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Introduction

Real graph datasets are fundamental to understanding a variety of phenomena, such as
epidemics, adoption of behavior, crowd management and political uprisings. At the same
time, many such datasets capturing computer-mediated social interactions are recorded
nowadays by individual researchers or by organizations. However, while the need for real
social graphs and the supply of such datasets are well established, the flow of data from
data owners to researchers is significantly hampered by serious privacy risks: even when
humans’ identities are removed, studies have proven repeatedly that de-anonymization
is doable with high success rate (Narayanan et al. 2011; Srivatsa and Hicks 2012; Ji et
al. 2014; Korula and Lattanzi 2014). Such de-anonymization techniques reconstruct user
identities using third-party public data and the graph structure of the naively anonymized
social network: specifically, the information about one’s social ties, even without the
particularities of the individual nodes, is sufficient to re-identify individuals.

Many anonymization methods have been proposed to mitigate the privacy invasion of
individuals from the public release of graph data (Ji et al. 2016). Naive anonymization
schemes employ methods to scrub identities of nodes without modifying the graph struc-
ture. Structural anonymization methods change the topology of the original graph while
attempting to preserve (at least some of) the original graph characteristics (Liu and Terzi
2008; Sala et al. 2011; Liu and Mittal 2016). Often the utility of an anonymized graph
depends not only on preserving essential graph properties of the original graph, but also
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node attributes such as labels that identify nodes as cheaters or noncheaters in online
gaming platforms (Blackburn and Iamnitchi 2014).

However, the effects of node attributes on the risks of re-identifications are not yet
well understood. While intuitively any extra piece of information can be a danger to
privacy, a rigorous understanding of what topological and attribute properties affect
the re-identification risks is needed. In cases such as information dissemination, node
attributes may be informed by the local graph topology. How does the interplay between
topology and node attributes affect node privacy?

Our work assesses the additional vulnerability to re-identification attacks posed by the
attributes of a labeled graph. We consider exactly one binary attribute to understand the
lower bound of the damage that node attributes inflict. We focus our empirical study
on the interplay between topology and labeling as a leverage point for re-identification.
While most efforts for re-identification attacks are meant to show the vulnerability or
resilience of a particular anonymization technique, this work is different, as it focuses on
understanding in which conditions node re-identification is feasible, given the network
topology and node attributes. Consequently, whether the network topology is original or
anonymized is irrelevant for our study. We apply machine learning techniques that use
both topological and attribute information to re-identify nodes based on a common threat
model. Our study involves real-world graphs and synthetic graphs in which we control
how labels are placed relative to ties to mimic the ubiquitous phenomena of homophily—
the tendency to connect with similar people—found in social graphs (McPherson and
Cook 2001).

Our empirical results show that the vulnerability to node re-identification depends
on the population diversity with respect to the attribute considered (Horawalavithana
et al. 2018). Using information about the distribution of labels in a node’s neighbor-
hood provides additional leverage for the re-identification process, even when labels are
rudimentary. In this study, we show more evidence on this phenomenon based on the
well-studies Susceptible-Infectious (SI) epidemic model. Furthermore, we quantify the
relative importance of attribute-related and topological features in graphs of different
characteristics.

Related Work

The availability of auxiliary data (such as public records, product reviews, or comments
posted online) helps reveal the true identities of anonymized individuals, as proven empir-
ically in large privacy violation incidents (Lemos 2007; Griffith and Jakobsson 2005).
Similarly, in the case of graph de-anonymization attacks, information from an auxil-
iary graph is used to re-identify the nodes in an anonymized graph (Narayanan and
Shmatikov 2009). The quality of such an attack is determined by the rate of correct re-
identification of the original nodes in the network. In general, de-anonymization attacks
harness structural characteristics of nodes that uniquely distinguish them (Ji et al. 2016).
Many such attacks can be categorized into seed-based and seed-free, based on the prior
seed knowledge available to an attacker (Ji et al. 2016).

In seed-based attacks, known mappings of some nodes in an auxiliary graph aid the
re-identification of anonymized nodes (Narayanan et al. 2011; Srivatsa and Hicks 2012;
Ji et al. 2014; 2016; Korula and Lattanzi 2014). The effectiveness of such attacks is influ-
enced by the quality of the seeds (Sharad 2016b). The quality of the seeds is defined by
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topological properties of the seeds’ neighborhoods: for example, seeds with high degree
whose neighbors have also been mapped to real identities have been shown to be highly
effective in helping the re-identification process of the other nodes.

In seed-free attacks, the problem of deanonymization is usually modeled as a graph
matching problem. Several research efforts have proposed statistical models for the re-
identification of nodes without relying on seeds, such as the Bayesian model (Pedarsani
et al. 2013) or optimization models (Ji et al. 2014; 2016). Many heuristics are used in the
propagation process of re-identification, exploiting graph characteristics such as degree
(Gulyas et al. 2016), k-hop neighborhood (Yartseva and Grossglauser 2013), linkage-
covariance (Aggarwal et al. 2011), eccentricity (Narayanan and Shmatikov 2009), or
community (Nilizadeh et al. 2014).

