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Abstract
Background: real-world networks such as social and communication networks are
too large to be observed entirely. Such networks are often partially observed such that
network size, network topology, and nodes of the original network are unknown.
Analysis on partially observed data may lead to incorrect conclusions.

Methods: We assume that we are given an incomplete snapshot of a large network
and additional nodes can be discovered by querying nodes in the currently observed
network. The goal of this problem is to maximize the number of observed nodes within
a given query budget. Querying which set of nodes maximizes the size of the observed
network? We formulate this problem as an exploration-exploitation problem and
propose a novel nonparametric multi-armed bandit (MAB) algorithm for identifying
which nodes to be queried.

Results: Our proposed nonparametric multi-armed bandit algorithm outperforms
existing state-of-the-art algorithms by discovering over 40% more nodes in synthetic
and real-world networks. Moreover, we provide theoretical guarantee that the
proposed algorithm has sublinear regret.

Conclusions: Our results demonstrate that multi-armed bandit based algorithms are
well suited for exploring partially observed networks compared to heuristic based
algorithms.

Keywords: Network exploration, Network search, Multi-armed bandits, Incomplete
networks

Introduction
Interactions among different entities in many real-world complex systems are often rep-
resented by networks, where the entities are represented by nodes and the interactions
among them are represented as links between entities. For example, the information con-
tained in online social networks proved to be valuable in advertising applications such
as finding influential users to targeted marketing. Usually, data acquisition is done using
Application Programming Interfaces (APIs) offered by respective social networking ser-
vices. Using these APIs is often time consuming and the number of nodes (e.g., profiles)
that can be queried within a given time is restricted. A poorly constructed incomplete net-
work will lead to inaccurate findings. This highlights the importance of acquiring more
information as possible using a limited number of queries.
Here, we provide an overview of Adaptive Graph Exploration problem1. We formally

define it in “Proposed bandit based probing method” section. Suppose we are given a
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partially observed network. For instance, a sample of a social network collected by a
researcher. Since we do not know how this sample is obtained, only way to enhance this
sample is by acquiring data belonging to the unseen portion of the network. We use the
term probing to refer to querying a node to retrieve information about it and its neigh-
borhood. As an example, probing a node of a social network corresponds to querying a
social network API to obtain information about a user profile and its friends (or followers).
Continuing this process for a several rounds introduce new user profiles (nodes) and their
friends (neighboring nodes). If we are allowed to continue probing infinitely, we may be
able collect information about all the users. Still, when we are done with it, there is a
high chance that new users might have joined the network and new friendships have been
formed. In reality, we are restricted by constrains enforced by such social network APIs.
For example, Twitter limits most of its API requests to a maximum of 15 requests within
a 15 min time window2. We introduce this constraint as a probing budget, the maximum
number of times the network is allowed to be probed. Thus, our objective is to enhance
the observed graph as much as possible within this probing budget.
A straight-forward approach to reduce the incompleteness of a partially observed net-

work is to assume that the network has been generated by a certain network model and
use this model to predict the properties of the unobserved portion of the network. For
example, Kim and Leskovec (2011) fit a Kronecker model to the observed part of the
network and use this fitted model to predict unseen parts of the network. However, this
is always not practical for real-world networks as such methods require more structural
information (e.g, number of nodes) about the original network. Another approach is to
acquire more information of the network by progressively querying the observed net-
work as we name probing in this paper. Existing heuristic algorithms such as maximum
observed degree (MOD) probing andmaxreach (Soundarajan et al. 2016) require the sam-
ple to be obtained in a certain way (e.g., uniform edge sampling). In “Experiments" section,
we show that existing probing algorithms can not be generalized for incomplete networks
obtained by different sampling techniques. Furthermore, many real-world networks con-
sist of communities, densely connected regions of nodes. With empirical results, we show
that heuristic probing algorithms get stuck inside communities, making them worse than
probing a node in random.

