further properties of the giant component by applying the
previous reasoning: that an individual is part of the giant component exactly when the
corresponding branching process produces an infinite tree. (This is true, except for a
negligible sublinear proportion of individuals.) Keep in mind that the limit of the neigh-
borhood is obtained from the decorated branching process by a projection: ‘blowing up’
the supervertices into the communities they represent and then contracting the edges of
the branching process.

Corollary 3 (Degrees and edges in the giant) Consider the empirical degree distribu-
tion of the giant component, or equivalently, the degree of an individual chosen uniformly
at random within the giant component. This converges to the degree of the root in the
projection of the decorated branching process that is conditioned on being infinite.

If the mean of this limiting degree distribution is m < ∞, then the number of edges in
the giant component scales asmξN/2. If this mean is infinite, the number of edges in the
giant component is superlinear in the network size.
We intuitively explain why conditioning the random tree on being infinite generally

changes the distribution of the degree of the root in the projection. Typically, a super-
critical branching process either grows slowly initially and stops after a small number
of layers, or grows quickly initially and produces an infinite tree; the ultimate behavior
highly depends on the early stages of development. Thus, the random tree is more likely
to be infinite when the offspring in lower layers are large. Thus, conversely, conditioning
on an infinite tree induces a bias towards larger offspring. In particular, this affects both
the number of communities in layer 1 as well as their size, and these are the communities
the root takes its community roles from. (In many cases, we expect the average degree in
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the giant component to be larger than the average degree in the entire network. However,
as the communities are arbitrary, the opposite may occur.)

Information spread and attack vulnerability

In the previous section, we have focused on connected components, as each component is
a set of individuals that may interact. On the other hand, certain interactions, such as the
spread of a virus, be it a biological or computer virus, may very well be non-deterministic.
As a simplistic model for a random spread, we consider percolation: for each edge, we flip
a p-coin, independently of each other, to randomize whether that edge is able to transmit.
With probability q = 1 − p, we consider an edge unable to transmit and remove it from
the graph; we call the remaining subgraph the percolated graph. We emphasize that when
we talk about p-percolation, p ∈[0, 1] is the probability that an edge is considered to be
able to transmit and is kept (retained); in particular, p = 1 yields the original graph and
p = 0 yields the empty graph.
Consider a simple epidemic spread, called SI-epidemic, named after the two possible

states of individuals: susceptible or infected. We start the spread by setting a single indi-
vidual as infected. Time progresses in discrete steps and the dynamics afterwards are as
follows: all the individuals that became infected in the previous step attempt to transmit
the infection through all incident edges, all of which succeed independently with proba-
bility p. If a yet susceptible neighbor is reached, then we set it as infected. Each individual
only attempts to spread the infection once. When no new individual becomes infected,
the process stops.
For the SI-infection model, even such a simple static model as percolation is able to

capture the final infected cluster: all vertices that are connected to the source of infec-
tion in the percolated graph will eventually be infected. This, again, raises interest in the
component sizes of the percolated graph: if there is a large component after percolation,
there is a possibility for a large viral outbreak, in case the source is chosen from this large
component.
There is always a trade-off in modeling: realistic models tend to be more complex, while

simple models are easy to analyze. In the case of percolation, its simplicity has yet another
advantage: it leaves room for different interpretations. We can also consider the inde-
pendent removal of edges as a randomized attack on the network, in which case we are
interested in how well the network can withstand such attacks. Once again, we arrive at
the same question from a different perspective: what remains of the giant component, if
we randomly remove a proportion 1 − p of the edges?
By definition, percolation on the RIGC model means that we first generate the random

graph, and then, conditionally on the graph realization, randomly retain or remove each
edge. However, recall that we construct the graph by adding imaginary edges randomly
between individuals and community roles, and then contracting these imaginary edges.
Thus, the edges of the resulting graph correspond one-to-one to the collection of all edges
from all community graphs. This means that the percolation in fact does not depend on
the graph realization.Moreover, wemay even change the order: percolate the edges within
the community graphs first, and then generate the RIGC, see Fig. 3.
We thus recognize that percolating the RIGC is the same as creating an RIGC with the

list of percolated communities. There is one technicality to take care of. When we ran-
domly remove edges from the communities, they may become disconnected. To satisfy
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the condition that each community must be connected, we separate each connected com-
ponent as its own community. This creates a new, random list of communities, that
typically contains more, but smaller communities than the original unpercolated list, and
we refer to it as the percolated community list. We can now formalize our observations as
follows:

Proposition 1 (Percolated RIGC) Percolation on the RIGCmodel is another RIGC, with
the percolated community list and the original list of individuals and original number of
membership tokens. In particular, percolation on the classical random intersection graph,
i.e., when each community is a complete graph, is also an RIGC.

