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Boston, MA, USA graph distance, determining the structural dissimilarity between networks is an

Fulllist of author information is ill-defined problem, as there is no canonical way to compare two networks. Indeed,
available at the end of the article many of the existing approaches for network comparison differ in their heuristics,
efficiency, interpretability, and theoretical soundness. Thus, having a notion of distance
that is built on theoretically robust first principles and that is interpretable with respect
to features ubiquitous in complex networks would allow for a meaningful comparison
between different networks. For graph embedding, many of the popular methods are
stochastic and depend on black-box models such as deep networks. Regardless of their
high performance, this makes their results difficult to analyze which hinders their
usefulness in the development of a coherent theory of complex networks. Here we rely
on the theory of the length spectrum function from algebraic topology, and its
relationship to the non-backtracking cycles of a graph, in order to introduce two new
techniques: Non-Backtracking Spectral Distance (NBD) for measuring the distance
between undirected, unweighted graphs, and Non-Backtracking Embedding
Dimensions (NBED) for finding a graph embedding in low-dimensional space. Both
techniques are interpretable in terms of features of complex networks such as
presence of hubs, triangles, and communities. We showcase the ability of NBD to
discriminate between networks in both real and synthetic data sets, as well as the
potential of NBED to perform anomaly detection. By taking a topological interpretation
of non-backtracking cycles, this work presents a novel application of topological data
analysis to the study of complex networks.
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Introduction

As the network science literature continues to expand and scientists compile more exam-
ples of real life networked data sets coming from an ever growing range of domains
(Clauset et al.; Kunegis 2013), there is a need to develop methods to compare complex
networks, both within and across domains. Many such graph distance measures have
been proposed (Soundarajan et al. 2014; Koutra et al. 2016; Bagrow and Bollt 2018; Bento
and loannidis 2018; Onnela et al. 2012; Schieber et al. 2017; Chowdhury and Mémoli
2017; 2018; Berlingerio et al. 2013; Yaveroglu et al. 2014), though they vary in the features
they use for comparison, their interpretability in terms of structural features of complex
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networks, computational costs, as well as in the discriminatory power of the resulting
distance. This reflects the fact that complex networks represent a wide variety of sys-
tems whose structure and dynamics are difficult to encapsulate in a single distance score.
For the purpose of providing a principled, interpretable, efficient and effective notion of
distance, we turn to the length spectrum function. The length spectrum function can be
defined on a broad class of metric spaces that includes Riemannian manifolds and graphs.
The discriminatory power of the length spectrum is well known in other contexts: it
can distinguish certain one-dimensional metric spaces up to isometry (Constantine and
Lafont 2018), and it determines the Laplacian spectrum in the case of closed hyperbolic
surfaces (Leininger et al. 2007). However, it is not clear if this discriminatory power is also
present in the case of complex networks. Accordingly, we present a study on the following
question: is the length spectrum function useful for the comparison of complex networks?

We answer this question in the positive by introducing the Non-Backtracking Spec-
tral Distance (NBD): a principled, interpretable, efficient, and effective measure that
quantifies the distance between two undirected, unweighted networks. NBD has sev-
eral desirable properties. First, NBD is based on the theory of the length spectrum
and the set of non-backtracking cycles of a graph (a non-backtracking cycle is a closed
walk that does not retrace any edges immediately after traversing them); these pro-
vide the theoretical background of our method. Second, NBD is interpretable in terms
of features of complex networks such as existence of hubs and triangles. This helps in
the interpretation and visualization of distance scores yielded by NBD. Third, NBD is
more computationally efficient than other comparable methods. Indeed, NBD depends
only on the computation of a few of the largest eigenvalues of the non-backtracking
matrix of a graph, which requires only slightly more computational time than the
spectral decomposition of the adjacency matrix. Fourth, we have extensive empirical evi-
dence that demonstrates the effectiveness of NBD at distinguishing real and synthetic
networks.

NBD is intimately related to the eigenvalues of the non-backtracking matrix, which
serve as a proxy for the length spectrum of a graph (see “Relaxed Length Spectrum”
section). Motivated by the usefulness of the eigenvalues of the non-backtracking matrix,
we then turn our focus to its eigenvectors. We discuss the potential of using the eigenvec-
tors as a graph embedding technique, which we refer to as Non-Backtracking Embedding
Dimensions (or NBED for short). This technique computes a low dimensional embed-
ding of each directed edge in a graph. We show that the peculiar visualizations yielded by
NBED are particularly apt at providing a rich visualization of the embedded network, and
use the patterns found therein to perform anomaly detection on the Enron email corpus
(Klimt and Yang 2004).

The contributions of this paper are as follows. By highlighting the topological inter-
pretation of the non-backtracking cycles of a graph, we propose Non-Backtracking
Spectral Distance (NBD) as a novel graph distance method, and discuss the potential
of Non-Backtracking Embedding Dimensions (NBED) as a promising embedding tech-
nique. Along the way, we present an efficient algorithm to compute the non-backtracking
matrix, and discuss the data visualization capabilities of its complex eigenvalues (see
Fig. 1) and eigenvectors (Fig. 12). With this work we also release publicly avail-
able source code that implements NBD, NBED and the related matrix computations
(Torres 2018).
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Fig. 1 Non-backtracking eigenvalues of random graphs. Left: From six different random graph models —
Erdos-Rényi (ER), Barabasi-Albert (BA), Stochastic Kronecker Graphs (KR), Configuration Model with power law
degree distribution (CM), Watts-Strogatz (WS), Hyperbolic Graphs (HG) — we generate 50 graphs. From each
of those 300 (= 6 x 50) graphs, we plot the largest r = 200 non-backtracking eigenvalues on the complex
plane. To make the plot more readable, we show only eigenvalues close to the origin. All graphs have

n =5 x 10* nodes and average degree approximately (k) = 15. Right: For each graph used in the left panel,
we take its eigenvalues as a high-dimensional feature vector and apply UMAP over this set of 300 vectors to
compute a 2-dimensional projection. For UMAP, we use a neighborhood of 75 data points and Canberra
distance to get a more global view of the data set

The rest of this paper is structured as follows. “Background” section provides necessary
background information on the length spectrum, non-backtracking cycles, and the non-
backtracking matrix. In “Related work” section we discuss previous investigations related
to ours. “Operationalizing the length spectrum” section explains the connection between
these objects, as well as a discussion of the properties of the non-backtracking matrix that
make it relevant for the study of complex networks. It also presents our efficient algorithm
to compute it. “NBD: Non-backtracking distance” section presents our distance method
NBD and provides experimental evidence of its performance by comparing it to other
distance techniques. In “NBED: Non-backtracking embedding dimensions” section we
discuss our embedding method NBED based on the eigenvectors of the non-backtracking
matrix and provide extensive visual analysis of the resulting edge embeddings, as well
as mention its shortcomings and necessary future lines of study. We conclude in
“Discussion and conclusions” section with a discussion of limitations and future work.

Background

Here we introduce two theoretical constructions: the length spectrum of a metric space
and the set of non-backtracking cycles of a graph. Our analysis pivots on the fact that the
latter is intimately related to a particular subset of the (domain of the) former. For a list of

all symbols and abbreviations used in this work, see Table 1.

Length Spectrum

Consider a metric space X and a point p € X. A closed curve that goes through p is called
a loop, and p is called its basepoint. Two loops are homotopic to one another relative to
a given basepoint when there exists a continuous transformation from one to the other
that fixes the basepoint. The fundamental group of X with basepoint p is denoted by
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Table 1 Notation used in this work

Symbol Definition

w1 (X, p) The fundamental group of X with basepoint p

[c] Homotopy class of loop ¢

LL Length spectrum function, relaxed length spectrum
Conv(X) If X' is a graph, Conv(X) is its 2-core

G=(V,E) An undirected graph with node set V and edge set £

n,m Number of nodes and number of edges of a graph G

e e Adirected edge e = u — v and its inverse el=v—>u
NBC Non-backtracking cycle, in which no edge is followed by its inverse
B 2m x 2m non-backtracking matrix of a graph

B 2n x 2n matrix whose eigenvalues are the same as those of B, save for £1
Ak = ax + ibk k-th largest eigenvalue, in magnitude, of B

Re()), Im(X) Real and imaginary parts of the complex number A

P.Q n x 2m directed incidence matrices of a graph

Pk The fraction of a graphs’ nodes with degree k

1% The degree exponent in the case when py ~ k™7

(k') i-th moment of the degree distribution py

deg(u) Degree of node u

nnz(A) Number of non-zero elements of binary matrix A

NBD(G, H) Non-backtracking distance between graphs G and H

d () {ueh) Distance between eigenvalues A4 and eigenvalues ruk

r Number of eigenvalues computed from one graph

p =M1 Magnitude threshold for eigenvalue computation

ro Number of eigenvalues whose magnitude is greater than p
o Spread parameter of the RBF kernel

m1(X,p) and is defined as the first homotopy group of X, i.e., the set of all loops in X
that go through p, under the equivalence relation of based homotopy. An element of the
fundamental group is called a homotopy class. If a homotopy class contains the loop c,
we denote it as [ ¢]. The group operation is the product of two homotopy classes, defined
as the concatenation of two of their representative loops and written multiplicatively as
[c1] [c2] whenever [ c1] and [ cp] are elements of 71 (X, p). Since ¢; starts at the same node
at which ¢y ends, they can be traversed one after the other, which uniquely defines another
based loop. A conjugacy class of the fundamental group is a set C of homotopy classes
such that for any two classes [¢1],[c2] € C there exists a third class [g] that satisfies
[c1] :[g_l] [ c2] [g]. Here, the inverse of the loop g is defined as the same loop traversed
in reverse. Closed curves without a distinguished basepoint are called free loops, and they
correspond to conjugacy classes of 1 (X, p). For an example of conjugacy classes of the
fundamental group of a graph G, see Fig. 2. A well-known fact of homotopy theory is
that if X is path-connected (i.e., if any two points can be connected through a continuous
curve in X) then 71 (X, p) is unique up to isomorphism, regardless of basepoint p. In the
present work we only consider connected graphs, hence, we simply write 771 (X) when
there is no ambiguity. For more on homotopy, we refer the interested reader to (Munkres
2000; Hatcher 2017).