Contributions

A high level overview of the proposed adaptive probing algorithm is illustrated in Fig. 1.
The probing pipeline consists of two major steps, obtaining a feature representation of
the observed network and a model which predicts the reward a node will reveal (e.g.,
the true degree of that node) based on its feature vector. The key assumption of using a
learning model is that nodes with similar features in the observed network will result in
similar rewards. Our choice of graph features is motivated by previous work on inferring
structural role (Henderson et al. 2012) and social status (Zhao et al. 2013) of nodes in
social networks.
One property which makes the estimation of rewards different from a normal pre-

diction problem is that our training data is accumulated over the process of probing.
A greedy strategy of probing nodes with similar features all the time may result in
sub-optimal results. This situation is known in reinforcement learning literature as
exploration-exploitation trade-off. Multi-armed bandits (Robbins 1952) is a generic way
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Fig. 1 Prediction pipeline

to approach real-world exploitation-exploration problems. In this context, exploitation
corresponds to selecting the node which has the largest expected reward and exploration
corresponds to selecting some other node for probing. In this paper, we express adap-
tive graph exploration problem as a multi-armed bandit problem in a non-stationary
environment.
In this manuscript, we extend the approach proposed in Madhawa and Murata (2018).

Our contributions are listed below. We mark the contributions which are new additions
to the work mentioned in the conference version (Madhawa and Murata 2018) with a *.

1 A generic approach for enhancing partially observed networks which does not
require any prior knowledge about the network.

2 A novel non-parametric upper confidence bound (UCB) algorithm (iKNN-UCB)
to solve the multi-armed bandit problem (MAB) when the arms are represented in
a vector space3.

3 We provide a proof that the regret of the proposed bandit algorithm is sublinear.*
4 Using iKNN-UCB algorithm on synthetic networks and real-world networks from

different domains, we demonstrate that our proposed method performs
significantly better than existing methods4.

5 With experiments on different network models, we demonstrate that certain
partially observed networks correspond to non-stationary reward distributions.*

Organization

The rest of this manuscript is structured as follows. In “Background” section, we provide
an extensive review of related work. “Proposed bandit based probing method” section
starts with the problem definition and describes our approach in detail. “Experiments”
section explains the experimental setup and the data sets being used. Then, in “Results”
section we present empirical evaluations of our bandit algorithm using real-world net-
works as well as synthetic networks. Finally, we conclude the paper with “Conclusions”
providing a brief discussion of the proposed bandit approach and a few promising
directions as future work.

Background
Network crawling and sampling

Network sampling methods pose as a potential approach to solve the problem introduced
in the above section. However, common sampling techniques such as uniform node sam-
pling and uniform edge sampling are not suitable since uniform sampling depends on
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access to the space of all available nodes (Ahmed et al. 2014). It is not practical to assume
that we can know the number of nodes or edges of a partially observed network.
In contrast, the objective of our problem is improving a given incomplete network and

we have no knowledge of how the sample is being obtained. Particularly, snowball sam-
pling (Lee et al. 2006) and random walk based sampling algorithms (Cooper et al. 2016)
can be used when the information about the complete network is not accessible. However,
such algorithms suffer from the same drawbacks as of heuristic algorithms; they do not
adapt as the observed information updates. As another related problem, link prediction
(Liben-Nowell and Kleinberg 2007) can be used to predict missing links on a network, but
not capable of predicting missing regions of nodes. The observed sample can be further
enhanced by iteratively querying observed nodes and adding their neighboring nodes to
the sample. Avrachenkov et al. (2014) propose Maximum Expected Uncovered Degree
(MEUD), a greedy algorithm for selecting which node to be probed next. However, this
algorithm requires the degree distribution of the original network to be known.When this
requirement is not fulfilled, it reduces to Maximum Observed Degree (MOD) algorithm
which greedily chooses the node with the largest observed degree. We use MOD as a
baseline algorithm in our experiments and show that our proposed algorithm significantly
outperforms MOD in synthetic and real-world networks.

Active search

Active search on graphs (Wang et al. 2013; Bilgic et al. 2010) is another related problem
with the objective of finding as much target nodes as possible possessing a given prop-
erty. Most of the previous work relating to this problem assume that the complete graph
is observable and any node can be queried to find its label (Ma et al. 2015). If only an
incomplete view is available, an approach relying only on the observed information may
not obtain the best possible reward. In addition to exploitation of the best option accord-
ing to available information, exploration of other possible options is performed to achieve
better rewards. A common approach to finding a balance between exploitation vs explo-
ration trade-off is formulating it as a multi-armed bandit (MAB) problem (Mahajan and
Teneketzis 2008). SN-UCB1(Bnaya et al. 2013) and NETEXP(Singla et al. 2015) are such
MAB based active search algorithms proposed for partially observed networks. NETEXP
assumes that probing a node reveals its 2-hop neighborhood, which is not true for real-
world social networks. If the observability is restricted to 1-hop neighborhood of nodes,
this algorithm reduces to random neighbor probing. SN-UCB1 does not provide a signifi-
cant improvement over the existing heuristic methods. Recently, Soundarajan et al. (2017)
proposed ε-WGX, a multi-armed bandit approach to solve Active Edge Probing (AEP)
problem in incomplete networks. Though AEP looks similar to the problem discussed in
this paper, it is fundamentally different from ours as a node can be probed multiple times
and only one neighboring edge is revealed in each probe. Hence, this problem can be
considered as a restricted version of the problem we are dealing with in this paper.