Recently, there have been efforts to incorporate node attribute information into
deanonymization attacks. Gong et al. (2014) evaluate the combination of structural and
attribute information on link prediction models. Attributes not present may be inferred
through prior knowledge and network homophily. Qian et al. (2016) apply link predic-
tion and attribute inference to deanonymization by quantifying the prior background
information of an attacker using knowledge graphs. In knowledge graphs, edges not
only represent links between nodes but also node-attribute links and link relationships
among attributes. The deanonymization attack in (Ji et al. 2017) maps node-attribute
links between an anonymized graph and its auxiliary. In addition to structural similarity,
nodes are matched by attribute difference, the union of the attributes of the node in the
anonymized and auxiliary divided by their intersection.

However, the success rate of a de-anonymization process is often reported in the lit-
erature as dependent on the chosen heuristic of the attack, which is typically designed
with knowledge of the anonymization technique (Sharad and Danezis 2014). Compar-
ing the strengths of different anonymization techniques thus becomes challenging, if not
impossible. Recently, Sharad (2016b) proposed a general threat model to measure the
quality of a deanonymization attack which is independent of the anonymization scheme.
He proposed a machine learning framework to benchmark perturbation-based graph
anonymization schemes. This framework explores the hidden invariants and similari-
ties to re-identify nodes in the anonymized graphs (Sharad and Danezis 2013; 2014).
Importantly, this framework can be easily tuned to model various types of attacks.

Several researchers propose theoretical frameworks to examine how vulnerable or
deanonymizable any (anonymized) graph dataset is, given its structure (Pedarsani and
Grossglauser 2011; Ji et al. 2014; Ji et al. 2015; Ji et al. 2016). However, some techniques
are based on Erdos-Renyi (ER) models (Pedarsani and Grossglauser 2011), while oth-
ers make impractical assumptions about the seed knowledge (Ji et al. 2015). Ji et al.
(2016) also introduced a configuration model to quantify the deanonymizablity of graph
datasets by considering the topological importance of nodes. The same set of authors
analyzed the impact of attributes on graph data anonymity (Ji et al. 2017). They show
a significant loss of anonymity when more node-attribute relations are shared between
anonymized and auxiliary graph data. Specifically, they measure the entropy present in
node-attribute mappings available for an attacker. As the entropy decreases, the graph
loses node anonymity.

The main aspects distinguishing this study from existing works are as follows: i) In our
work, we study the inherent conditions in graphs that provide resistance/vulnerability to
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a general node re-identification attack based on machine learning techniques. ii) To the
best of our knowledge, this is the first work that quantifies the privacy impact of node
attributes under an attribute attachment model biased towards homophily. iii) We ana-
lyze the interplay between the intrinsic vulnerability of the graph structure and attribute

information.

Methodology

Our main objective is to quantitatively estimate the vulnerability to re-identification
attacks added by node attributes. In particular, we ask: Given a graph topology, how much
better does a node re-identification attack perform when the node attributes are included
in the attack compared to when there is no node attribute information available to the
attacker?

We are interested in measuring the intrinsic vulnerability of a graph with attributes on
nodes, in the absence of any particular anonymization technique on topology or node
attributes. The intuition is that particular graphs are inherently more private: for exam-
ple, in a regular graph, nodes are structurally indistinguishable. Adding attributes to
nodes, however, may contribute extra information that could make the re-identification
attack more successful. Consider another example, in a highly disassortative network
(such as a sexual relationships network), knowing the attribute values (i.e., gender) of
a few nodes will quickly lead to correctly inferring the attribute values of the majority
of nodes, and thus possibly contributing to the re-identification of more nodes. Thus,
we also ask the following question in this study: How does the distribution of node
attributes affect the intrinsic vulnerability to a re-identification attack of a labeled graph
topology?

To answer these question, we developed a machine learning-based re-identification
attack inspired from that presented in (Sharad 2016b). We use the same threat model
(“The Threat Model” section) that aims at finding a bijectivemount a machine-learning
based attack mapping between nodes in two different graphs. We mount a machine-
learning based attack (“Machine Learning Attack” section), in which the algorithm learns
the correct mapping between some pairs of nodes from the two graphs, and estimates the
mapping of the rest of the dataset. As input data, we use both real and synthetic datasets

(as presented in “Datasets” section).

The Threat Model
The threat model we consider is the classical threat model in this context (Pedarsani and
Grossglauser 2011): The attacker aims to match nodes from two networks whose edge
sets are correlated. We assume each node is associated with a binary valued attribute,
and this attribute is publicly available. Common examples of such attributes are gender,
professional level (i.e., junior or senior), or education level (i.e., higher education or not).
For clarity, consider the following example: an attacker has access to two networks of
individuals in an organization that represent the communication patterns (e.g., email)
and friendship information available from an online social network. Individuals in the
communication network are described by professional seniority (e.g., junior or senior),
while individuals in the friendship network are described by gender. These graphs are
structurally overlapping, in that some individuals are present in both graphs, even if their
identities have been removed. The attacker’s task is to find a bijective (i.e., one-to-one)
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mapping between the two subsets of nodes in the two graphs that correspond to the
individuals present in both networks.