The length spectrum £ is a function on 71 (X) which assigns to each homotopy class of
loops the infimum length among all of the representatives in its conjugacy class.! Note,
importantly, that the definition of length of a homotopy class considers the length of those
loops not only in the homotopy class itself, but in all other conjugate classes. In the case
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of compact geodesic spaces, such as finite metric graphs, this infimum is always achieved.
For a finite graph where each edge has length one, the value of £ on a homotopy class
then equals the number of edges contained in the length-minimizing loop. That is, for a
graph G = (V,E),v € V, if [c] € m1(G,v) and ¢ achieves the minimum length & in all
classes conjugate to [ ¢], we define L([c]) = k.

Our interest in the length spectrum is supported by the two following facts. First,
graphs are aspherical. More precisely, the underlying topological space of any graph is
aspherical, i.e., all of its homotopy groups of dimension greater than one are trivial.?
Therefore, it is logical to study the only non-trivial homotopy group, the fundamental
group 71(G). Second, Constantine and Lafont (Constantine and Lafont 2018) showed
that the length spectrum of a graph determines a certain subset of it up to isomor-
phism. Thus, we aim to determine when two graphs are close to each other by comparing
their length spectra relying on the main theorem of (Constantine and Lafont 2018).
For completeness, we briefly mention it here; it is known as marked length spectrum
rigidity.

Theorem 1 (Constantine and Lafont 2018) For a metric space X define Conv(X) as the
minimal set to which X retracts by deformation. Let X1,X> be a pair of compact, non-
contractible, geodesic spaces of topological dimension one. If the marked length spectra of
X1 and Xy are the same, then Conv(X1) is isometric to Conv(X>).

When G, Gy are graphs, Conv(G;),i = 1,2, corresponds to the subgraph resulting
from iteratively removing nodes of degree 1 from G;, which is precisely the 2-core of G;
(Batagelj and Zaversnik 2011). Equivalently, the 2-core of G is the maximal subgraph in
which all vertices have degree at least 2. Thus, Theorem 1 states that when two graphs
have the same length spectrum, their 2-cores are isomorphic.

Given these results, it is natural to use the length spectrum as the basis of a measure
of graph distance. Concretely, given two graphs, we aim to efficiently quantify how far
their 2-cores are from being isomorphic by measuring the distance between their length
spectra. In “Relaxed Length Spectrum” section, we explain our approach at implementing
a computationally feasible solution for this problem.

Non-Backtracking Cycles

Consider an undirected, unweighted graph G = (V, E) and suppose |E| = m. For an undi-
rected edge e = {u,v} € E, we write u — vand v — u for its two possible orientations,
and define E as the set of all 2 directed edges. Given a directed edgee = u — v € E

define e~! as the same edge traversed in the inverse order, e~!

=v — u. Apathin G
is a sequence of directed edges ejey...ex such that if e; = u; — v; then v; = u;y; for
i =1,..,k — 1. Here, k is called length of the path. A path is closed if vi = u;. A path is
called non-backtracking when an edge is never followed by its inverse, ;11 # e;l for all .
A closed path is also called a cycle. A cycle is a non-backtracking cycle (or NBC for short)
when it is a closed non-backtracking path and, in addition, e; # 61_1.3

The non-backtracking matrix B is a 2m X 2m matrix whose rows and columns are

indexed by directed edges. For two edges u — v and k — [, B is given by

By pisj = (1 — 8yp), (1)
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where 8y, is the Kronecker delta. Thus, there is a 1 in the entry indexed by row kK — [ and
column ¥ — v when u # [ and v = k, and a 0 otherwise. Intuitively, one can interpret
the B matrix as the (unnormalized) transition matrix of a random walker that does not
perform backtracks: the entry at row k — [ and column u — v is positive if and only if
a walker can move from node u to node v (which equals node k) and then to /, without
going back to u.

Importantly, NBCs are topologically relevant because backtracking edges are homo-
topically trivial, that is, the length—2 cycle # — v,v — u can always be contracted to
a point (Terras 2011). Indeed, in Fig. 2 we removed edges are precisely those that form
backtracks.

Observe that the matrix B tracks each pair of incident edges that do not comprise a
backtrack. As a consequence we have the following result.

4
Lemma 1 Bk% Lisj

start with edge i — j and end with edge k — I. Moreover, tr(BP) is proportional to the

equals the number of non-backtracking paths of length p + 1 that

number of closed non-backtracking paths (i.e., NBCs) of length p in G.

Proof 1 The first fact is reminiscent of the well-known fact that AL, gives the number of
paths that start at node u and end at node v, for any u,v € G, where A is the adjacency
matrix of G. The proof is the same as the proof of this latter fact, so we omit the details for
brevity. The only difference is that BP gives the number of non-backtracking paths of length
p + 1, while A? gives the number of paths of length p. To see why, notice that if the entry

By 1i; is positive, then the length—2 path i — j — [ must exist and it cannot contain

2
k—)l,i—)j

must be non-backtracking. It remains to show that tr(B) is proportional to the number of
NBCs of length k, and not the number of NBCs of length p + 1 as one may think from the
previous paragraph. Suppose a — b — ¢ — a is a valid closed non-backtracking path,

any backtracks. Accordingly, if B is positive then the length—3 pathi — j — k — |

that is, the nodes a, b, c form a triangle. In this case, B>

c—>a,a—
3
be Ba—>b,a—>b'

b — ¢ — a — b exists and is non-backtracking, or, equivalently, thata — b — ¢ — a

, must be positive, as must
The latter represents the existence of some node c such that the path a —

is a non-backtracking cycle. Note that B;, ebsc And B3, 4 c.q are also positive and all

signal the existence of the same triangle a, b, c. Thus the sum of all diagonal elements tr(B>)

G /. [h,] = abcda’’

§ ® { [g"'IIh,llg] = (ad"e")"abedar(ad e )
; \ [h] = edbce™ | = eda'abcda'ad e’
g ; OAO ; = edbcdd'e”
g 3 ; = edbce™’!
; ; =[h)]
° | Q/'\\o [l=ad’e! |

Fig. 2 Conjugate homotopy classes in a graph. Left: In an undirected graph G we label some directed edges
a, b, ¢, d and e. We use the red node as basepoint to construct homotopy classes. Center: Three homotopy
classes [h1],[hy],[g] each with a sequence of edges that form a cycle of minimal length. Right: Proof that
[h1]and [ hy] are conjugate via [gl. Each time an edge is followed by its inverse we remove them as they are
homotopically trivial. By doing so, we reduce the cycle [g~'1[h1][g] to one that is homotopic to it and has
minimal-length, namely [ h;]
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counts every triangle exactly six times, since there are three edges each with two possible
orientations. A proof by induction shows that the above argument holds for any p.

The second claim of Lemma 1 will be fundamental in our later exposition. We prefer
to count NBCs of length p using tr(B?), as opposed to the entries of B”~!, because of the
well-known fact that tr(B?) = Zi Af-’ , for any square matrix B, and where each 1; is an
eigenvalue of B (Lang 2004). Also of importance is the fact that B is not symmetric, and
hence its eigenvalues are, in general, complex numbers. Since B is a real matrix, all of its
eigenvalues come in conjugated pairs: if a + ib is an eigenvalue then so is a — ib, where i is
the imaginary unit. This implies that we can write the above equation as tr(B?) = Y, A’ =
> .Re (Af ), where Re(z) is the real part of a complex number, since the imaginary part of
conjugated eigenvalues cancel out. In the rest of this work we refer to B’s eigenvalues as
the non-backtracking eigenvalues.

If one is interested in B’s eigenvalues rather than in the matrix itself, one may use the
so-called Ihara determinant formula (Hashimoto 1989; Bass 1992), which states that the
eigenvalues of B different than +1 are also the eigenvalues of the 2# x 2n block matrix

., (AI-D
B_<1 0 ) @

where A is the adjacency matrix, D is the diagonal matrix with the node degrees, and I is
the n x n identity matrix.

Related work

Hashimoto (1989) discussed the non-backtracking cycles of a graph (and the associated
non-backtracking matrix) in relation to the theory of Zeta functions in graphs. Terras
(2011) explained the relationship between non-backtracking cycles and the free homo-
topy classes of a graph. More recently, the non-backtracking matrix has been applied to
diverse applications such as node centrality (Martin et al. 2014; Grindrod et al. 2018) and
community detection (Krzakala et al. 2013; Bordenave et al. 2015; Kawamoto 2016), and
to the data mining tasks of clustering (Ren et al. 2011) and embedding (Jiang et al. 2018).
In particular, the application to community detection is of special interest because it was
shown that the non-backtracking matrix performs better at spectral clustering than the
Laplacian matrix in some cases (Krzakala et al. 2013). Hence, there is recent interest in
describing the eigenvalue distribution of the non-backtracking matrix in models such as
the Erdds-Rényi random graph and the stochastic block model (Gulikers et al. 2017). Our
work differs from other applied treatments of the non-backtracking matrix in that we
arrive at its eigenvalues from first principles, as a relaxed version of the length spectrum.
Concretely, we use the eigenvalues to compare graphs because the spectral moments of
the non-backtracking matrix describe certain aspects of the length spectrum (see “Oper-
ationalizing the length spectrum” section). The spectral moments of other matrices (e.g.,
adjacency and Laplacian matrices) also describe structural features of networks (Estrada
1996; Preciado et al. 2013).

Many distance methods have been proposed recently (Soundarajan et al. 2014; Koutra
et al. 2016; Bagrow and Bollt 2018; Bento and Ioannidis 2018; Onnela et al. 2012; Schieber
et al. 2017; Chowdhury and Mémoli 2017; 2018; Berlingerio et al. 2013; Yaveroglu et al.
2014). This proliferation is due to the fact that there is no definitive way of comparing
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two graphs, especially complex networks since they present a vast diversity of structural
features. The methods that are most related to ours fall in two categories: combinatorial
enumeration or estimation of different subgraphs (such as motifs or shortest paths), or
those that depend on spectral properties of some matrix representation of the network,
such as the method Lap from “Data sets and base lines” section.