Multi-armed bandits

Multi-armed bandits (MAB) (Robbins 1952) is a generic framework used to systemati-
cally define exploitation vs exploration trade-off. The classic k-armed bandit problem is
modeled after a gambler trying to maximize the profit by choosing which slot machines
(known as bandits) to play. Playing a bandit results in a reward which is assumed to be
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sampled from a probability distribution specific to that bandit. In a multi-armed prob-
lem with a discrete set of available actions, choosing an action corresponds to playing an
arm in a multi-armed bandit problem. A variety of bandit algorithms are being used to
solve a multitude of real-world optimization problems such as recommender systems (Li
et al. 2010) and display advertising (Lu et al. 2010). Out of all existing approaches to MAB
problem, upper confidence bound (UCB) (Auer 2002) methods possess the best theo-
retical guarantee in maximizing the reward. UCB algorithms are based on the principle
of “optimism in the face of uncertainty"; actions are chosen based on optimistic guesses
of how much reward choosing a particular action may bring in. If choosing that action
results in a reward which is less than expected, then the confidence placed on that action
is decreased.
Algorithms for classic MAB problems decides which action to play only based on the

distribution of rewards observed by choosing that action. Since such algorithms do not
use any contextual information into consideration, they are known as context-free algo-
rithms. However, in real-world optimization problems such as movie recommendation,
an action can be represented by its features. For example, in a movie recommendation
problem, a movie has a multitude of features(e.g., genre, year, etc.). A variant of MAB
problems, contextual bandits (Li et al. 2010) leverages the features describing an action,
known as the context of an action. In addition to the reward, contextual bandits observe
the context as a feature vector of each action (bandit). The context vectors are used to cal-
culate the expected reward of each action and the action with the largest expected reward
is chosen. As an example, LinUCB (Li et al. 2010) models the expected reward as a linear
regression on context vectors.

Proposed bandit based probingmethod
We start this section with the formal definition of the problem. Then we describe the
main components of this work and the multi-armed bandit algorithm in detail.

Problem definition

Suppose there is a large unweighted undirected graph G which cannot be observed fully,
instead only a partially observed network G′ is available. We denote the initial incom-
plete network as G′

0 (at time=0). Our goal is to grow this network by probing any of the
observed nodes at each time step. Using this notation we denote the observed network at
time t as G′

t . Table 1 lists the notation that we will be using in this section.

Definition 1 Probing a node reveals all links incident to it and the identity of its
neighboring nodes.

The number of times we are allowed to probe the network is constrained by the probing
budget (T ∈ Z

+).

Table 1 Table of notations

Symbol Definition

G(V , E) Original network

G′
t

(
V ′
t , E

′
t

)
Observed network at time t

Kt Set of candidate nodes at time t

T Probing budget
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Definition 2 At time t, a node in the original network G can belong to any of the following
three sets.

1 unobserved: existence of these nodes is not visible to the algorithm.
2 observed: these nodes exist in both G and G6′

t , but has not being probed.
3 probed: the algorithm knows about these nodes and their neighboring nodes.

Figure 2 illustrates an example of an incomplete network. We use bold lines to denote
observed links and dash lines to denote unobserved links at the given moment. Even
though nodes V1 and V2 are observed when node U is probed, [V1,V2] link is not
observed because neither nodes are probed.
We consider a node which has been probed by the algorithm as an observed node as

well. Hence, all the nodes in the graphG′
t are referred to as observed nodes. Any observed

node which is not probed is considered as a candidate for probing. Hence, we refer to
such nodes as candidate nodes. In the beginning, all the nodes in the given sample are
candidate nodes. Probing a candidate node reveals a reward (e.g., true degree of a node).
Our goal is iteratively selecting b candidate nodes that maximize the cumulative reward
(i.e., number of observed nodes).