Machine Learning Attack
We assume that the adversary has a sanitized graph G, that could be associated with
an auxiliary graph Gy, for the re-identification attack (as depicted in Fig. 1). As in the
scenario discussed above, G, could be the communication network, while G, is the
friendship network of a set of individuals in an organization.

In order to model this scenario using real data, we split a real dataset graph G = (V, E)
into two subgraphs G; = (V1,E1) and Ga = (V, Ey), such that Vi C V, Vo C V and

V1 N Vy = Vg, where V,, # ¢. The fraction of the overlap « is measured by the Jaccard
14181%]

[ViUVal|”
Va, nodes will preserve their edges with nodes from V, but might have different edges to

coefficient of two subsets: @ = In the shared subgraph induced by the nodes in
nodes that are part of V1 — V,, or part of Vo — V,,. Each nodes v € V] U V;, maintains its
original attribute value.

In an optimistic scenario, an attacker has access to a part of the original graph (e.g.,
G1) as auxiliary data and to an unperturbed subgraph (e.g., G2) as the sanitized data
whose nodes the attacker wants to re-identify. We use G; and G, as baseline graphs to
measure the impact of attributes on de-anonymizability of network data. It is also pos-
sible to split G1 and Gy recursively into multiple overlapping graphs, maintaining the
same values of overlap parameters as above. This allows us to assess the feasibility of
the de-anonymization process for large networks by significantly reducing the size of G;
and Gs.

The resulting graphs are now the equivalent of the email/friendship networks we used
as an example above. The overlap is the knowledge repository that the attacker uses for
de-anonymization (Henderson et al. 2011). Part of this knowledge will be made available
to the machine learning algorithms.

Previous work shows that the larger o, the more successful the attack. However, the
relative success of attacks under different anonymization schemes is observed to be inde-
pendent of « (Sharad 2016b). In order to experiment with a homogeneous attack, we set
the value of @ = 0.2, and we build V,, by building a breadth-first-search tree starting from
the highest degree node (BFS-HD) in G. While other alternatives are certainly possible,
we chose this approach for two reasons. First, it appears that the threat model we used is
quite sensitive to the sampling process when generating G; and G, (Pedarsani and Gross-
glauser 2011). To avoid sampling bias, we chose a BES-HD split to have a deterministic
set of nodes in V,,. Second, we empirically found that BFS-HD provides the maximally

ERGM

\/

Fig. 1 Graph mining system flow to generate node pairs with the ground truth of identical and non-identical
pairs
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informed seeds for an adversary to propagate the re-identification process, thus providing
a best-case scenario for the attacker.

Node Signatures

Since we are employing machine learning techniques to re-identify nodes in a graph, we
need to represent nodes as feature vectors. We define the node u’s features using a com-
bination of two vectors made up from its neighborhood degree distribution (NDD) and
neighborhood attribute distribution (NAD) (as depicted in Fig. 2).

NDD is a vector of positive integers where NDDY[ k] represents the number of u’s neigh-
bors at distance g with degree k. We concatenate the binned version of NDD. with the
binned version of NDD? to define the node u’s NDD signature. We use a bin size of 50,
which was shown empirically (Sharad 2016b) to capture the high degree variations of large
social graphs. For each g, we use 21 bins, which would correspond to a larger node degree
of 1050. All larger values are binned in the last bin. This binning strategy is designed to

<«— 1-hop binned NDD ——p ¢—— 2-hop binned NDD —»

0 2 1 2

node X’s tinned NDD (bin size = 2, no. of bins = 2)

— 0o NAD 5 ——— Z2-nopNAD ——»

1 1 2 1
node x's NAD

Fig. 2 Example of a node signature defined as a combined feature vector made up from NDD and NAD
vectors. In the NDD vector, each bin value corresponds to the number of nodes that have a degree value
represented in the bin range, such that the j bin holds the nodes in the degree (k) range

jx b <k < (j+1) x b.If the degree exceeds the maximum range, such nodes are included in the last bin.
Further, both 1-hop and 2-hop NDDs are calculated and merged. For example, node x has no 1-hop
neighbor nodes that have degree in the range of 1 — 2, and one 2-hop neighbor node that its degree is in
the range of 1 — 2.In the NAD vector, each element corresponds to the number of nodes with the given
attribute. Both 1-hop and 2-hop NADs are calculated and merged. Node x has one 1-hop neighbor node, and
two 2-hop neighbor nodes with the attribute Red. Note that the node value represents the associated
degree, and the border color represents the node attribute Red or Blue
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capture the aggregate structure of ego networks, which is expected to be robust against
edge perturbation (Sharad 2016a).

NAD is defined by NADY[ i] which represents the number of u’s neighbors at distance
g with an attribute value i. It is shown experimentally that the use of neighbor attributes
as features often improves the accuracy of edge classification tasks (McDowell and Aha
2013).

We use the notation GS to represent the prediction results from the input features made
up from the topology (e.g., NDD). GS(LBL) to represent features from both the topology
and attribute information (e.g., concatenation of NDD and NAD vectors).