The topic of embedding has also seen a sharp increase of activity in recent years, moti-
vated by the ubiquity of machine learning and data mining applications to structured data
sets; see (Goyal and Ferrara 2018; Hamilton et al. 2017) for recent reviews. Our method
NBED differs from most others in that it yields an edge embedding that differentiates
the two possible orientations of an edge. Our focus is in providing an interpretable visual
analysis of the resulting embedding, and on its application to anomaly detection.

Operationalizing the length spectrum

We want to quantify the dissimilarity between two graphs by measuring the dissimilarity
between their length spectra. To do this, there are two main obstacles to overcome: (i)
computing the exact length spectrum of a given graph is not computationally feasible as it
depends on enumerating the length of every NBC, and (ii) it is not immediately clear how
to compare two length spectra functions that come from two distinct graphs, because
they are defined on disjoint domains (the fundamental groups of the graphs)?. In order to
overcome these obstacles, we propose the use of what we call the relaxed length spectrum,
denoted by £’, and whose construction comes in the form of a two-step aggregation of
the values of £; see Fig. 3 for an overview of this procedure.
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Fig. 3 Aggregating the values of the length spectrum. a A graph G with two nodes highlighted in red and
blue. These two nodes are used as basepoints to construct two versions of the fundamental group: 771. b The
set of all cycles based at the red node (left) and blue node (right). For either set of cycles, we encircle together
those that are homotopy equivalent, thus forming a homotopy class. We annotate each class with its length,
and we highlight the representative with minimal length. Note that the lengths of corresponding cycles
(those that share all nodes except for the basepoints) can change when the basepoints change. ¢ We have
kept only the highlighted representative in each class in b) and encircled together those that are conjugate.
In each conjugacy class, we highlight the (part of) each cycle that corresponds to the free homotopy loop.

d By taking one representative of each conjugacy class, and ignoring basepoints, we arrive at the free
homotopy classes, or equivalently, at the set of non-backtracking cycles. We annotate each cycle with its
length. We arrive at the same set regardless of the basepoint. The ellipses inside the closed curves mean that
there are infinitely many more elements in each set. The ellipses outside the curves mean that there are
infinitely many more classes or cycles
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Relaxed Length Spectrum

The first step of this procedure is to focus on the image of the length spectrum rather
than the domain (i.e., focus on the collection of lengths of cycles). The second step is to
aggregate these values by considering the size of the level sets of either length spectrum.

Concretely, when comparing two graphs G and H, instead of comparing L; and Ly
directly, we compare the number of cycles in G of length 3 with the number of cycles
in H of the same length, as well as the number of cycles of length 4, of length 5, etc,
thereby essentially comparing the histogram of values that each £ takes. Theoretically,
focusing on this histogram provides a common ground to compare the two functions. In
practice, this aggregation allows us to reduce the amount of memory needed to store the
length spectra because we no longer keep track of the exact composition of each of the
infinitely many (free) homotopy classes. Instead, we only keep track of the frequency of
their lengths. According to this aggregation, we define the relaxed version of the length
spectrum as the set of points £ = {(k,n(k)) : k = 1,2,..}, where n(k) is the number of
conjugacy classes of 7; (i.e., free homotopy classes) of length k.

The major downside of removing focus from the underlying group structure and shift-
ing it towards (the histogram of values in) the image is that we lose information about
the combinatorial composition of each cycle. Indeed, 71 (G) holds information about the
number of cycles of a certain length k in G; this information is also stored in £’. However,
the group structure of 71 (G) also allows us to know how many of those cycles of length k
are formed by the concatenation of two (three, four, etc.) cycles of different lengths. This
information is lost when considering only the sizes of level sets of the image, i.e., when
considering £’.

The next step makes use of the non-backtracking cycles (NBCs). We rely on NBCs
because the set of conjugacy classes of 71(G) is in bijection with the set of NBCs of G
see e.g., Terras (2011), Hashimoto (1989). In other words, to compute the set £’ we need
only account for the lengths of all NBCs. Indeed, consider the non-backtracking matrix
B of G and recall that ¢r (Bk ) equals the number of NBCs of length & in the graph. This
gives us precisely the set £ = {(k, tr (BX)) }1211 Recall that ¢r (B¥) = 3°, A%, where each
A; is a non-backtracking eigenvalue. Therefore, the eigenvalues of B contain all the infor-
mation necessary to compute and compare £'. In this way, we can study the (eigenvalue)
spectrum of B, as a proxy for the (length) spectrum of 7.

We have deviated from the original definition of the length spectrum in impor-
tant ways. Fortunately, our experiments indicate that £’ contains enough discrimi-
natory information to distinguish between real and synthetic graphs effectively; see
“Clustering networks” and “Rewiring edges” sections. We discuss this limitation further
in our concluding remarks in “Discussion and conclusions” section. Beyond experimen-
tal results, one may ask if there are theoretical guarantees that the relaxed version of
the length spectrum will keep some of the discriminatory power of the original. Indeed,
even though our inspiration for this work is partially the main rigidity result of (Constan-
tine and Lafont 2018), we can still trust the eigenvalue spectrum of B to be useful when
comparing graphs. On the one hand, the spectrum of B has been found to yield fewer
isospectral graph pairs (i.e., non-isomorphic graphs with the same eigenvalues) than the
adjacency and Laplacian matrices in the case of small graphs (Durfee and Martin 2015).
On the other hand, B is tightly related to the theory of graph zeta functions (Hashimoto
1989), in particular the Thara Zeta function, which is known to determine several graph
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properties such as girth, number of spanning trees, whether the graph is bipartite, regu-
lar, or a forest, etc (Cooper 2009). Thus, both as a relaxed version of the original length
spectrum, but also as an object of interest in itself, we find the eigenvalue spectrum of
the non-backtracking matrix B to be an effective means of determining the dissimilarity
between two graphs. For the rest of this work we focus on the eigenvalues of B and on
using them to compare complex networks.

Computing B
As mentioned previously, the eigenvalues of B different than +1 are also the eigenvalues
of the 21 x 2n block matrix B’ defined in Eq.2. Computing its eigenvalues can then be
done with standard computational techniques, and it will not incur a cost greater than
computing the eigenvalues of the adjacency or Laplacian matrices, as B’ is precisely four
times the size of A and it has only 27 more non-zero entries (see Eq. 2). This is what we
will do in “NBD: Non-backtracking distance” section in order to compare two relaxed
length spectra. However, in “NBED: Non-backtracking embedding dimensions” section
we will need the eigenvectors of B, which cannot be computed from B'. For this purpose,
we now present an efficient algorithm for computing B. Computing its eigenvectors can
then be done with standard techniques.

Given a graph with # nodes and m undirected edges in edge list format, define the
n x 2m incidence matrices Py, = 8xy and Qyy—y = Sy, and write C = PTQ. Observe

that Cx_,;,—, = &,k and therefore,

Bk—)l,u—)v = Ck—)l,u—w(l - Cu—)V,k—)l) (3)

Note that an entry of B may be positive only when the corresponding entry of C is positive.
Therefore, we can compute B in a single iteration over the nonzero entries of C.

Now, C has a positive entry for each pair of incident edges in the graph, from which we
have the following result.

Lemma 2 Set nnz(C) to be the number of non-zero entries in C, and (k*) the second
moment of the degree distribution. Then, nnz(C) = n{(k?).

Proof 2 This follows by direct computation: 3 ;i85 = dp (X au) (X;ai) =
n(k?)

Computing P and Q takes O(m) time. Since computing the product of sparse matrices
takes time proportional to the number of positive entries in the result, computing C takes
O(n(k?)). Thus we can compute B in time O(m+n(k?)). In the case of a power-law degree
distribution with exponent 2 < y < 3, the runtime of our algorithm falls between O(m +
n) and O(m + n?). Note that if a graph is given in adjacency list format, one can build
B directly from the adjacency list in time ® (n(k?) — n(k)) by generating a sparse matrix
with the appropriate entries set to 1 in a single iteration over the adjacency list.

Spectral properties of B

In our experiments we have found that the eigenvalues of B behave nicely with respect
to certain fundamental properties of complex networks such as degree distribution and
triangles. If the theory of the length spectrum justifies the use of the non-backtracking
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eigenvalues to compare graphs in general, the properties we present next justify their use
for complex networks in particular.

Lemma 3 We have nnz(B) = n ((kz) — (k)),
Proof 3 We directly compute ) ;. ;; . j 81 (1—=8;) =) s (deg(k)—1) deg(k)=n ((kz) — (k)).

Contrast this to nnz(A) = n(k) for the adjacency matrix A. As a consequence of
this, we have found experimentally that the larger (k?), the larger the range of the
non-backtracking eigenvalues along the imaginary axis; see Fig. 4.

Next, we turn to B’s eigenvalues and their relation to the number of triangles. Write
Mg = ag+iby € C for the non-backtracking eigenvalues, where i is the imaginary unit and
k = 1,.,2m. The number of triangles in a network is proportional to t(B3) = 3", Re (Ai),
which, by a direct application of the binomial theorem, equals

2m
tr(B*) = Zak (a} — 3b7). (4)
k=1

In general, the eigenvalues of B with small absolute value tend to fall on a circle in the
complex plane (Krzakala et al. 2013; Angel et al. 2015; Wood and Wang 2017). However,
ify a,z( islargeand ), blz( is small (implying a large number of triangles), the eigenvalues
cannot all fall too close to a circle, since they will need to have different absolute values.
Hence, the more triangles in the graph, the less marked the circular shape of the eigen-
values. Another way of saying the same thing is that the more triangles exist in the graph,

the eigenvalues have larger and positive real parts.

Eigenvalues: visualization
We close this section with a visualization of the non-backtracking eigenvalues. We
choose six different random graph models: Erdos-Rényi (ER) (Erdos and Rényi 1960),
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Fig. 4 Spread along the imaginary axis of non-backtracking eigenvalues. We show the imaginary part of
non-backtracking eigenvalues as a function of heterogeneity of degree distribution in the configuration
model. Given a value of y, we generated a random degree sequence that follows px ~ k= and generated a
graph with said degree sequence using the configuration model. All graphs have n = 5 x 10* nodes and
average degree 12; 100 graphs generated for each value of y
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(Bollobdas 2001), Barabasi-Albert (BA) (Barabdasi and Albert 1999), Stochastic Kronecker
Graphs (KR) (Leskovec et al. 2010; Seshadhri et al. 2013), Configuration Model with
power law degree distribution (CM; pyr ~ k=7 with y = 2.3) (Newman 2003), Watts-
Strogatz (WS) (Watts and Strogatz 1998), Hyperbolic Graphs (HG; y = 2.3) (Krioukov et
al. 2010; Aldecoa et al. 2015). From each model, we generate 50 graphs with n = 10, 000
nodes and approximately (k) = 15; see Table 2 for more information about these graphs.
For each graph, we plot the largest r = 200 eigenvalues on the complex plane in Fig. 1.