Calculation of expected reward of a candidate node

Instead of using a heuristic metric to choose a candidate node for probing in each
time step, we treat this problem as a learning problem. Similar to an active exploration
algorithm, our proposed solution consists of three high-level steps (Pfeiffer III et al.
2014): probing, learning, and prediction. Probing a node results in additional informa-
tion about the observed network. Information about the currently observed network is

Fig. 2 Example of an incomplete network. The black node U is probed and gray nodes V1, · · · , V4 are
observed. The white nodes X1, · · · , X4 exist in the original network G, are yet to be observed
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leveraged to learn a predictive model which predicts the expected reward of a given can-
didate node in future. Our approach assumes that candidate nodes with similar structural
neighborhoods will result in similar rewards.
Suppose that the feature vector of a candidate node j at time t is xj,t ∈ R

d . The learner
probes node j at time t and observes the following reward:

rj,t = f (xj,t) + ζt ,

where f : X → R gives the expected reward of a given node and ζt is sub-gaussian white
noise. Here, f can be any function which can compute the expected reward of a node
given its features (e.g., linear regression).

Assumption 1 (λ-Hölder continuity of f): There exists constants CH > 0 and λ > 0
such that |f (x) − f (x′)| ≤ CH · D(x, x′)λ for all x, x′ ∈ X . D is a metric which defines the
“distance" between two vectors x and x′.

Assumption 1 expresses that the difference between the value of regression function
f on two points x and x′ depends on the distance between the two points D(x, x′). In
our problem setting, if two nodes are close with respect to the distance measure D,
their rewards are assumed to be similar.This is a standard smoothness condition used in
regression (Chen et al. 2018; Jiang 2019). Lipschitz continuity is a special case of Hölder
continuity when λ = 1. In the following section, we provide a detailed description on how
we formulate this problem as a multi-armed bandit problem.

Bandit algorithm

Problem setting

In the classical multi-armed bandit problem, an agent selects one of the K arms (or
actions) at each time step and observes a reward depending on the chosen action. The
goal of the agent is to play a sequence of actions which maximizes the cumulative reward
it receives within a given number of time steps. Classical k-armed bandit problem comes
with the following assumptions:

1 The set of arms K does not change over time.
2 Each arm is independent.
3 The rewards are drawn randomly from a probability distribution that is specific to

each arm.
4 The environment is stationary. The reward distribution of arms does not change

over time.

Selecting a node from the set of candidate nodes at time step t for probing is similar to
pulling an arm in a multi-armed bandit problem. However, our problem does not satisfy
the assumptions mentioned above. For example, the set of candidate nodes change as we
keep adding new nodes to the partially observed network during the exploration process.
More importantly, probing a node for the second time does not reveal any additional
information. Hence, playing an arm once again is a waste of time. In addition, it is not safe
to assume that the reward distribution would stay stationary over time. We address all of
these concerns in our proposed algorithm.
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As independent assumption does not hold in our problem setting, it is more suitable to
express it as a structured bandits problem, in which reward distributions of arms are not
independent, but interrelated. In a structured bandit problem, the agent deduces relation-
ships between arms based on some d-dimensional feature vector xa ∈ R

d belonging to an
arm a.

KNN-UCB algorithm for structured bandits

Linear bandits(Rusmevichientong and Tsitsiklis 2010; Dani et al. 2008) model, the sim-
plest among such models, assumes that the reward of choosing an arm is linearly
dependent on its features. In linear bandits, the expected reward of an arm is calcu-
lated as the inner product of its feature vector and a parameter vector θ . However,
real-world data often exhibit more complicated relationships than a linear one. There-
fore, we choose k-nearest neighbor (k-NN) regression to estimate the expected reward
of arms. To introduce exploration into the solution, we extend Guan and Jiang (Guan
and Jiang 2018)’s k-armed KNN-UCB algorithm to the structured setting. As explained in
Multi-armed bandits, upper confidence bound (Auer 2002) (UCB) algorithms incorpo-
rate an exploration term by calculating confidence bound for each arm and choose the
action corresponding to the largest confidence bound.
We define k-nearest neighbor upper confidence bound (iKNN-UCB) rule as

at = argmax
i

f̂ (xi) + α · Ut,k(xi) (1)

where Ut,k(x) is the uncertainty score of point x and α > 0 is a constant determining
the amount of exploration. If α = 0 the uncertainty score is ignored, and the algorithm
becomes a greedy algorithm which performs exploitation all the time.
To address the issue of non-stationarity of the environment, we consider only the most

recent observations within a time window of size τ . In this setting, k-NN regression
considers only the τ -most recently observed nodes and their rewards in computing the
expected reward for a new node. This approach is motivated by sliding window UCB
(SW-UCB) algorithm proposed by Garivier and Moulines (Garivier and Moulines 2011).
If τ ≥ T , then the resultant UCB algorithm is the same as the usual stationary UCB
algorithm.