Random Forest Classification

Note that the nodes in G, N Gy, common to both graphs, can be recognized as being
the same node (identical) in the two graphs based on their node identifier. Non-identical
nodes are unique to each Gy, and G, and would not exist in the overlap. In the clas-
sification task, we wish to output 1 for an identical node pair and 0 for a non-identical
node pair. This is the ground truth against which we measure the accuracy of the learning
algorithms.

We generate examples for the training phase of the deanonymization attack by ran-
domly picking node pairs from the sanitized (Gss,) and the auxiliary (Gaux) graphs,
respectively. In most cases, we have an unbalanced dataset with the degree of imbalance
depending on the overlap parameter «, where the majority is non-identical node pairs.
We use the reservoir sampling technique (Haas 2016) to take £ = 1000 balance sub-
samples from the population S, and the SMOTE algorithm (Chawla et al. 2002) as an
over-sampling technique for each sub-sample. Each sample is trained by a forest of 100
random decision trees that allows the algorithm to learn features. Gini-index is used as an
impurity measure for the random forest classification. Given the size «a of the overlap, we
measure the quality of the classifier on the task of differentiating two nodes as identical

or not.

Metrics

We measure the accuracy of the classifier in determining whether a randomly chosen pair
of nodes (with one node in Gy, and another in G,,,,) are identical or not. We use F1-score
to evaluate the quality of the classifier. F1-score is the harmonic mean between precision
and recall, typical metrics for prediction output of machine learning algorithms.

For each data sample, we perform 5 x 2 cross-validation to evaluate the classifier and
record the mean F1l-score. We thus build two vectors of mean F1-scores, each of size
£ = 1000 (as described above), one for the labeled (GS(LBL)) and one for the unlabeled
network topology (GS). An important aspect of these vectors is that they are related in the
sense that the i element in one vector represents the same sample as the i element of
the other vector. This is important for the pairwise comparison of the two mean F1-score
vectors.

We perform a standard T-test on these two vectors and report the T-statistic value.
The T-statistic value is a measure of how close to the hypothesis an estimated value is.
In our case, the hypothesis is the prediction accuracy of the node identities in the unla-
beled graph (GS) and the estimated value is the prediction accuracy in the labeled graph
(GS(LBL)). Thus, a large T-statistic value implies a significantly better prediction accuracy
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of node identities in GS(LBL) than in GS. In such cases, we can say that the network
with node attributes is more vulnerable to node re-identification. This value serves as our

statistical measurement to quantify the vulnerability cost of node attributes.

Datasets

Because our work is empirically driven, a larger set of test datasets promises a bet-
ter understanding of the relations between vulnerability to re-identification attacks and
the particular characteristics of the node attributes (such as fractions of attributes of a
particular value or the assignment of attributes to topologically related nodes). In this
respect, real datasets are always preferable to synthetic ones, as they potentially encapsu-
late phenomena that are missing in the graph generative models. As an example, until very
recently, the relation between the local degree assortativity coefficient and node degree
was not captured in graph topology generators (Sendifia-Nadal et al. 2016).

However, relying only on real datasets has its limitations, due to the scarcity of relevant
data (in this case, networks with binary node attributes) and the difficulty of covering
the relevant space of graph metrics when relying only on available real datasets. Thus, in
this work, we combine real networks (described in “Real Network Datasets” section) with
synthetic networks generated from the real datasets. For generating synthetic labelled
networks, we employ ERGMs (Holland and Leinhardt 1981; Wasserman and Patti-
son 1996) and a controlled node-labeling algorithm as described in “Synthetic Graphs”
section.

Real Network Datasets
We chose six publicly available datasets from four different contexts and generated eight

networks with binary node attributes.

e polblogs (Adamic and Glance 2005) is an interaction network between political
blogs during the lead up to the 2004 US presidential election. This dataset includes
ground-truth labels identifying each blog as either conservative or liberal.

e fb-dartmouth, fb-michigan, and fb-caltech (Traud et al. 2012) are
Facebook social networks extant at three US universities in 2005. A number of node
attributes such as dorm, gender, graduation year, and academic major are available.
We chose two such attributes that could be represented as binary attributes: gender
and occupation, whereby occupation we could identify the attribute values “student”
and “faculty”. From each dataset, we obtained two networks with the same topology
but different node attribute distributions.

e pokec-1 (Takac and Zabovsky 2012) is a sample of an online social network in
Slovakia. While the Facebook samples are university networks, Pokec is a general
social platform whose membership comprises 30% of the Slovakian population.
pokec-1 is a one-fortieth sample. This dataset has gender information available as a
node attribute.

e amazon-products (Leskovec et al. 2007) is a bi-modal projection of categories in
an Amazon product co-purchase network. Nodes are labeled as “book” or “music”,
edges signify that the two items were purchased together.