Each model generates eigenvalue distributions presenting different geometric patterns.
As expected from the previous section, HG has a less marked circular shape around the
origin since it is the model that generates graphs with the most triangles. Furthermore,
HG also has the largest maximum degree, and therefore its eigenvalues have a greater
spread along the imaginary axis. We also show in Fig. 1 a low-dimensional projection
of the non-backtracking eigenvalues using UMAP (Mclnnes et al. 2018). Notice how,
even in two dimensions, the non-backtracking eigenvalues are clustered according to the
random graph model they come from. This provides experimental evidence that the non-
backtracking eigenvalues shall be useful when comparing complex networks. For a more
in-depth explanation of the parameters used for UM AP, see Appendix 1.

NBD: Non-backtracking distance

Based on the previous discussion, we propose a method to compute the distance between
two complex networks based on the non-backtracking eigenvalues. In this section, we use
d to refer to an arbitrary metric defined on subsets of R2. That is, the distance between
two graphs G, H is given by d({A¢}, {ier}), where A, i are the eigenvalues of G, H, respec-
tively, which we identify with points in R? by using their real and imaginary parts as
coordinates. With these notations we are finally ready to propose the Non-Backtracking
Spectral Distance, or NBD for short.

Definition 1 Consider two graphs G,H, and let {)Lk}llizi:{l/«k}];:z: be the r non-

backtracking eigenvalues of largest magnitude of G and H, respectively. We define the NBD
between G and H as NBD(G,H) = d ({ ¢}, {ir}).

Note that in Definition 1 we leave open two important degrees of freedom: the choice
of d and the choice of r. We will discuss the optimal choices for these parameters in the
next section. Regardless of these choices, however, we have the following results.

Proposition 1 If d is a metric over subsets of R%, then NBD is a pseudo-metric over the

set of graphs.

Proof 4 NBD inherits several desirable properties from d: non-negativity, symmetry,
and, importantly, the triangle inequality. However, the distance between two distinct
graphs may be zero when they share all of their r largest eigenvalues. Thus, NBD is not a

metric over the space of graphs but a pseudo-metric.

Computing NBD
Algorithm 1 presents our method to compute the NBD between two graphs. It makes use
of the following fact, which simplifies the computation. It is known (see e.g. Durfee and
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Table 2 Data sets used in this work

data set network n (k) c
Online social (social) Facebook 4k 43.69 061
sdot8 77k 14.13 0.06
sdot9 82k 14.18 0.06
Epinions 76k 10.69 0.14
Twitter 81k 33.02 057
Wiki 7k 28.32 0.14
Coauthorship (CA) AstroPh 19k 21.11 0.63
CondMat 23k 8.08 0.63
GrQc 5k 553 0.53
HepPh 12k 19.74 0.61
HepTh 10k 5.26 047
Peer-to-peer file-sharing (P2P) pP2P04 11k 7.35 0.01
P2P05 ok 7.20 0.01
P2P06 9k 7.23 0.01
pP2P08 6k 6.59 0.01
P2P09 8k 6.41 0.01
p2p24 27k 493 0.01
P2P25 23k 482 0.01
pP2P30 36k 482 0.01
P2P31 63k 4.73 0.01
Autonomous systems (AS) AS331 11k 412 0.30
AS407 11k 4.10 0.29
AS414 11k 4.16 0.30
AS421 11k 4.19 0.30
AS428 11k 413 0.29
AS505 11k 4.13 0.29
AS512 11k 412 0.29
AS519 11k 411 0.29
AS526 11k 4.19 0.30
BA-1k 1k 13.90 0.05
CM-1k 1k 10.20 0.17
ER-1k 1k 14.99 0.15
HG-1k 997 + 2 14.72 0.82
KR-1k 1021 £1 14.54 0.03
WS-1k 1k 14.00 067
BA-5k 5k 13.98 0.02
CM-5k 5k 11.40 0.13
ER-5k 5k 15.00 0.00
HG-5k 4982 £+ 8 14.67 0.82
KR-5k 4089 + 3 18.27 0.01
WS-5k 5k 14.00 067
BA-10k 10k 13.99 0.01
CM-10k 10k 11.97 0.12
ER-10k 10k 14.99 0.00
HG-10k 9958 £ 15 14.96 0.83
KR-10k 8170+ 11 18.32 0.01
WS-10k 10k 14.00 0.67

n: number of nodes in the largest connected component; (k): average degree; ¢: average clustering coefficient. Bottom: random
graph data sets. We generate 50 graphs of each data set, for a total of 900 random graphs. Top: real networks, grouped in four

data sets
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Martin (2015)) that the multiplicity of 0 as an eigenvalue of B equals the number of edges
outside of the 2-core of the graph. For example, a tree, whose 2-core is empty, has all its
eigenvalues equal to 0. On the one hand, we could use this valuable information as part of
our method to compare two graphs. On the other hand, the existence of zero eigenvalues
does not change the value of tr (Bk ) ,k > 0, and thus leaves the relaxed length spectrum
L= {(k, tr (Bk))} « intact. Moreover, iteratively removing the nodes of degree one (a
procedure called “shaving”) reduces the size of B (or the sparsity of B’; see Eq. 2), which
makes the computation of non-zero eigenvalues faster.

Algorithm 1 Non-Backtracking Spectral Distance

Input: Two graphs G, H, distance d, number of eigenvalues r
Output: real number d, distance between G, H
1. G,H < shave(G), shave(H)
2 {Ahe (it < the r largest eigenvalues of B’ corresponding to G H
3: return d({A;}, {u:})

Given two graphs G, H, we first compute their 2-cores by shaving them, that is, itera-
tively removing the nodes of degree 1 until there are none; call the new graphs G and H.
Then for each graph, we compute the B’ matrix using Eq. 2 to then compute the largest r
eigenvalues. Lastly, we compute the distance d between the resulting sets of eigenvalues.
We proceed to analyze the runtime complexity of each line of Algorithm 1. Line 1: the
shaving step has a worst-case scenario of O(12), where  is the number of nodes. Indeed,
the shaving algorithm must iterate two steps until completion: first, identify all nodes of
degree 1, and second, remove those nodes from the graph. For the first step, querying the
degree of all nodes takes O(n) time, while the deletion step takes an amount of time that
is linear in the amount of nodes that are removed at that step. In the worst-case scenario,
consider a path graph. At each iteration, the degrees of all nodes must be queried, and
exactly two nodes are removed. The algorithm terminates after 71/2 steps, at each of which
it must query the degree of all remaining nodes, thus it takes O(n?). In several classes of
complex networks, however, the number of nodes removed by the algorithm (i.e. those
outside the 2-core) will be a small fraction of n. Line 2: the eigenvalue computation can
be done in O(#%) using, for example, power iteration methods, though its actual runtime
will greatly depend on the number of eigenvalues and the structure of the matrix. Line
3: finally, computing the distance between the computed eigenvalues depends on which
distance is being used; see next section.

Choice of distance and dependence on r

Previous works provide evidence for the fact that the majority of the non-backtracking
eigenvalues have magnitude less than p = /A, where 11 is the largest eigenvalue (which
is guaranteed to be real due to the Perron-Frobenius theorem since all of B’s entries are
real and non-negative). Indeed, in (Saade et al. 2014) the authors show that, in the limit
of large network size, non-backtracking eigenvalues with magnitude larger than p occur
with probability 0. Therefore, to compare two graphs, we propose to compute all the
eigenvalues that have magnitude larger than p. Informally, this means we are comparing
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the outliers of the eigenvalue distribution, since they occur with less probability the larger
the network becomes. This provides a heuristic to choose the value of r.

To test this heuristic, as well as choose the distance d, we perform the following exper-
iment. Given two graphs G; and Gp, we compute the largest 1000 non-backtracking
eigenvalues of both graphs. Then, we compute three distance measures between {1;}] and
{w;}] for increasing values of r. The distances are defined as follows:

e The Euclidean metric computes the Euclidean distance between the vectors
whose elements are the eigenvalues sorted in order of magnitude:

Euclidean ({4}, {ui}) = /32 1A — pal®, with 2] = [Aipa| and | = |piga| forall i
If two eigenvalues have the same magnitude, we use their real parts to break ties.
Computing this distance takes O(r) computations, where r is the number of
eigenvalues.

e The EMD metric computes the Earth Mover Distance (a.k.a. Wasserstein distance)
(Rubner et al. 1998) which is best understood as follows. Write Ay = ay + iby and
tk = ¢k + idy for all k. Consider the sets {(ax, bx)};_, and {(ck, di)}}_; as subsets of
R?, and imagine a point mass with weight 1/r at each of these points. Intuitively, EMD
measures the minimum amount of work needed to move all point masses at the
points (ay, by) to the points (ck, di). This distance requires the computation of the
(Euclidean) distance between every pair of eigenvalues and thus it takes O(r2)
runtime.

e Hausdorff metric is a standard distance between compact sets in a metric space
(Munkres 2000); it is defined as

Hausdorff({1;}, {i;}) = max <max min [A; — 4], max min [A; — u,,»|> . (5)
i j j i

Similarly as above, this computation takes O(r?) runtime.

From each of the following data sets in turn we take two graphs and run this experi-
ment: HG, KR, P2P, AS, CA (see Table 2 and “Data sets and base lines” section for full
description of data sets). We report the results in Fig. 5, where we plot the average of the
three distances for each data set across several repetitions of the experiment (10 repeti-
tions for random graphs and C2, 36 for P2P and AS), as well as the median value of r after
which the eigenvalues have magnitude less than p; we call this value 7.

In Fig. 5 we see that Hausdor £ £ has high variance and a somewhat erratic behavior
on random graphs. Euclidean has the least variance and most predictable behavior,
continuing to increase as the value of r grows. In the KR data sets, Hausdor £ £ presents
an “elbow” near ry, after which it levels off without much change for increasing values of
r. Interestingly, the plots suggest that, in the case of EMD, the steepest decrease usually
occurs before ry. Also of note is the fact that on HG, all distances have a slight increase for
large values of r.