Definition 3 (k-nearest neighbor regression (Jiang 2019)). Let the k-NN radius of x ∈ X
be rk(x) = inf {r : |B(x, rk(x) ∩ X) ≥ k|} where B(x, r) = {x ∈ X : D(x, x′) ≤ r}. k-NN set
of x ∈ X be Nk(x) := B(x, rk(x)) ∩ X. Expected reward of arm i, f̂ (xi) is estimated with
weighted k-NN regression as

f̂ (xi) = 1
k

∑

xj∈Nk(xi)

yj
D(xi, xj)

, (2)

where yj is the observed reward for xj and D(xi, xj) is euclidean distance between feature
vectors xi and xj.

We define σ(x) as the average distance to points in the k-neighborhood,

σ(xi) = 1
k

∑

xj∈Nk(xi)
D(xi, xj) . (3)



Madhawa and Murata Applied Network Science            (2019) 4:26 Page 9 of 18

The uncertainty term Ut,k(xi) is analogous to the term Ti(t) in a finite arm
MAB problem, the number of times action i has been chosen by the time t. If
Ut,k(xi) is large, the k-neighborhood of node i is dispersed over a larger space.
On the other hand, if σ(xi) is small, we have already observed nodes close to
node i. Hence, the exploration term weights less observed neighborhoods. Algorithm
1 shows how a given network is being probed using the proposed iKNN-UCB
algorithm.

Algorithm 1: iKNN-UCB.
Input : incomplete network G′

0 = (
V ′
0,E′

0
)
, probing budget T ∈ Z

+, exploration
parameter α, temporal window size τ , k, T0

Output: A sequence of T nodes to probe
Initialize: candidate nodes = V ′

0
1 for t ← 1 to T do
2 if t ≤ T0 then
3 sample at uniformly fromAt
4 else
5 for i in candidate nodes do
6 calculate the feature vector xi
7 calculate the estimated reward f̂ (xi) with Eq. 2
8 calculate exploration term σ(xi) with Eq. 3

9 find the node at corresponding to the largest UCB with Eq. 1
10 probe node at in the original graph G and observe the reward rt,at
11 Add neighboring nodes Nat of node at to the incomplete network

G′
t−1.

(
G′
t = G′

t−1 ∪ Nat
)

12 remove node at from candidate nodes

Regret

The objective of a bandit algorithm is to select arms so as to maximize the cumulative
reward over time. Minimization of total regret is an equivalent way of expressing maxi-
mization of cumulative reward. The regret at iteration t equals to the difference between
reward of the “optimal" arm and the reward of a suboptimal arm. In simple terms, regret
is the loss incurred by the policy for not playing the optimal arm all the times. In T itera-
tions, we pull arms a1, a2, · · · , an and we observe rewards ra1,1, ra2,2, · · · , ran,n. We use the
following notion of regret

RT =
T∑

t=1

[
max
a

ra,t − rat ,t
]
.

Theorem 1 (Sublinear regret bound). Let M > 0 be an arbitrary constant. Suppose that
Assumption 1 holds. Then the regret is sublinear with,
RT ≤ M · T (λ+d)/(2λ+d).
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Proof The regret for bandits in a continuous feature space is

RT =
T∑

t=1
[ sup
xi∈X

f (xi,t) − f (xat ,t)] . (4)

Using k-nearest neighbor regression rates when f is λ-Hölder continuous (Assump-
tion 1) and k = O

(
t2λ/(2λ+d)

)
(Jiang 2019),

sup
x∈X

∣
∣f (x) − fk(x)

∣
∣∞ ≤ Õ

(
t−λ/(2λ+d)

)
. (5)

Using this result in Eq. 4, results in

RT ≤
T∑

t=1
Lt · t−λ/(2λ+d), (6)

where Lt is used as an asymptotic constant.
Let Lt ≤ M,

RT ≤ M
T∑

t=1
t−β/(2λ+d) = M · T (λ+d)/(2λ+d). (7)

Hence, the regret is sub-linear.