With Proposition 1 and Theorem 4 in hand, we have the recipe for identifying the super-
critical and subcritical cases of percolation on the RIGC. We assume that the original
RIGC is supercritical, so that a giant component exists, and study for which choices of p
the percolated graph is supercritical.
We note that the percolated community list sensitively depends on the original struc-

ture of the communities. This is in contrast with the observation that the global con-
nectivity structure did not depend on the internal structure of communities, as long as
they are connected. At the same time, this comparison also serves as an explanation why
community structure now matters: it determines how the community falls apart under
percolation, in particular, how many and how large components are produced.
Let us introduce the limiting community size distribution of the percolated community

list and denote it by S(p). Recall the limiting distribution T of the number of membership
tokens, and its size-biased version T̃ , given by P

(
T̃ = k − 1

) = kP(T = k)/E[T]. Simi-
larly, define S̃(p) by P

(
S̃(p) = k − 1

) = kP(S(p) = k)/E[ S(p)]. It follows fromTheorem 4
that the condition for supercriticality isE

[̃
T

]
E

[
S̃(p)

]
> 1. Keep in mind that we consider

this as an implicit condition on p.

Fig. 3 Percolation on the RIGC. We demonstrate percolation on the example of Figure 1. From left to right,
we trace back why percolation on the RIGC is another RIGC with a different community list. Leftmost, we
randomly choose edges to delete from the resulting RIGC; we represent these edges as dotted. In the second
subfigure, we trace back each edge of the RIGC to the corresponding edge within a community, as shown in
the step before contracting the imaginary edges. In the third subfigure, we remove the percolated edges.
Note that the individuals, their number of membership tokens, and where the tokens are matched, are
unaffected. Communities that became disconnected due to removing edges are now replaced by their
connected components, which we treat as separate communities. Rightmost, we recognize the matching for
another RIGC, with the same list of individuals with the same number of membership tokens, and with the
new (random) percolated community list



Vadon et al. Applied Network Science            (2019) 4:42 Page 16 of 19

The closer p is to 1, the more edges we keep, and the larger the percolated community
sizes are, thusE

[
S̃(p)

]
is increasing in p. Consequently, we can find a threshold value (crit-

ical percolation parameter) pc and write the supercriticality condition explicitly as p > pc.
This threshold pc is the smallest p (more precisely, the infimum of p values) such that
E

[̃
T

]
E

[
S̃(p)

]
> 1. Under somemild regularity conditions, e.g. E

[
T2] < ∞ and E

[
S2

]
<

∞ is sufficient, pc is simply the solution to the implicit equation E
[̃
T

]
E[ S̃(pc)]= 1. (We

give a counterexample later.)

Corollary 4 (Percolation phase transition) Percolation on the supercritical RIGC
exhibits a phase transition as we vary the percolation parameter p. With 0 ≤ pc < 1
defined above,

i) in the subcritical case p < pc, the largest component of the percolated graph is
sublinear in the network size N;

ii) in the supercritical case p > pc, there exists a unique, linear-sized component that
contains a proportion 0 < ξ(p) ≤ ξ of the individuals.

The statements above hold with probability tending to 1 as N → ∞.

In the following, we provide a discussion on Corollary 4 and some special cases, with
an emphasis on attack vulnerability.
The case p = pc was excluded, as it is open in some particular instances. Under some

regularity conditions, i.e., E
[
S2

]
< ∞ and E

[
T2] < ∞, we have E

[̃
T

]
E[ S̃(pc)]= 1, thus

the graph shows so-called critical behavior. It is alike with the subcritical case in the sense
that the largest component is sublinear, but shows more subtle differences. However, an
in-depth discussion of critical behavior is beyond the scope of this paper.
The fact that pc < 1 always holds means that the network does not exhibit instant

failure. This means that the network may lose a linear proportion of edges, and as long as
this fraction is small enough, a smaller, but still linear-sized giant component is retained.
The intuitive reason for this is that when p is close enough to 1, small communities do not
suffer too much damage, and that is sufficient to hold a good proportion of the network
together.
On the other end of the spectrum, it is possible that pc = 0, depending on the choice