Since Hausdorff does not appear to have a predictable behavior, and Euclidean
continues to increase with no discernible inflection point even when using the largest
r = 1000 eigenvalues, we favor EMD when comparing non-backtracking eigenvalues of
two graphs. Furthermore, EMD has a predictable “elbow” behavior that happens near ry.
Thus we conclude that this is an appropriate choice for the number of eigenvalues to
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Fig. 5 Different ways of comparing non-backtracking eigenvalues. We compare the non-backtracking
eigenvalues of two different graphs of the same data set using three different methods: EMD, Euclidean,
Hausdorff (see “Choice of distance and dependence on r” section), using the r eigenvalues largest in
magnitude. We also show the median value rg after which the eigenvalues have magnitude less than /1.
Shaded areas show standard deviation. First two rows show results for random graphs of models KR and HG
for different number of nodes n. Bottom row shows results for real data sets. See Table 2 for description of
data sets. Values have been normalized by the largest observed distance with each different distance
method for ease of comparison

use. In the following we use EMD as the distance d and ry as the value of r for all our

experiments.”

NBD: Experiments

Data sets and base lines

A description of the data sets we use throughout this article can be found in Table 2.
We use random graphs obtained from six different models: Erdds-Rényi (ER) (Erdos and
Rényi 1960; Bollobés 2001), Barabdsi-Albert (BA) (Barabdsi and Albert 1999), Stochastic
Kronecker Graphs (KR) (Leskovec et al. 2010; Seshadhri et al. 2013), Configuration Model
with power law degree distribution (CM) (Newman 2003), Watts-Strogatz (WS) (Watts and
Strogatz 1998), and Hyperbolic Graphs (HG) (Krioukov et al. 2010; Aldecoa et al. 2015).
We generated CM and HG with degree distribution py ~ k~ with exponent y = 2.3,
and WS with rewiring probability p = 0.01. All graphs have approximate average degree
(k) = 15. From each model, we generate three batches, each with 50 graphs: the first with
n = 1,000 nodes, the second with #n = 5, 000, and the third with n = 10, 000. This yields
6 x 3 data sets that we refer to by model and graph size (see Table 2). We also use real
networks, divided in four different data sets: social, CA, AS, and P2P. social con-
tains six networks obtained from human online social networks (facebook, twitter,
sdot8, sdot9, epinions, and wiki) (McAuley and Leskovec 2012; Leskovec et al.
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2010; Leskovec et al. 2009; Richardson et al. 2003), CA contains five co-authorship net-
works (AstroPh, CondMat, GrQc, HepPh, HepTh) obtained from the arXiv pre-print
server (Leskovec et al. 2007), P2P contains nine snapshots of the peer-to-peer connec-
tions of a file-sharing network (Leskovec et al. 2007), and AS contains nine snapshots of
the Internet autonomous systems infrastructure (Leskovec et al. 2005). Note that P2P and
AS are temporal snapshots of the same network and thus we may assume that they have
been generated using the same growth process. The same is not true for social and CA:
even though they contain similar kinds of networks, their generating mechanisms may
be different. The real networks were obtained through SNAP (Leskovec and Krevl 2014)
and ICON (Clauset et al.). In all, we have 929 different networks (900 random, 29 real),
comprising 22 different data sets (6 x 3 random, 4 real).

Figure 6 shows the result of computing NBD on different synthetic and real data
sets. Observe that NBD is capable of distinguishing between random graphs generated
from different models, as well as between the technological data sets P2P and AS. NBD
detects less of a difference between data sets social and CA, which points toward the
homogeneity of connectivity patterns in human-generated networks.

Among all distance methods available, we choose the following three to compare against
NBD. The first method is ESCAPE (Pinar et al. 2017) which given a graph G computes
a 98-dimensional vector v of motif counts, i.e., v; is the number of times that the ith
motif appears in G for i = 1,...,,98. To compare two graphs we then compute the cosine
distance between their ESCAPE feature vectors. The second method is Graphlet Cor-
relation Distance (Yaveroglu et al. 2014), or GCD for short, which characterizes a graph
with a so-called graphlet correlation matrix, a 11 x 11 matrix whose entries are the cor-
relation between the number of per-node occurrences of 11 small motifs. The distance
between two graphs is then the Frobenius norm of the difference of their graphlet corre-
lation matrices. The third method is taken from Schieber et al (Schieber et al. 2017), and
will be referred to here as S. Distance measure S depends on the distribution of shortest
path length distances between each pair of nodes in a graph. In this way, we are com-
paring NBD, which depends on the number and length of non-backtracking cycles, to
other distance methods that also depend on the occurrence of a particular type of sub-
graphs: ESCAPE and GCD depend on motif counts, while distance S depends on lengths of

Random Graphs Real Networks Real Graphs
n=5000 Technology Social

0.8

- social
0.6
q o
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U 0.0
BA CM ER HG KR WS somal

Fig. 6 NBD in synthetic and real networks. Heatmap shovvlng the NBD values between pairs of networks in
our data sets. Each panel is normalized so that the largest observed distance is 1.0 for ease of comparison.
Left: random networks with n = 5,000 nodes. Middle: real network data sets P2P and AS. Right: real network
data sets social and CA. twitter has been excluded from the right panel for clarity since it lies far away
from most other networks (see more discussion in “Nearest neighbors” section)
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shortest paths. As a baseline, we use the 1-dimensional EMD between the r = 300 largest
Laplacian eigenvalues of each graph; we call this baseline Lap. We report the performance
of two versions of NBD: NBD-300 uses the largest » = 300 non-backtracking eigenvalues
of each graph, while NBD-p uses r = min{300, ro} where ry is the number of eigenval-
ues whose magnitude is greater than p = /A1, as explained before. We use a maximum
of 300 because most of our networks have ry < 300; see Fig. 7 for values of ry for all our
data sets. This means that NBD-p sometimes uses vastly different numbers of eigenvalues
to compare two networks. For example, when comparing a BA-10k graph to twitter,
we are comparing approximately 15 eigenvalues versus min{300, ro = 1393} = 300. Note
that EMD handles this difference naturally.

Using each distance method in turn, we obtain a 929 x 929 distance matrix containing
the distance between each pair of networks in our data sets. Using these distance matrices
we perform the following experiments.

Clustering networks

Our main experiment is to evaluate the distance methods in a clustering context
(Yaveroglu et al. 2015). We use each distance matrix as the input to a spectral clustering
algorithm. To form a proximity graph from the distance matrix, we use the RBF kernel.
That is, if the distance between two graphs under the i-th distance method is d, their
proximity is given by exp (—d2 / 20?). We choose o; as the mean within-data set average
distance, that is, we take the average distance among all pairs of ER graphs, the average
distance among all pairs of BA graphs, and so on for each data set of random graphs, and
average all of them together (von Luxburg 2007). Note this yields a different o for each
distance method, and that we do not use graphs from real data sets to tune this parameter.
We program the algorithm to find the exact number of ground-truth clusters. We report
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Fig. 7 Values of ry for random (top) and real (bottom) data sets. ry is the number of eigenvalues whose
magnitude is greater than +/A7, where 11 is the largest eigenvalue in magnitude, which is always guaranteed
to be positive and real. We use rg eigenvalues from each network when comparing them. This usually yields
different numbers of eigenvalues per network
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the results of this experiment using all graphs (22 clusters), only real graphs (4 clusters),
and only random graphs (18 clusters).

Once we have obtained the clusters, we use as performance metrics homogeneity,
completeness, and v-measure. Homogeneity measures the diversity of data sets within a
cluster, and is maximized when all data sets in each cluster come from the same data
set (higher is better). Completeness is the converse; it measures the diversity of clusters
assigned to the graphs in one data set (higher is better). The v-measure is the harmonic
mean of homogeneity and completeness (Rosenberg and Hirschberg 2007). Concretely,
let C be the ground-truth class of a network chosen uniformly at random, and let K be
the cluster assigned to a network chosen uniformly at random. Homogeneity is defined
as 1 — H(C|K)/H(C) where H(C) is the entropy of the class distribution, and H(C|K) is
the conditional entropy of the class distribution given the cluster assignment. If the mem-
bers of each cluster have the same class distribution as the total class distribution, then
H(C|K) = H(C), and therefore homogeneity is 0. If each cluster contains elements of the
same class, i.e., if the conditional distribution of classes given the clusters is constant, then
H(C|K) = 0 and homogeneity is 1. If H(C) = 0, then homogeneity is defined to be 1 by
convention. Similarly, completeness is defined as 1 — H(K|C)/H(K), and conventionally
equal to 1 when H(K) = 0. Note that homogeneity is analogous to precision, while com-
pleteness is analogous to recall, which are used in binary classification. Correspondingly,
v-measure is analogous to the F1-score.

In Fig. 8 we present the results of this experiment. When clustering all graphs, NBD-
300 performs best (v-measure 0.84), followed by S (v-measure 0.83). Distances S and GCD
perform well across data sets, however, numerical methods for computing eigenvalues
are orders of magnitude faster than the state-of-the-art methods for computing all short-
est path distances (needed to compute S) or per-node motif counts (needed for GCD);
see “Runtime comparison” section. ESCAPE performs well in completeness but not in
homogeneity in random graphs, and extremely poorly in real graphs (v-measure 0.27).

Interestingly, when clustering only the real networks, NBD-300 performs more poorly
than when using random graphs, while NBD-p obtains the highest v-measure score across

all real random
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Fig. 8 Evaluation of spectral clustering. Results of clustering all data sets using spectral clustering.
Homogeneity measures the diversity of ground-truth data sets that are clustered together; completeness
measures the diversity of clusters assigned to the networks belonging to the same data set; see

“Clustering networks” section for definitions. We plot the average homogeneity and completeness values of
the clusterings obtained from applying spectral clustering, using each distance method in turn, over all
networks (left), only real networks (middle), and only random graphs (right). Gray guide lines mark the set of
points with the same v-measure (the iso-v-measure curves). ESCAPE not shown in middle panel due to poor
performance (v-measure = 0.24)
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all our experiments (0.87). This indicates that the choice of r = r as the number of eigen-
values larger than 4/A; can be both more efficient and more informative than computing
a set constant value of, say, r = 300.