Experiments
We construct the feature vector xj of candidate node j as a vector of following features.
For each feature, the local neighborhood of node j in the observed graphG′

t is considered.
All these features vary over time as new nodes and edges are added to the observed graph
during the probing process.

1 d(j) : observed degree centrality of node j.
2 ad(j) : average degree centrality of its neighbors.
3 md(j) : median degree centrality of its neighbors.
4 ap(j) : the average fraction of probed neighbors found in the neighborhood. This

feature takes the maximum value 1, if all the neighbors of node j have been probed.

These features are chosen because their effectiveness is shown in previous work on
finding structurally similar nodes (Henderson et al. 2012).

Data

We perform experiments on various synthetic networks as well as eight publicly available
real-world data sets of social and information networks (Leskovec and Krevl 2014). The
datasets are briefly explained below.

Synthetic networks

Real-world networks exhibit a variety of characteristics: different degree distributions,
existence of community structure etc. Before delving into real-world networks, we gener-
ate synthetic networks with a varying degree of such characteristics. This makes it easier
to understand the performance of our proposed approach in terms of network properties.
We use the following network generation models:
Barabasi-Albert (BA)(Barabási and Albert 1999). The BA model generates scale-free

networks with power-law degree distributions. A scale-free network contains a few nodes
(called hubs) with unusually high degree compared to other nodes. The BA model uses a



Madhawa and Murata Applied Network Science            (2019) 4:26 Page 11 of 18

network generation process consisting of growth and preferential attachment. This pro-
cess selects neighbors to a given node with a probability proportional to their degree. This
makes sure that the higher the degree a node has it has a higher probability of having
edges with other nodes. This phenomenon is responsible for creating hub nodes.
Lancichinetti-Fortunato-Radicchi (LFR)(Lancichinetti et al. 2008). In addition to power-

law degree distributions, real-world social and communication networks possess addi-
tional phenomena such as the existence of communities (Fortunato and Castellano 2012).
Groups of nodes which are densely connected within the same group compared to nodes
belonging to other groups are known as communities. Modularity is a popular metric
used to measure the quality of a particular division of a network into constituent com-
munities. Most of the community detection algorithms are based on the principle of
modularity maximization (Newman 2004; Blondel et al. 2008). Thus, higher modularity
is an indication of the existence of community structure.
BA network model is not capable of generating networks having community structure.

We use Lancichinetti–Fortunato–Radicchi (LFR) benchmark to generate networks with
community structure. Node degree and community sizes of networks generated by LFR
benchmark have power law distributions with different exponents. The mixing parameter
μ of LFR model decides the probability of a node linking to a node belonging to another
community. Low values of μ will result in dense communities as the chance of having
intra-community links (1−μ) is higher compared to the chance of inter-community links
(μ). We create LFR benchmark networks with varying the value of μ in the range [0.1,
0.5] to investigate how our proposed model performs on networks with varying degree
of community structure. Mixing parameter and modularity of a network are inversely
related.
To make it easier to compare performance across networks generated by differ-

ent algorithms, we generate all the networks with the same number of nodes (N =
34, 546), the number of nodes in the HepPh citation network (described in the
following section).

Real-world networks

Table 2 gives a summary of the seven real-world network data sets we use. We use real-
world networks obtained from various domains as detailed below.
Citation networks. A citation network contains an undirected edge connecting paper i

and paper j, if the paper i cites another paper j.
Co-authorship networks. Similarly, in a co-authorship network authors are represented

as nodes. Two authors are connected if they have published at least one paper together.
Social networks.A social network consists of users and relationships between them.We

use a network data set obtained from the social network Twitter. This network is made

Table 2 Description of real-world network data sets

HepPh HepTh Epinions Twitter Stanford AstroPh DBLP Slashdot

Type Citation Citation Web Social Web CA CA Web

Nodes 34546 27770 75789 81306 281903 18772 317080 82168

Edges 421578 352807 508837 1768149 2312497 198110 1049866 549202

ACC 0.2848 0.3120 0.1378 0.5653 0.5976 0.6306 0.6324 0.0603

(CA = co-authorship, ACC = Average Clustering Coefficient)
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of 1000 ego-networks consisting of 4869 Twitter lists (Leskovec and Mcauley 2012). An
ego-network is a social circle formed among a user and her friends.
Web networks. These networks represent users and links between them, similar to a

social network. However, the networks we consider here, Epinions and Slashdot represent
who-trust-whom data of users instead of the relationships or interaction among users.
Hence, we categorize them as web networks. In these networks, a user tags another user
as trustworthy or not. They are sparse compared to online social networks.