of parameters, which we discuss later in more detail. If pc = 0, then for arbitrarily
small ε, if at least an ε proportion of edges is kept, a small, but linear-sized compo-
nent persists. This phenomenon is called robustness, and a robust network can withstand
randomized attacks very well. It has been observed that many scale-free networks and
models are robust (Bollobás and Riordan 2003a; Cohen et al. 2000; Solé and Montoya
2001). Scale-free, as before, refers to a network with a power-law degree distribution
with exponent τ ∈ (2, 3); that is, degrees with finite mean but infinite variance. In
such a network, the hubs, i.e., the highest-degree vertices with degree larger than N1/2,
hold the network together against random attacks. In the case of the RIGC, the hubs
may be both large communities and individuals with a large number of membership
tokens.
In the following, we discuss how the distribution of the number of tokens T and the

community sizes S affect the robustness of the network. In particular, corresponding to
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the traditional finite variance condition, we consider whether E
[
T2] and E

[
S2

]
are finite.

However, there is another reason for considering these quantities: their relation to E
[̃
T

]
and E

[̃
S
]
respectively, explained below.

As discussed after Proposition 1, percolation with edge retention probability p is super-
critical when E

[̃
T

]
E

[
S̃(p)

]
> 1. As discussed before, E

[
S̃(p)

]
is a non-decreasing

function of p; since p = 0 yields the empty graph and p = 1 yields the original graph, the
values of E

[̃
T

]
E

[
S̃(p)

]
range from 0 to E

[̃
T

]
E

[̃
S
]
. It is thus crucial whether E

[̃
T

]
E

[̃
S
]

is finite. Recall that we have defined the size-biased version T̃ as P(T̃ = k − 1) = kP(T =
k)/E[T]. Consequently, E

[̃
T

] = E[T(T − 1)] /E[T] is finite exactly when E
[
T2] is finite,

and similarly, E
[̃
S
]
is finite exactly when E

[
S2

]
is finite.

The simplest, ‘regular’ case is when E
[
T̃

]
E

[̃
S
]
is finite, i.e., both E

[
T̃

]
and E

[̃
S
]
are

finite. This corresponds to the classical non-scale-free case and the graph is non-robust.
If E

[
T̃

]
is infinite, irrespective of whether E

[̃
S
]
is finite, the graph is robust. The rea-

son is that some individuals are hubs and are part of a polynomially large number of
communities, and have at least one incident edge in each. Thus, as long as an arbitrar-
ily small, but positive proportion of edges is retained, these individuals remain hubs and
hold a considerable proportion of the network connected. Indeed, for any small but pos-
itive p, E

[
S̃(p)

]
is positive and thus E

[
T̃

]
E

[
S̃(p)

]
is infinite. Also note that in this case

the equation E
[
S̃(p)

]
E

[
T̃

] = 1 does not have a solution, as at p = 0, we have an empty
graph and this quantity becomes 0.
The most interesting and most complex case is when E

[̃
S
]
is infinite, but E

[
T̃

]
is finite.

This means that the hubs are the communities, and the communities only, thus depending
on the exact limiting distribution of community graphs (μH), the RIGC may or may not
be robust. Intuitively, when the large community graphs are dense enough, e.g. when all
communities are complete graphs, the total edge count of the RIGC becomes superlinear,
and consequently the graph is robust. On the other hand, when large community graphs
are sparse, e.g. have bounded within-community degree independent of the community
size, these communities fracture into many small pieces under percolation, and the graph
is not robust. It remains an intriguing open question what happens in between, as the
dependence on (μH) is hard to quantify.

Conclusion
The model we introduce, the random intersection graph with communities, fills a gap
in the literature in modeling networks with community structure, where communities
are allowed to overlap and at the same time have their own internal structure. Built
in a random fashion with arbitrary small graphs as building blocks, it is well-fitted
to model networks with well-defined local structure but a more fluid global structure.
Consider a social network where the internal structure of a community is determined
by its purpose, e.g. whether it is a family or a workplace, while the variability in the
combination of roles people take on is so vast that it can be considered random over
the population. This large-scale randomness allows us to carry out exact asymptotic
calculations.
The local structure of the model, such as degree distribution and local clustering, is

defined by an interplay between the internal structure of communities, as well as the
randomness arising from the combination of roles taken by each individual in the net-
work. Under mild conditions, we have a sparse graph with positive clustering, well-suited
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for modeling real-world networks. In the global structure, such as connectivity, generic
macroscopic effects emerge despite the particular microscopic structures. However, the
existence these microscopic structures, in particular, the fragility of communities, once
again plays a crucial role in spreading processes or randomized attacks on the network.

Abbreviations
HCM: hierarchical configuration model; RIG: random intersection graph; RIGC: random intersection graph with
communities
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