We conclude from this experiment that (i) counting motifs locally (number of per-node
occurrences) is better than counting them globally (number of occurrences in the whole
graph), because GCD performs better than ESCAPE across data sets, (ii) that compar-
ing length distributions of paths or cycles seems to yield better performance than motif
counting, because NBD and S perform better than others in general, and (iii) that non-
backtracking eigenvalues provide slightly better performance at distinguishing between
real and synthetic graphs than other combinatorial methods, as well as other spectral
methods such as Lap. We highlight that NBD is in general also more efficient than the
combinatorial methods, while being only slightly more time-consuming than the spectral
method Lap; see next section.

Runtime comparison

As part of “Computing NBD” section we included a complexity analysis of the runtime
of NBD (Algorithm 1). Here, we include a direct comparison of runtime of NBD and
all other baseline algorithms. Observe that all five graph distance algorithms used have
something in common: they all run in two steps. The first step is to compute a certain kind
of summary statistics of each of the two graphs to be compared, and the second step is to
compare those precomputed statistics. For NBD and Lap, the first step computes eigen-
values of the corresponding matrices, while GCD and ESCAPE compute motif counts, and
S computes the shortest path distance between each pair of nodes in the graph. The bulk
of the computational time of all methods is spent in the computation of these statistics,
rather than in the comparison. Therefore, in this section we compare the runtime of this
first step only. Another reason to focus on the runtime of this first step only is that it
depends on one single graph (in all cases, the computation of the corresponding statis-
tics is done on each graph in parallel), and thus we can focus on investigating how the
structure of a single graph affects computation time. All experiments were conducted on
a computer with 16 cores and 100GB of RAM with Intel Skylake chip architecture, with
no other jobs running in the background. Note that all distance algorithms are imple-
mented in Python, except for ESCAPE which is implemented in C++. Thus we focus on
comparing the four algorithms that are implemented in Python. For big-O complexity
analyses we refer the interested reader to each of the corresponding references for each
algorithm.

Figure 9 shows results of this experiment. In all panels, the vertical axis shows the run-
ning time of the algorithm in seconds, and the horizontal axis presents the value of a
structural parameter. Each row corresponds to one of the three following random graph
models: ER (top row), BA (middle row), HG (bottom row). Each column corresponds to
the variation of a single structural parameter, while keeping the other two fixed. Con-
cretely, the left column shows how the number of eigenvalues r used for NBD and Lap
affects their runtime on graphs with » = 1000 and (k) = 15. The center column shows
how varying the number of nodes 7 affects the runtime of all five distances while holding
r = 10 and (k) = 15 fixed. The right column shows how varying (k) affects the run-
time while keeping » = 10 and n = 1000 fixed. Note that all panels are presented on a
log-linear scale.
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Fig. 9 Runtime comparison. We measure the time it takes to run each distance method on three different
random graph models (ER, top; BA, middle; HG, bottom). We investigate the effect of varying three different
parameters (number of eigenvalues, left; number of nodes, center; average degree, right). Lines show
average, error bars show standard deviation

The left column of Fig. 9 shows evidence for the fact that the runtime scaling of NBD
is very close to that of Lap, as claimed in “Computing B” section because the former
uses the non-backtracking matrix, which is always four times the size of the Laplacian
matrix. However, their runtimes do not differ by only a constant factor in the cases of
ER and HG. We hypothesize that this is because the non-backtracking matrix has a more
complicated structure than the Laplacian depending on the structure of the underlying
graph (see “Spectral properties of B” section and especially Lemma 3). In all other panels
we see that NBD and Lap present similar scaling behavior, but NBD is usually slower.
The middle column presents the effect of varying the number of nodes in the graph on
all five distance methods. NBD is consistently the third fastest method for HG and BA
graphs, after ESCAPE and Lap, while GCD is consistently the slowest by two or three
orders of magnitude in some cases. Note that the scaling behavior of all methods is fairly
similar between BA and HG graphs, while for ER it is markedly different. When varying
the number of nodes of ER graphs, for example, NBD and GCD seem to scale at the same
rate, and take the about the same runtime, while S scales more poorly than all others. In
all other panels, GCD seems to scale more poorly than other methods.

From the results presented in Fig. 9 we conclude that NBD is a viable alternative in the
case of complex networks with heterogeneous degree distributions (modeled by BA and
HG) when the application at hand requires comparison of counts of motifs or subgraphs
such as non-backtracking paths of arbitrary length.

Nearest neighbors
In Fig. 10 we present a dendrogram plot computed on all real networks using a hierar-
chical clustering (average linkage) of NBD-p. We can see that all networks of data sets
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Fig. 10 Hierarchical clustering of real networks. Dendrogram showing hierarchical clustering (average
linkage) of all real networks in our data sets. twitter is an outlier because, we hypothesize, it has more
than twice as many edges (1.3M) as the second largest graph in our data sets (sdot 9 with 581k edges)

P2P and AS are perfectly clustered with each other in one cluster, while five networks of
the social data set (all except twitter) are clustered with each other, although they
are broken up into two clusters. Data set AS is also broken up into three different clus-
ters: one with GrQc, CondMat, and HepTh, while HepPh and AstroPh lie in their own
cluster. To test the robustness of these clusters, we ran the same experiment (i) leaving
one data set out each time, and (ii) randomly choosing the ordering of the input data sets.
These variations are made to address the shortcomings of hierarchical clustering as some
implementations may break ties in arbitrary ways. Neither of these variations affected the
clusters reported in Fig. 10.

To better understand these clusters, we present in Table 3 the X = 10 networks that
are closest to each of these data sets: facebook, AstroPh, and twitter. We show the
nearest networks among all networks, including random graphs, as well as the nearest
real networks only. In the case of facebook, we see that, even when including random

Table 3 For networks facebook, AstroPh, twitter we show the 10 networks closest to each,
as determined by NBD-p, and report the distance score in parentheses

rank facebook AstroPh twitter

1 epinions (4.08) CondMat (11.33) AstroPh (31.38)
2 HepPh (5.26) epinions (13.72) CondMat (40.11)
3 sdot9 (6.05) facebook (14.18) epinions (41.49)
4 sdot8 (6.24) GrQc (14.71) facebook (42.45)
5 wiki (6.56) HepTh (14.84) HepTh (42.60)

6 AS414 (8.98) sdot9 (16.96) HepPh (44.30)

7 AS505 (9.03) HepPh (16.97) GrQc (44.54)

8 AS512 (9.05) sdot8 (17.37) sdot9 (44.66)

9 AS421 (9.06) AS407 (17.62) wiki (45.64)

10 AS407 (9.16) AS414 (17.68) sdot8 (45.88)

Note that all social networks except for twitter are within the top 5 nearest networks to facebook, in spite of their imperfect
clustering in Fig. 10. Likewise, all coauthorship networks are within the top 7 networks closest to Ast roPh. Interestingly,
twitter isalso closest to other social networks, as well as some coauthorship networks, even though it is an outlier and the

distances are far greater than others
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networks, epinions is the network closest to it. This is perhaps surprising since these
two networks have substantially different values for the number of nodes, average degree,
and average clustering coefficient (see Table 2). The networks closest to facebook, after
epinions, all come from the HG random graph model, which is expected because this
model has been shown to produce heavy-tailed degree distributions with high cluster-
ing, which both facebook and epinions present as well. When considering only real
networks, all but one of the social networks are within the 10 nearest networks to
facebook. In the case of AstroPh, the closest network to it is another coauthorship
network, CondMat. Like in the previous case, it is close to many random graphs of model
HG. Among the real networks, all other coauthorship graphs are in the nearest 10. Finally,
twitter is the data set that lies farthest from all others. This may be due to the fact
that it has substantially more edges than all others: it has 1.3M edges, while the second
largest, epinions, has only 748k. We see that the closest random networks to twitter
all come from the random model WS. This may be due to the fact that both twitter and
WS have many large eigenvalues with zero imaginary part, so the earth mover distance
between them will be small. We also observe that, even though twitter is far from all the
networks in the dendrogram, all of the social graphs are within the 10 nearest networks
to it.

From these observations we conclude that NBD is able to identify networks that are
generated by similar mechanisms: all technological graphs — i.e., autonomous systems of
the Internet (AS) and automatically generated peer-to-peer file sharing networks (P2P) —
are perfectly clustered together, and all online social graphs are ranked near each other,
even when some of these have vastly different elementary statistics such as number of

nodes, number of edges, and average clustering coefficient.

Rewiring edges

We are interested in the behavior of NBD in the presence of noise. For this purpose,
given a graph G, we compute G’ by rewiring some of the edges of G in such a way that
the degree distribution is kept intact (degree preserving randomization). We then com-
pute the NBD between G and G'. For this experiment we use four networks, one from
each of our real data sets: AS331, P2P09, facebook, and HepPh. We show our results
in Fig. 11.

As expected, the NBD between a graph and its rewired versions grows steadily as the
percentage of rewired edges increases. Note that AS331 and P2P09 seem to plateau
when the percentage of rewired edges is 65% or larger, while facebook and HepPh
have a slight jump close to 70%. Observe too that the variance of the NBD is kept fairly
constant, which indicates that the distribution of non-backtracking cycle lengths in all
rewired versions of each graph is very similar to each other. This may be due to the
fact that edge rewiring destroys short cycles more quickly than long cycles. Furthermore,
observe that for high percentages of rewired edges, the rewired graph is essentially a con-
figuration model graph with the same degree distribution as the original. Therefore, by
comparing the NBD values from Figs. 10 and 11, we can conclude that the NBD between
these four networks and a random graph with the same degree distribution is larger than
the average distance to other networks in the same data set (cf. Fig. 10 and discussion
in previous section). We conclude that NBD is detecting graph structural properties —
stored in the distribution of non-backtracking cycle lengths and encoded in the non-
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Fig. 11 NBD in the presence of noise. For each graph AS331, P2P09, facebook, HepPh we compute 10
rewired versions using degree-preserving randomization, for increasing percentage of edges rewired. We
show the average NBD between the original graph and the rewired versions; shaded regions indicate
standard deviation. As expected, NBD is an increasing function the percentage of rewired edges. This implies
that NBD is detecting graph structural features that are not determined by degree distribution

backtracking eigenvalues —, that are not solely determined by the degree-distribution of
the graph.