As Table 1 shows, the networks generated from these datasets have different graph
characteristics. For example, the density (d) of the graphs varies across three orders of
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Table 1 Graph properties of the real network datasets

N E _
Network M €l p T d C r K
R(%) B(%) R—R(%) B—B(%) R—B(%)

|
polblogs 1224 16718 002 022 —022 249
(party) 48 52 44 48 8 048 0.84
fb-caltech 769 16656
(gender) 915 85 92.8 02 7 0.08 052 005 029 —006 133
(occupation) 72 28 69 8 23 028 042
fb-dartmouth 7694 304076
(gender) 865 135 832 09 159 0.14 034 001 035 004 276
(occupation) 62 38 58 18 24 038 05
fbo-michigan 30147 1176516
(gender) 922 78 90.5 02 9.3 0.08 0.37 00026 0.13 0.115 3.05
(occupation) 775 225 72 9 19 022 046

kec-1 265388 700352
pokec 046 0 2 x 107500068 —0.044566
(gender) 46 54 18.6 224 59

-product 303551 835326

amazorproducts 0.18 099 18 x 1075 021-00617.42
(category) 82 18 834 164 0.2

All graphs are undirected, and nodes are annotated with a binary valued attribute. E.g., nodes in the polblogs network have the
attribute party with values; conservative and liberal. For simplicity, binary values are presented using the notation of R and B,
together with the distributions of such values over nodes and edges. p and t present the estimated parameter values of the
attraction model. Density (d) is the fraction of all possible edges, transitivity (C) is the fraction of triangles of all possible triangle in
the network. degree-assortativity (r) measures the similarity of relations depending on the associated node degree. Average path
length (x) depicts the average shortest path length between any pairs of nodes

magnitude, while degree assortativity oscillates between disassortative (for polblogs,
r = —0.22, where there are more interactions between popular and obscure blogs than
expected by chance) to assortative (as expected for social networks). All topologies except
for amazon-products have small average path length.

The metrics p and t shown in Table 1 are inspired from the synthetic node label-
ing algorithm used for generating synthetic graphs (and presented later), and they also
show high variation across different networks. Intuitively, p captures the diversity of
attribute values in the node population (with p = 0.5 showing equal representation of the
attributes) while 7 captures the homophily phenomenon (that functions as an attraction
force between nodes with identical attribute values). The homophilic attraction metric
7 varies between 0 in pokec-1 (thus, no higher than chance preference for social ties
with people of the same gender in Slovakia) to 0.99 in amazon-products (books are
purchased together with other books much more strongly than given by chance). The
diversity metric p varies between the overrepresentation of males in the US academic
Facebook networks (8% female representation) to an almost perfect political represen-
tation in the polblogs dataset (where p = 0.48). Note that, we only consider p as
the minimum proportion of two node groups due to the symmetric nature of attributes
in our experiments.

This wide variation in graph metrics values is what motivated our choice for these set
of real networks. We opted to include the three Facebook networks from similar contexts
to also capture more subtle variations in network characteristics.

Synthetic Graphs
In order to be able to control graph characteristics and node attribute distributions,
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we also generated a number of synthetic graphs comparable with the real datasets just
described. The graph generation included two aspects: topology generation, for which
we opted for ERGMs, and node attribute assignments, for which we implemented the

technique proposed in (Skvoretz 2013).

Varying Topology via ERGMs

Exponential-family random graph models (ERGMs) or p-star models (Holland and Lein-
hardt 1981; Wasserman and Pattison 1996) are used in social network analysis for
stipulating, within a set structural parameters, distribution probabilities for networks. Its
primary use is to describe structural and local forces that shape the general topology of a
network. This is achieved by using a selected set of parameters that encompass different
structural forces (e.g., homophily, degree correlation/assortativity, clustering, and average
path length). Once the model has converged, we can obtain maximumd-likelihood esti-
mates, model comparison and goodness-of-fit tests, and generate simulated networks tied
to the relationship between the original network and the probability distribution provided
by the ERGM.

Our interest in ERGMs is based on simulating graphs that retain set structural informa-
tion from the original graph to generate a diverse set of graph structures. We used R (R
Core Team 2014) and the statnet suite (Handcock et al. 2014), which contains several
packages for network analysis, to produce ERGMs and simulate graphs from our real-
world network datasets. In this case, we focused on three structural aspects of the graphs:
clustering coefficient, average path length, and degree correlation/assortativity.

For the ERGM based on clustering coefficient, we used the edges and triangle
parameters in the statnet package. The edges parameter measures the probability of
linkage or no linkage between nodes, and the triangle term looks at the number of
triangles or triad formations in the original graph. For the average path length model,
edges and twopath terms were used. The twopath term measures the number of
2-paths in the original network and produces a probability distribution of their forma-
tion for the converged ERGM. Lastly, for the assortativity measure, the terms edges
and degcor were used to produce the models. The degcor term considers the degree
correlation of all pairs of tied nodes (for more on ERGMs see (Hunter et al. 2008; Mor-
ris et al. 2008)). These terms proved to be our best choices for preserving, to a certain
extent, the desired structural information. Although the creation of ERGMs is a trial and
error process, the selected terms were successful in producing models for each of the
original networks.

After a successful model convergence, a simulated graph was generated constraining
the number of edges to those of the original graph for each model. It is worth mentioning
that within the built-in simulate function in the statnet suite there is no way of
forcibly constraining the aspects of the original we want to control. Thus, we experience
variation, in some cases more than others. The difference between the original and the
simulated graphs seemed more prominent for smaller networks (see Table 1 and Table 2
for comparison) than models based on the larger networks which came closer to the real
values of the original graphs.