Impact of initial sampling method

To investigate how the sampling method used to acquire the initial sample influence the
probing methods, we generate graph samples using two sampling methods. These are the
methods we use:

1 Random node sampling (RN): At each step we randomly choose one neighbor of a
node already in the sample.

2 Breadth-first search (BFS): Nodes are added to the sample in the order they are
observed.

We induce a subgraph on a sample of nodes obtained by any of the above methods. These
subgraphs are used as the initial sample for the adaptive graph exploring problem and
probing algorithms are applied to acquire more information on the original network.

Methods

We compare the performance of our algorithm against the following algorithms.

Algorithms that do not use node features

• Random node (RW). In this trivial baseline, we select one of the candidate nodes
randomly for probing.

• Maximum observed degree (MOD). This greedy algorithm chooses the node
having the maximum observed degree. MOD is the MEUD algorithm proposed in
(Avrachenkov et al. 2014) adapted to one-hop neighborhood visibility.

Algorithms that use node features

• Lin-UCB. This applies the UCB algorithm by Dani and Kakade (Dani et al. 2008)
assuming that the reward of an arm is linearly dependent on its feature vector.

• KNN-greedy. This algorithm chooses the arm corresponding to the largest expected
reward calculated by k-NN model.

• KNN-ε-greedy. This algorithm chooses a random arm with probability ε, chooses
the arm corresponding to the largest expected reward calculated by k-NN model
with probability (1 − ε).

• iKNN-UCB This is our proposed algorithm, Algorithm 1. For all algorithms based
on k nearest neighbor regression, we limit number of neighbors to 20 (k=20).

Results
Analysis on synthetic networks

We probe incomplete BA and LFR networks obtained by RN and BFS sampling for 1000
iterations (T = 1000).We perform each experiment 10 times with different initial samples
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and report the average in this section. The number of nodes observed in the BA network
is shown in Fig. 3. For all networks generated by Barabasi-Albert (BA) model, MOD could
observe more nodes than the bandit algorithm. This observation confirms Avrachenkov
et al. (2014)’s claim that MOD probing can achieve the best connected network cover for
networks generated by preferential attachment processes. The recent work by LaRock et
al. (LaRock et al. 2018) further generalize this claim as learning and predicting the rewards
is not necessary for networks generated by BA model.
To understand how the existence of community structure impacts the probing, we

evaluate the performance of all algorithms on synthetic networks generated by different
configurations of LFR benchmark model (Lancichinetti et al. 2008). We vary the mix-
ing parameter μ from 0.1 to 0.5 keeping all other parameters of the model constant
(γ = 3,β = 1.3, average degree = 25). iKNN-UCB significantly outperforms the baseline
for networks with a smaller μ. The results are shown in Fig. 4. When the initial sam-
ple is obtained by breadth-first walk (BFS), iKNN-UCB outperforms all baselines by a
significantmargin. The gap between iKNN-UCB and the baselines is larger when themix-
ing parameter is small, the network has significant community structure. BFS sampling
results in dense network samples. This is evident from the significantly high clustering
coefficients of BFS sample networks compared to RN samples of the same size. Probing a
few nodes in such a densely connected region is enough to acquire the most information
about that region. However, greedy algorithms such as MOD are not capable of learning
this reality and keep probing nodes which won’t result in high rewards.
The experimental results on synthetic networks suggest that iKNN-UCB algorithm can

adapt for incomplete networks obtained by different sampling techniques and networks
with structural properties such as community structure.

The importance of exploration

The parameter α in the proposed UCB algorithm determines the amount of exploration
performed by the algorithm. Therefore, when α = 0, the resultant algorithm is equivalent
to the greedy algorithm which chooses the node with the largest expected reward. In
this section, we perform experiments by varying the value of α and results are shown in

a b

Fig. 3 Performance comparison on scale-free network created by Barabasi-Albert model. (nodes=50000, m =
20) 1000 probing steps run on samples containing 5% randomly selected nodes. a random node (RN) sample
b BFS sample
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a b

Fig. 4 Performance on synthetic networks generated by LFR benchmark model. a RN sample b BFS sample

Fig. 5. We observe that more exploration corresponds to better results for networks with
stronger community structure (smaller μ). However, the exploration is less important for
networks with weaker community structure (largerμ). This is evident in Fig. 4 as well. We
perform all the subsequent experiments keeping the exploration coefficient as a constant
(μ = 1).