NBED: Non-backtracking embedding dimensions
In this Section we discuss the potential of a second application of the eigendecomposition
of the non-backtracking matrix in the form of a new embedding technique. In this case,
instead of the eigenvalues, we use the eigenvectors. We propose the Non-Backtracking
Embedding Dimensions (or NBED for short) as an edge embedding technique that assigns
to each undirected edge of the graph two points in R? — one for each orientation —, where
d is the embedding dimension. We are able to find many interesting patterns that encode
the structure of the network, which we then put to use for anomaly detection. While
the visualizations found with NBED are certainly peculiar and rich in information, future
work will prove essential in determining the full extent of possible applications of NBED.
Concretely, given a graph G with edge set E and directed edge set E, consider a unit
eigenvector v corresponding to the non-backtracking eigenvalue 1. Whenever 1 is real,
the entries of v are guaranteed to be real. Given the d eigenvectors {v"}ﬁz‘f corresponding
to the d eigenvalues with largest magnitude, the embedding of an edge (k, ) € E is a point
in R?? whose entries are given by

(f (V11<—>1) f (Vl%—ﬂ)""’f (VZ—J) f (V11—>k) f (V12—>k)""’f (V;iek))’ (6)

where f is defined as f (V;;»l) = Re()1;) Re (Vi»l) — Im (&;) Im (V;;»l) and Re, Im are
the real and imaginary pats of a complex number, respectively. As mentioned previously,
A1, the largest eigenvalue, is always guaranteed to be real and positive, and the entries
of v! are also real and positive. Thus, f (V}(_} 1) = v}(_) ; for every k — [. Whenever any
A i = 2,3, .., has non-zero imaginary part, the entries of v may also be complex numbers
in general, and f (v} _,,) is simply a linear combination of the real and imaginary parts.

Page 24 of 35



Torres et al. Applied Network Science (2019) 4:41 Page 25 of 35

In the following we use the 2-dimensional NBED of real and random graphs. The
advantages of this 2-dimensional edge embedding are as follows. First, the first and sec-
ond eigenvectors of the non-backtracking matrix have been studied before and they can
be interpreted in terms of edge centrality (Martin et al. 2014; Grindrod et al. 2018)
and community detection (Krzakala et al. 2013; Bordenave et al. 2015; Kawamoto 2016)
respectively. Second, NBED provides a deterministic graph embedding, as opposed to
other methods that are stochastic due to their dependence on random sampling of sub-
graphs (Grover and Leskovec 2016; Perozzi et al. 2014) or due to stochastic optimization
of some model (Wang et al. 2016; Cao et al. 2016). Third, NBED makes a distinction
between the two possible orientations of an edge thus providing more information about
it. We conjecture that these properties make NBED more robust to the presence of
noise in the graph when compared to embeddings generated by popular models such as
deep networks, which are in general not interpretable, are stochastic, and usually work
on nodes rather than directed edges. Further, the 2-dimensional version of NBED is
particularly important because our experimental evidence shows that the second non-
backtracking eigenvalue of complex networks tends to be real and positive, which means
that we can visualize these embeddings on the real plane without losing any information
due to the linear combination f. We proceed to analyze the visual patterns we can identify
in NBED visualizations; future research will be necessary for analytic characterizations of
them.

Visualization

In Fig. 12 we present the 2-dimensional NBED of one network from each of our random
data sets with n = 5,000 nodes (see “Data sets and base lines” section for description).
Each edge (k,[) corresponds to two dots in this plot: (vi_) p v]2<_> 1) and (v}_) o Vlz_) k)' All
graphs used in Fig. 12 have their two largest eigenvalues real and positive. We proceed
to describe the patterns that we observe in these plots and how they relate to structural
properties of the graph.

1 Inall of the plots except for WS-5k we see small sets of dots (red circles) that are
markedly separated from the bulk of the dots. Every one of these sets is made up of
the embeddings of the directed edges k — [ for a fixed I, and the horizontal
position of this set corresponds to the degree of I. That is, the larger the degree of a
fixed node I, the more likely all the embeddings of edges of the form k — [ are to
cluster together separate from the rest, and the further right this cluster will be.

2 Two of these sets corresponding to the same graph seem to have similar structures.
That is, the relative positions of dots forming a cluster encircled in red is repeated
for all such cluseters inside each graph. For example, the sets of BA- 5k and KR-5k
are much more vertically spread than those of CM-5k or HG-5k. We conclude that
each of these sets have a particular internal structure that correlates with global
graph structure, as it is repeated across sets. In ER - 5K, the internal structure of
each set is less well marked, owing to the fact that there are no global structural
patterns in the ER model.

3 InBA-5k, ER-5k, HG-5k, and KR- 5k, we find that the dots inhabit a certain
region of the plane that is bounded by a roughly parabolic boundary (gray dashed
lines). Furthermore, the cusp of this boundary always lies precisely at the origin.
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Fig. 12 NBED of example random graphs. We select one graph from each of our random data sets with

corresponds to the degree of the target node. We are able to detect patterns, such as small sets of points that
are separate from the rest (red circles), and boundaries that determine the regions of the plane where the

That is, there are never dots to the left of the origin, and the vertical spread of the
dots grows at roughly the same rate both in the upper half-plane and the lower half-
plane. Since the vertical axis corresponds to the entries of the second eigenvector
v? which has been shown to describe community structure, we conjecture that the

significance of this boundary is related to the existence of communities in the

network. (See “Case Study: Enron emails” section for more discussion on this point.)
4 In Fig. 12, the color of the embedding of edge kK — [ corresponds to the degree of

the source node k. In this way, we can use these plots to gather information about

the degree distribution of the graph. For example, the plot for ER- 5k looks like a

noisy point cloud because the degree distribution is Poisson centered around
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(k) = 15, and the plot for WS- 5k is very homogeneous in color because all nodes
start with the same degree k = 14 and only a few of them are rewired.
Furthermore, if one compares the color distribution of the plots for BA-5k,
CM-5k, and HG- 5k, one can differentiate that even though all have heavy-tailed
degree distributions, their exponents must be different. Indeed, for BA-5k we have
y = 3 while the other two were generated with y = 2.3.

5 From all previous considerations we can analyze the plot of KR-5k as a case study.
First, it presents small sets of dots that are markedly separate from the bulk, and
whose structure is similar to those of BA-5k. Second, its color distribution is
closer to that of ER-5k than to any of the others. Third, it exhibits the boundary
effect that we see in both BA-5k and ER-5k. From these observations we
conclude that the stochastic Kronecker graph model is a “mix” between the
Barabasi-Albert and Erdos-Renyi models, in the sense its plot has elements from
both of the plots for BA and ER. Consider this in light of Fig. 1 where the graphs of
these three data sets are clustered together, even when using the largest » = 200
non-backtracking eigenvalues of each graph. This means that the
eigendecomposition of the non-backtracking matrix is detecting the similarities
and differences between these three random graph models, which we can identify
through a visual analysis of Figs. 1 and 12.

6  Lastly, we focus on the plot for WS- 5k in Fig. 12. This plot shows none of the
characteristics of the others, and in fact some of its points clearly fall on a path
determined by a continuous curve. We hypothesize that this is due to the strong
symmetry of the ring lattice from which it is generated. Studying the properties of
the NBED of highly symmetric graphs and their randomized versions is a task we

leave for a future work.

Case Study: Enron emails

In this Section we use both NBD and NBED to perform an analysis of the well-known
Enron email corpus (Klimt and Yang 2004). This data set is comprised of email commu-
nications of Enron corporation employees in the years 2000—2002. From it, we form two
different data sets of networks. In all networks each node represents an email address,
and an edge between two email addresses represents that at least one email was sent from
one account to the other. We aggregate these networks on a weekly basis, as well as on a
daily basis, and we proceed to apply our methods NBD and NBED on them.

In the top panel of Fig. 13 we show the distance between a daily graph and the graph
corresponding to a Sunday. In this plot we clearly see that NBD is able to detect the peri-
odicity of email communications. In the bottom plot we show the distance between a
weekly graph and the week starting on Monday January 1st 2001. In this case, we see that
peaks in NBD values (or in 7y values) correlate to several major events that occurred dur-
ing the Enron bankruptcy scandal (Marks 2008; The Guardian 2006; The New York Times
2006). Not all important events are detected this way, however, as the event "1: Skilling
becomes CEO" is not identified through high peaks in either NBD or rg. Further research
is necessary to clarify precisely what kind of events are being detected in this way.

In Fig. 14 we show the NBED of four weekly-aggregated graphs. The first three (top
right, top left, bottom left) correspond to non-anomalous weeks, while the one on the
bottom right, corresponding to the week of February 4th, 2002, is considered anomalous
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Fig. 13 NBD of daily and weekly Enron graphs. Top: data aggregated into daily graphs and compared to one

arbitrarily chosen milestone (Sunday, July 15th, 2001). Weekends are shaded blue. The periodicity of weekly

communications is recovered. Bottom: Data aggregated into weekly graphs and compared to the week

starting on Monday January 1st, 2001. Most peaks in values of NBD corresponding to events occurring during

the Enron scandal

(cf. Fig. 13 where it is marked with a yellow circle and labeled "7: Lay resigns from board").
Most other weekly graphs have NBED plots that generally resemble the first three. In
these plots we are able to see once again some of the features identified in Figure 12.
First, they exhibit the sets of points clustered together separate from the rest with a sim-
ilar internal structure to each other; like before, these correspond to the incoming edges
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Fig. 14 NBED of select weekly-aggregated Enron graphs. Top left, top right, and bottom left correspond to
non-anomalous weeks, according to Fig. 13. Bottom right corresponds to the anomalous week marked with
a yellow circle in Fig. 13, labeled “1: Lay resigns from board”. In all four we see some of the patterns that were
identified in Fig. 12 and “Visualization” section
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of high degree nodes. Second, the roughly parabolic boundaries of Fig. 12 have become
sharply pointed with a cusp at the origin, from which two seemingly straight line seg-
ments are born in different directions. Third, the angle that these straight line segments
form at the origin is different from graph to graph, and the lines are not symmetric with
respect to the horizontal axis. As mentioned previously, the second eigenvector (e.g., the
vertical axis in Figs, 12 and 14) is related to community structure. We hypothesize that
the asymmetry seen in Enron graphs but not in random graphs is due to the presence
of unevenly-sized communities; see Appendix 2. Lastly, the anomalous week of February
4th, 2002 (bottom right) looks decidedly different than the others, due to the presence of
a few points very far apart from the bulk of the plot.