Synthetic Labeling
A simple model that parameterizes a labeled graph with a tendency towards homophily
(ties disproportionately between those of similar attribute background) is an “attraction”
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model (Skvoretz 2013). In the basic case of a binary attribute variable and a constant
tendency to inbreed, two parameters, p and 7, both in the (0,1) interval, characterize
the distribution of ties within and between the two groups. The first is the proportion
of the population that takes on one value of the attribute (with 1 — p, the proportion
taking on the other value). The second parameter, the inbreeding coefficient or prob-
ability, expresses the degree to which a tie whose source is in one group is “attracted”
to a target in that group. When t = O, there is no special attraction and ties within
and between groups occur in chance proportions. When t > 0, ties occur dispropor-
tionately within groups, increasing as v approaches 1. Given a total number of ties,
values for p and 7 determine the number of ties/edges that are between groups, namely,
S=E| x2x(1—1)pl-—p).

In the process of generating synthetic node attributes, we first randomly assign two
arbitrary values (i.e., R and B) as labels to all the nodes in the graph for a given p, 1 —p split.
Then, we draw an R node and a B node at random and swap labels if it would decrease the
number of R-B ties. This process would converge when the total number of cross-group
ties reduce to 8 for a particular value of t.

Figure 3 shows the proportion of cross-group ties on the synthetic labelled networks
generated from polblogs topology. The proportion of cross-group ties is proportional
to p, while it is inversely proportional to t. When p reaches its maximum (p;,5x = 0.5 due
to the symmetric nature of binary attribute values), the proportion of cross-group ties is
larger at minimum inbreeding coefficient 7.

It should be noted that convergence is not guaranteed for all possible combinations of
p and 7. The swapping procedure holds constant all graph properties except the mapping
of nodes to labels, and consequently, it may not be possible to find a mapping of nodes to
labels that achieves a target number of ties between groups (when that number is low as
it is for higher values of 7).

Table 2 presents the graph characteristics of the synthetically generated labeled graphs.

Empirical Results
Our objective is not to measure the success of re-identification attacks on original
datasets in which node identities have been removed: it has been demonstrated long
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Table 2 Basic statistics of generated ERGM networks, and the population of node pairs

Network ERGM d C r K |S| (millions)
dc 0.02 0.03 08 252 55
polblogs cc 0.02 0.33 -0.02 2.69 13.1
apl 0.02 0.10 -0.06 249 115
dc 0.06 0.08 (AN 213 1.2
fb-caltech cc 0.06 042 -0.06 2.73 4.1
apl 0.06 0.07 0.11 1.97 1.2
dc 0.01 0.17 0.07 2.66 14.5
fb-dartmouth cc 0.01 0.24 0.04 2.77 13.2
apl 0.01 0.20 0.04 2.70 14.2
dc 0.003 0.02 0.12 3.28 384
fb-michigan cc 0.002 0.20 0.12 352 399
apl 0.002 0.20 0.12 3.64 382
dc 2.02E-5 0.06 -0.04 5.60 295
pokec-1 cc 2.05E-5 0.07 -0.04 584 293
apl 2.04E-5 0.06 -0.04 5.63 273
dc 1.82E-5 037 -0.06 11.86 43.7
amazon-products cc 1.82E-5 040 -0.06 13.52 72.5
apl 1.82E-5 039 -0.06 1347 743

Note that dc, cc and ap1l define the set of parameters that used to generate ERGM graphs based on assortativity (degree
correlation), clustering coefficient, and average path length, respectively. We generated a total of &~ 500 million identical and
non-identical node pairs over three ERGM graph spaces of the six real social network datasets. S is the population of generated
node pairs concerning a given graph topology

ago (Backstrom et al. 2007) that naive anonymization of graph datasets does not
provide privacy. Instead, our objective is to quantify the exposure provided by node
attributes on top of the intrinsic vulnerability of the particular graph topology under
attack.

In our experiments, we leverage the real and synthetic networks described above. We
mount the machine learning attack described in “Machine Learning Attack” section to re-
identify nodes using features based on both graph topology and node attributes. Our first
guiding question is thus: How much risk of node re-identification is added to a network
dataset by its binary node attributes?

The Vulnerability Cost of Node Attributes

Figure 4 presents the accuracy of node re-identification in the original graph topology
GS and in the same topology augmented with node attributes GS(LBL). As expected,
the re-identification attack performs (generally) better when node attributes are used in
the attack. Surprising to us, however, is the relatively small vulnerability cost that node
attributes introduce. For example, the occupation attribute has a barely noticeable ben-
efit to the attacker in £b-dartmouth. More interestingly, however, the same attribute
performs differently for the other two Facebook networks considered: for fb-caltech
the occupation label functions as noise, leading to a small decrease in the Fl-score.
For fb-michigan, on the other hand, the occupation label significantly improves the

attacker’s performance.
Another observation from this figure is that different node attributes applied to the

same topology have different outcomes: see, for example, the case of the fb-michigan
topology, where the difference between the impacts of the gender and the occupation
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Fig.4 Accuracy of predictions is presented using 5 x2 cross-validation F1-scores. Mean accuracy values are
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attributes is the largest. We thus formulate a new question: What placement of attributes

onto nodes reveal more information?