Fig. 5 Investigating the importance of exploration. Compares the number of nodes observed by our
proposed algorithm with different values of exploration coefficient α. Each graph corresponds to a LFR
benchmark network generated with the corresponding mixing parameter μ. Results indicate the average of
10 independently sampled partially observed networks
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Non-stationarity of the environment

In this section, we investigate the non-stationarity of reward distribution by varying the
sliding window size τ . If the reward distribution is stationary, then the variation of perfor-
mance between different values of τ should be minimum. However in Fig. 6, we observe
larger variance among the cumulative reward of LFR benchmark graphs with a larger
mixing parameter, especially when sampled by a BFS walk. Larger mixing parameter
corresponds to networks with weaker community structures, hence smaller modularity.
Based on these observations, for network samples with low modularity and high cluster-
ing, it is desirable to run iKNN-UCB algorithm with a smaller sliding window; relying
only on the most recent observations.

Results on real-world networks

Weuse eight real-world networksmentioned in Table 2 and generate RN and BFS samples
containing 5% nodes of the original network G. Then we perform 1000 probing steps
on each graph. We perform each experiment five times initialized with different random
seeds and report the average number of additional nodes which were observed in Figs. 7
and 8.
iKNN-UCB and Lin-UCB bandit algorithms outperform all baseline methods in net-

works generated by both RN and BFS sampling. Even though Lin-UCB bandit algorithm
observes as much nodes as iKNN-UCB for RN samples, its performance is worse for BFS
samples. This shows that linear model in Lin-UCB is not capable of learning the rela-
tionship between observed node features and the true degree of a node if the sample is
constructed by a BFS.

Fig. 6 Investigating non-stationarity of the environment. Compares the number of nodes observed by our
proposed algorithm with different values of sliding window τ . When τ = 1000, all the observations are used
by the k-NN regression. Each graph corresponds to a LFR benchmark network generated with the
corresponding mixing parameter μ. Results indicate the average of 10 independently sampled partially
observed networks
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Fig. 7 Comparison against baselines: 1000 probes run on 5% nodes of each network. Each sample is created
by performing a random walk on the original network

Conclusions
In this paper, we introduced a multi-armed bandit based exploration algorithm for par-
tially observed incomplete networks. We proposed a novel nonparametric multi-armed
bandit algorithm iKNN-UCB with sublinear regret. Compared to existing solutions for
the Adaptive Graph Exploring problem, the proposed method does not depend on a
specific heuristic. Additionally, iKNN-UCB bandit algorithm outperforms the baseline
methods irrespective of how the initial incomplete network is obtained. We provided
experimental evidence for our approach using synthetic networks and a variety of real-
world networks. Using different configurations of LFR benchmark networks, we observed
that our algorithm outperforms all other baselines significantly, especially when the
network exhibits community structure prominently. Since the reward function is inde-
pendent of the probing procedure, it is easy to define a new reward function to solve a
different graph exploration problem (e.g., finding a particular type of nodes).
In this paper, we assumed that probing a node would reveal all its neighboring nodes.

However, in some real-world scenarios, only a certain number of neighbors is revealed
(e.g., follower limit in Twitter API 5). As future work, we intend to explore how this
current approach can be extended for such different settings of the same problem.

Endnotes
1We use the terms network and graph interchangeably.
2 https://developer.twitter.com/en/docs/basics/rate-limits.html
3 source code available at https://bitbucket.org/kau_mad/bandits
4 source code available at https://bitbucket.org/kau_mad/net_complete
5 https://dev.twitter.com/rest/reference/get/followers/ids

Fig. 8 Comparison against baselines: 1000 probes run on 5% nodes of each network. Each sample is created
by performing a breadth first walk on the original network

https://developer.twitter.com/en/docs/basics/rate-limits.html
https://bitbucket.org/kau_mad/bandits
https://bitbucket.org/kau_mad/net_complete
https://dev.twitter.com/rest/reference/get/followers/ids
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