We have presented a visual analysis of the Enron corpus using NBD and NBED. Using
these techniques, we are able to recover properties not only of the underlying network,
but of the underlying data set as well, such as periodicity and temporal anomalies. Even
though the analytical details of NBED require further consideration, we are still able to
interpret the visualizations of Fig. 14 to mine important information about the underlying
data set.

Discussion and conclusions

We have focused on the problem of deriving a notion of graph distance for complex
networks based on the length spectrum function. We add to the repertoire of distance
methods the Non-Backtracking Spectral Distance (NBD): a principled, interpretable,
computationally efficient, and effective technique that takes advantage of the fact that one
can interpret the non-backtracking cycles of a graph as its free homotopy classes. NBD
is principled because it is backed by the theory of the length spectrum, which character-
izes the 2-core of a graph up to isomorphism. It is interpretable because we can study its
behavior in the presence of structural features such as hubs and triangles, and we can use
the resulting geometric features of the eigenvalue distribution to our advantage. It is effi-
cient relative to other similar methods that depend on the combinatorial enumeration of
different kinds of subgraphs. Lastly, we have presented extensive experimental evidence
to show that it is effective at discriminating between complex networks in various con-
texts, including visualization, clustering, and anomaly detection. Performance of NBD is
better or comparable to other distance methods such as ESCAPE, S, GCD, and Lap; see
“NBD: Experiments” section. We chose to compare against these methods because
the first three depend on motif counts in one way or another, as NBD depends
on non-backtracking cycle counts, and Lap depends on the spectral decomposition
of a matrix representation of a graph, as NBD depends on the non-backtracking
eigenvalues.

Motivated by the usefulness of NBD due to the connections with the homotopy of
graphs and the spectrum of the non-backtracking matrix, we also presented a new
embedding technique, Non-Backtracking Embedding Dimensions (or NBED for short)
which provides a rich visualization full of interpretable patterns that describe the struc-
tural properties of a network. We have provided examples of these patterns as well as
their application to anomaly detection. Further research will reveal the full potential of
applications of NBED.

An implementation of NBD, NBED and our algorithm for computing the non-
backtracking matrix, is available at (Torres 2018).
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Limitations NBD relies on the assumption that the non-backtracking cycles contain
enough information about the network. Accordingly, the usefulness of the NBD will decay
as the 2-core of the graph gets smaller. For example, trees have an empty 2-core, and all of
its non-backtracking eigenvalues are equal to zero. In order to compare trees, and more
generally, those nodes outside the 2-core of the graph, the authors of (Durfee and Martin
2015) propose several different strategies, for example adding a “cone node" that connects
to every other node in the graph. However, many real-world networks are not trees and
we extensively showcased the utility of NBD on this class of networks.

The greatest limitation of NBED is that we are not able to provide rigorous derivations
for the patterns we identify in “Visualization” section. Without a formal theory of the
relationship between the eigenvectors of the non-backtracking matrix and the structural
properties of graphs it is difficult to design algorithms that make use of these patterns
automatically. Regardless, we have presented evidence for the usefulness of these patterns

even with a visual analysis.

Future work There are many other avenues to explore in relation to how to exploit the
information stored in the length spectrum and the fundamental group of a graph. As
mentioned in Sec. 4, the major downside of the relaxed length spectrum £’ is the fact
that we lose information stored in the combinatorics of the fundamental group. That is,
L' stores information about the frequency of lengths of free homotopy classes, but no
information on their concatenation, i.e., the group operation in 771 (G). One way to encap-
sulate this information is by taking into account not only the frequency of each possible
length of non-backtracking cycles, but also the number of non-backtracking cycles of
fixed lengths ¢; and ¢, that can be concatenated to form a non-backtracking cycle of
length £3. It remains an open question whether this information can be computed using
the non-backtracking matrix for all values of the parameters ¢1, £3, £3, and if so, how to
do it efficiently. One alternative is to rely upon efficient motif counting (Pinar et al. 2017;
Kolda et al. 2013).

A different research direction is to focus on the non-backtracking eigenvalues them-
selves, independently of the length spectrum theory. One standing question is to
characterize the behavior of the eigenvalues after the network has been rewired.
“Rewiring edges” section only scratches the surface of what can be said in this regard.
However, spectral analysis of the non-backtracking matrix is exceedingly difficult due to
the fact that it is asymmetric and non-normal and therefore most of the usual tools for
spectral analysis are not applicable.

In this work, we have focused on introducing and exploiting novel theoretical concepts
such as the length spectrum and the fundamental group to the study of complex net-
works. We are confident this work will pave the road for more research in topological and

geometric data analysis in network science.

Appendix 1: UMAP parameter settings
In order to understand the visualizations of the non-backtracking eigenvalues in Fig. 1 we
will now explain some of the features of the UM AP algorithm. For full detail we refer the
interested reader to (Mclnnes et al. 2018).

UMAP stands for Uniform Manifold Approximation and Projection, authored by
Leland Mclnnes, John Healy, and James Melville. Data are first represented in a high
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dimensional euclidean space using Laplacian Eigenmaps (Belkin and Niyogi 2003), then
they are approximated unifomly using fuzzy simplicial sets and patched together to form
a manifold, and finally this manifold is projected to R2. This process reveals topological
features of the data and provides flexibility for geometrical specifications to distinguish
task-specific quantities of interest.

In this respect, UM AP provides a very flexible algorithm, which has various parameters.
In the interest of reproducibility, we list our parameter choices of the subset of parameters
that yield results of interest for network science, as they allow us to separate different
random graph models from each other. A full explanation of these and other parameters
is included in (MclInnes et al. 2018) in Section 4.3. In Fig. 1 of this reference authors show

a comparison of how visualizations change with the choice of parameters.

e n neighbors: A weighted k-nearest neighbor graph is constructed from the initial
data. The number of neighbors is set with this parameter. We used a value of 75.

e metric: Different metrics in the high dimensional space where the data are
embedded can be specified. We found good overall results with the Canberra metric
(shown in Fig. 1. The Chebyshev and Euclidean metrics cluster ER graphs together,
for some specific values of the other parameters. However they make HG and CM
clusters overlap. A clearly separated projection for the HG and CM graphs can be
found using Correlation metric.

e n_epochs: Training optimization epochs. More epochs can provide better results,
with the usual computational drawbacks. We use 1000 epochs.

e min_dist: Alters the minimum distance between embedded points. Smaller values
increase clustering, larger values present a more uniformly distributed visualiaztion.
We use a distance of 0.01.

e repulsion_ strength: Values above 1 increase the weight of negative samples,
i.e., the importance of the distances between far-apart data points. We use a value of
10.

® negative sample rate: Sets the number of negative samples to be selected per
each positive sample in the optimization process. We use 50 negative samples per
positive sample.

We were not able to find a specific set of parameters that improved upon the visu-
alization shown in Fig. 1, though it is perhaps the interplay between min dist and
repulsion_ strength what causes ER graphs to split into two different clusters.

Appendix 2: Asymmetric NBED embeddings

As mentioned in “Case Study: Enron emails” section, the NBED of Enron graphs present a
feature that we do not see in any of the random graphs we handled for this work. Namely,
the NBED of Enron graphs are asymmetric with respect to the horizontal axis (Fig. 14),
whereas the NBED of all other random graphs (Fig. 12) are generally symmetric. In
“Case Study: Enron emails” section we hypothesized that this is due to the fact that Enron
graphs contain communities. Here, we present some evidence for this hypothesis.

In Fig. 15 we show the NBED of five random graphs generated from the stochastic block
model as follows. Each graph has # = 150 nodes and was generated with two blocks.
In all cases, the generated graphs were connected and the edge density joining the two
different blocks was 0.01. We vary the size and internal density of each block to yield
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Fig. 15 NBED of stochastic block model graphs. Embeddings of five random graphs generated from the
stochastic block. Each graph is connected, has n = 150 nodes and was generated with two blocks; the edge
density joining the two different blocks is 0.01. We present five different realizations, depending on the
relative sizes and densities of the blocks

five different realizations: (i) two blocks of the same size and same internal density equal
to 0.1, (ii) blocks of same size, one with density 0.5 and the other with density 0.1, (iii)
blocks of different size, with the same density 0.1, (iv) blocks of different size where the
larger block has density 0.1 and the smaller has density 0.5, and (v) blocks of different
size where the larger block has density 0.5 and the smaller has density 0.1. In cases (ii)
and (iv), we see NBED embeddings that are markedly asymmetrical with respect to the
horizontal axis. Furthermore, case (iv) in particular is visually reminiscent of the Enron
embeddings. Further work will elucidate more systematically the role of differently-sized
commmunities with different densities on the eigenvalues and eigenvectors of the non-
backtracking matrix.

Endnotes

! The definition presented here is also known as marked length spectrum. An alterna-
tive definition of the (unmarked) length spectrum does not depend on 73; see for example
(Leininger et al. 2007).

2 This follows from G being homotopy equivalent to a bouquet of k circles, where k is
the rank of the fundamental group of G. The universal covering of a bouquet of circles is
contractible, which is equivalent to the space being aspherical. (See (Hatcher 2017).)

3 Other authors reserve the use of the term cycle for special cases of closed paths such
as the set of simple cycles, which are closed paths that do not intersect each other. In this
work we use cycle and closed path interchangeably.

*In (Constantine and Lafont 2018), the authors need an isomorphism between the fun-
damental group of the spaces that are being compared, which is also computationally
prohibitive.
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>Here we choose both EMD and r = r( based on the experimental evidence of Fig. 5.
An early version of NBD used Euclidean and a value of  set to a constant (Torres et
al. 2018). Following that version, other authors have independently proposed using EMD
(Mellor and Grusovin 2018).

®https://www.ipam.ucla.edu/programs/longprograms/culture-analytics/
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