Diversity Matters, Homophily Not

To understand how the placement of attribute values on nodes affects vulnerability, we
generate synthetic node attributes in a controlled manner. By varying p (the diversity
ratio) and 7 (the bias of nodes with same-value attributes to be connected by an edge), we
can study the effect of these parameters on node re-identification.

Figure 5 presents the T-statistics of the F1-scores for node re-identification attacks on
the original topology vs. labeled versions of the original topology. In addition to the orig-
inal topologies, Fig. 5 also presents results on various synthetic networks generated as
presented in “Synthetic Graphs” section.

We observe three phenomena: First, it appears that p is positively correlated with
the T-statistic value measuring the re-identification impact of attributes. That is, the
more diversity (that is, the larger p), the more vulnerable to re-identification the labeled
nodes become on average. Intuitively, in a highly skewed attribute population, while the
minority nodes will be identified quicker due to node attributes, the majority remains
protected. On the other hand, when p = 0.5, a network has two equal-sized sets of
nodes where each set takes one of two attribute values. This is explained by the fact
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that the NAD feature vector captures more diverse information in the attributes of
neighbots when p is larger. This is also the explanation for why the node attributes
contribute so much more to vulnerability in the polblogs dataset, which has a large
diversity (p = 0.48) (thus, almost equal numbers of conservative and liberal blogs). Note
that the effect of p on the added vulnerability remains consistent across all topologies
(real and synthetic) tested.

The second observation is that there is no visible pattern on how t influences the
vulnerability added by binary node attributes. While this is disappointing from the per-
spective of story telling, it is potentially encouraging for data sharing, as it suggests that
datasets that record homophily (or influence, the debate is irrelevant in this context) do
not have to be anonymized by damaging this pattern. As a specific example, the privacy
of a dataset that records an information dissemination phenomenon could be provided
without perturbing the cascading-related ties.

The third class of observations is related to the relative effect of the topological charac-
teristics on the added vulnerability. Both amazon-products and pokec-1 are orders
of magnitude sparser than the other datasets considered. This means that the topological
information available to the machine learning algorithm is limited. In this situation, the
addition of the attribute information turns out to be very significant: the T-statistic val-
ues for these datasets are significantly larger than for the other datasets, with values over
400 in some cases.

Another topological effect is noticed when comparing the real pokec-1 topology with
the ERGM-generated ones in Fig. 5e: the node attribute contributes much more to the
vulnerability of the original topology compared to the synthetic topologies. The reason
for this unusual behavior may lay in the different clustering coefficients of the networks,
as seen in Tables 1 and 2: the ERGM-generated topologies have clustering coefficients
one order of magnitude higher than the original topology (for the same graph density),
which leads to more diverse NDD feature vectors for the networks with higher cluster-
ing and thus richer training information. This in turn leads to better accuracy in node
re-identification in the unlabeled ERGM topologies (with higher clustering) than in the
original topology. For example, the maximum F1-score for the ERGM-dc topology is 0.92
while for the original is 0.76 in pokec-1. Thus, the relative benefit of the node attribute
is significantly higher when the topology features were poorer.

Topology Leaks

Figure 6 presents the importance of features that are used in node re-identification. A
high importance score represents a feature that is responsible for accurately classifying a
large proportion of examples.

We make three observations from this figure. First, most of the NAD features (together
with node’s attribute value) that represent node attribute information prove to be
important in all datasets.

Second, among the NDD features, only a small number contributes consistently to accu-
rate prediction. As shown in Figs. 6¢—i, the first bin of 1-hop and 2-hop NDD vectors
contribute the most. That is, a high impact on the re-identification of a node is brought by
the number of its neighbors with degrees between 1 and 50. Even in large networks such
as pokec-1 and amazon-products with a larger range of node degrees, this behavior
is observed.
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Fig. 6 Probability distribution of the feature importance scores across original networks. NDD features are
presented in the index order of node (N), hop (H) and bin (B). As an example, the feature N1 -H2-B1
presents the first bin of the NDD%[k] vector. NAD features are presented in the index order of node (N), hop
(H) and binary attribute value € R, B. As an example, the feature N1-H2-R presents NAD%[R]. Any feature
that does not contribute to the final prediction decision with at least 1% of the samples in average is omitted.
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Third, Fig. 6 suggests what features explain the effect of diversity p on node re-
identification in labeled networks. On datasets with large diversity (such as polblogs
or pokec-1), the topological information contributes less than on datasets with low
diversity (such as fb-caltech (gender)). This is because high diversity correlates
to richer NAD feature vectors, and thus the relative importance of the NAD features

increases.

Epidemic and the Risk of Node Re-identification
In this section we consider the scenario of node attribute placement under the constraint
of an epidemic process. We use the Susceptible-Infectious (SI) (Kermack and Mckendrick

Page 16 of 20
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2003) model to generate an epidemic process on the original graph topology. In the SI
model,individuals are initially susceptible, with the exception of a small fraction of the
population who is infectious. In contact with an infections individual, a susceptible indi-
vidual becomes infectious with the probability 8. Once infected, individuals stay infected
and infectious throughout their lifetime.

We use this model to assign binary attributes (i.e., susceptible and infectious) to the
nodes in the graph. In each experiment, we select the 0.1% highest degree nodes as infec-
tious to initialize the epidemic. We vary the infection probability 8 between 0 and 1. We
mount the machine-learning attack to each epidemic graph independently on the graph
topology GS and on the same topology augmented with binary node attributes GS(LBL)
under the respective epidemic process. We make two assumptions in this task. First, we
assume that the graph topology remains static during the epidemic process. Second, we
assume that the adversary does not have any prior information about other epidemic
graphs in the series.

We calculate the significance of the vulnerability scores in GS(LBL) compared with GS
via a standard T-test, and report the T-statistic value per each epidemic graph. Figure 7
shows the T-statistic values over multiple steps in the epidemic process including other
characteristics (e.g., the node infection probability 8, the estimated homophily t observed
in the network).

We observe the same phenomena on the correlation between population’s diversity (p)
and the T-statistic values over the epidemic graphs. However, the T-statistic values show
different patterns depending on the infection probability B. Note that, the population’s
diversity (p) increases to a local maximum in the initial time-steps, and then drops in later
time-steps. This is an intuitive observation given the properties of SI model (Kermack and
Mckendrick 2003).

fb-caltech

(a) Infection (b) p ©)r (d) T-statistic

polblogs

(e) Infection ®p (g) (h) T-statistic

Fig. 7 Graph vulnerability over the series of epidemic graphs under SI model. During each infection step, a
susceptible node becomes infected with probability 8 if in contact with an infected node. a,e the rate of
infection; b f p - diversity ratio which measures the proportion of nodes with one binary attribute value; ¢,g ©
- estimated value of homophily observed in the network; and d h the T-statistic value between prediction
scores of GS(LBL) and GS. T-statistic values show how the extra vulnerability due to binary attributes changes
over iterations of the epidemic process




Horawalavithana et al. Applied Network Science (2019) 4:33 Page 18 of 20

When the epidemic grows slowly (i.e., low infection probability), the T-statistic value
also increases at a slower rate. On the other hand, when the epidemic outbreaks at a
faster infection rate, the T-statistic value also increases at a higher rate and achieves a
relative larger peak value. For the fb-caltech network, the T-statistic value reaches
a peak value of 10 in four infection steps for § = 0.1, while the T-statistic value
reaches a peak value of 50 in two infection steps for § = 0.9. Interestingly, the
most diverse population in fb-caltech network is also observed after four infec-
tion steps for § = 0.1, and two infection steps for 8 = 0.9 (as shown in Fig. 7d).
In polblogs, T-statistic values reach peak values of 31 and 36 for the infection
rates of 0.1 and 0.9, respectively (as shown in Fig. 7h). The polblogs population
becomes more diverse in the similar number of infection steps given the respective

infection rate.

Summary and Discussions

This paper shows that the addition of even a single binary attribute to nodes in a network
increases the vulnerability to node re-identification. The increase in vulnerability derives
from the fact that the machine learning attack makes use of the relationship between
topology and the distribution of node labels. Using information about the distribution
of labels in a node’s neighborhood provides additional leverage for the re-identification
process, even when the labels are rudimentary.

Furthermore, we find that a population’s diversity with regard to the binary attribute
consistently degrades anonymity and increases vulnerability. Diversity means a more even
distribution of the binary attribute, which produces a more varied set of neighborhood
distributions that nodes can exhibit. Consequently, nodes are more easily distinguished
from one another by virtue of their differing neighborhood distributions of labels.

This observation is critical for network datasets for which the node attributes are the
result of an epidemic process. If the epidemic process is monitored, an adversary could
observe the node states and their changes repeatedly over multiple time steps. In such a
scenario, the adversary could mount an even stronger node re-identification attack. The
techniques presented in this paper can be applied to build strong anonymization tech-
niques for such cases. Specifically, our techniques can be used to estimate the rate of
anonymity loss over the lifespan of an epidemic process and more efficiently guide data
owners in the process of network data anonymization.

Another outcome of this work is that there is no consistent discernible impact of
homophily, as measured by the inbreeding coefficient, on vulnerability. Our procedure
for investigating the impact of homophily simply involves swapping labels without dis-
turbing ties. Therefore, both local and global (unlabeled) topologies remain constant as
we decrease the number of cross-group ties to achieve a target value implied by a par-
ticular inbreeding coefficient for a given proportional split along the binary attribute.
This procedure disturbs the local labeled topology, but because the machine learn-
ing attack uses information from that local topology, it apparently can adapt to the
changes and make equally successful predictions regardless of the value of the inbreeding
coefficient.

There are multiple directions in which this work could be extended. For example, we
would like to asses the vulnerability risk of network data that is subject to different epi-
demic processes, especially processes in which nodes can recover and become infected
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multiple times. We suspect that such dynamic processes could lead to less vulnerable
network datasets. Also, we would like to apply the techniques developed in this paper
for guiding efficient anonymization strategies for network datasets with dynamic node
attributes, such as those assigned by an epidemic process.
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