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Abstract
The conventional notion of community that favors a high ratio of internal edges to
outbound edges becomes invalid when each vertex participates in multiple
communities. Such a behavior is commonplace in social networks. The significant
overlaps among communities make most existing community detection algorithms
ineffective. The lack of effective and efficient tools resulted in very few empirical studies
on large-scale detection and analyses of overlapping community structure in real social
networks. We developed recently a scalable and accurate method called the Partial
Community Merger Algorithm (PCMA) with linear complexity and demonstrated its
effectiveness by analyzing two online social networks, Sina Weibo and Friendster, with
79.4 and 65.6 million vertices, respectively. Here, we report in-depth analyses of the 2.9
million communities detected by PCMA to uncover their complex overlapping
structure. Each community usually overlaps with a significant number of other
communities and has far more outbound edges than internal edges. Yet, the
communities remain well separated from each other. Most vertices in a community are
multi-membership vertices, and they can be at the core or the peripheral. Almost half
of the entire network can be accounted for by an extremely dense network of
communities, with the communities being the vertices and the overlaps being the
edges. The empirical findings ask for rethinking the notion of community, especially the
boundary of a community. Realizing that it is how the edges are organized that matters,
the f -core is suggested as a suitable concept for overlapping community in social
networks. The results shed new light on the understanding of overlapping community.
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Introduction
A community in networks is conceived commonly as a group of vertices connected
closely with each other but only loosely to the rest of the network. Such communities are
widespread in many systems and their detection has attracted much attention in the past
two decades (Fortunato 2010). This vague notion of communities is subjected to many
possible interpretations. The most common one is based on the ratio of the numbers of
internal edges to outbound edges, which go out of the community. The more the internal
edges to outbound edges, the more definite is the community. For example, the widely
used methods based on strong/weak community (Radicchi et al. 2004), LS-set (Luccio
and Sami 1969), conductivity and network community profile (Leskovec et al. 2009; Jeub
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et al. 2015), and fitness functions (Baumes et al. 2005; Lancichinetti et al. 2009; Gold-
berg et al. 2010) favor a higher internal edges to outbound edges ratio. The idea works
well for disjoint communities, but it has also been adopted by algorithms for detecting
overlapping communities (Xie et al. 2013). Nonetheless, the number of members, mostly
at the periphery, belonging to multiple communities is still expected to be small so that
an “overlapping community" remains well separated from its surrounding. However, the
structure of overlapping communities in real social networks may be far more complex.
It is commonplace that every individual has multiple social circles. It implies that all parts
of a social community, peripheral and core, may be overlapping with a significant number
of other communities and there can be far more outbound edges than internal edges. The
existence of these significantly overlapped communities, as will be shown in the present
work, asks for a deeper understanding of what an overlapping community really is, where
their boundaries are, and how to detect them.
Analyzing big data sets of real social networks is vital in network science. An immediate

problem is that most existing methods are incapable of detecting significantly overlapped
groups of vertices, because these groups have toomany outbound edges to be identified as
well separated communities. The recently proposed methods of OSLOM (Lancichinetti
et al. 2011) and BIGCLAM (Yang and Leskovec 2013) are useful to some extent in small
synthetic networks, but they become inefficient for large-scale networks which readily
have the size of millions to billions of vertices. Sampling small subnetworks (Maiya and
Berger-Wolf 2010) would not work either due to the small-world effect (Watts and Stro-
gatz 1998), e.g. the average distance between any two individuals on Facebook is only 4.74
(Backstrom et al. 2011; Ugander et al. 2011), while in a social group for which the size
is small compared to the whole network, a member may usually need one or two hops
to be connected to all the other members. A community may be considered as localized,
but it is also widespread in the network. Sampling small subnetworks would preserve
particular communities but decompose many others, making it inappropriate for study-
ing the overlaps among communities. Some newly proposed algorithms (Lyu et al. 2016;
Sun et al. 2017; Epasto et al. 2017) achieved linear-time complexity, but their validity and
accuracy in detecting significantly overlapped communities requires further benchmark-
ing and cross-checking. The lack of effective and efficient algorithms resulted in very few
studies on detecting and analyzing overlapping community structure in large-scale social
networks. An empirical study was carried out on Facebook (Ferrara 2012), but only meth-
ods for detecting disjoint communities were used. A recent study on Friendster found that
about 30% of the vertices belonged to multiple communities (Epasto et al. 2017). Jebabli
et al. analyzed community structure in a sampled YouTube network of 1.1 million ver-
tices and evaluated a number of overlapping community detection algorithms (Jebabli et
al. 2015; 2018). Yang and Leskovec analyzed metadata groups of some real networks and
found that overlaps occur more often at the cores of communities (Yang and Leskovec
2015; 2014). This is contrary to the traditional notion that overlapping members are
mostly at the periphery. Recent studies also revealed that metadata groups may not give
the ground-truth of structural communities (Hric et al. 2014; Peel et al. 2017).
The present authors developed recently a scalable partial community merger algorithm

(PCMA) which adopts f -core as the notion of community that a member of a community
should know at least a fraction f of the other members (Xu and Hui 2018; Xu 2016). The
concept of f -core imposes no constraints or implications on the fraction of overlapping
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vertices in a community or the number of communities a vertex may belong to. The
method is a bottom-up approach by properly reassembling partial information of com-
munities found in ego networks of the vertices to reconstruct the complete communities.
It consists of three steps:

1. Find communities in the ego network of each of the vertices. These communities
are referred to as partial communities as each of them is only part of the
corresponding complete community.

2. Merge partial communities that are parts of the same community to reconstruct
complete communities.

3. Clean up the noise accumulated in the merged communities to sift out the real
communities.

This approach is intuitive and easy to conceive. There are a number of similar algorithms
such as DEMON (Coscia et al.) and EgoClustering (Rees and Gallagher 2013). The reason
that PCMA achieves a far better accuracy is a novel similarity measure of communi-
ties that suppresses the amount of noise accumulated during the merging process. The
present authors tested PCMA against the LFR benchmark (Lancichinetti et al. 2008) and
a new benchmark designed for significantly overlapping communities, and established
the accuracy and effectiveness of PCMA in detecting communities with significant over-
laps, as well as slightly overlapping and disjoint ones. The linear complexity of PCMA
enabled the analysis of two huge online social networks with 79.4 and 65.6 million ver-
tices - Sina Weibo and Friendster (see Table 1) - without sampling small subnetworks.
The ∼ 2.9 million communities detected by PCMA were verified to be non-duplicating
and have relatively high values of internal edge density. A surprising finding is that more
than 99% of them have more outbound edges than internal edges, and the outbound
edges often outnumber the internal edges by many times. The communities overlap sig-
nificantly, while still keeping relatively clear boundaries. These communities are strong
empirical evidence against the traditional notion of an overlapping community. While we
focused on developing the PCMA algorithm in Ref. (Xu and Hui 2018), we uncover the
complex overlapping pattern of these communities in the present work by examining the
data in detail and explain why the communities can still remain well separated from each
other. After introducing the four main characteristics of the overlapping pattern, we give
a macroscopic picture of the social network structure by grouping edges of the entire
network into five types. The concept and possible better definitions of an overlapping
community are discussed. Additional information on the data sets and the detection of
communities is given in the appendix.

Characteristics of overlapping pattern
In this section, we discuss in detail the fourmain characteristics of the overlapping pattern
of the 2.9 million communities detected by PCMA.

Table 1 Information on the two huge social networks analyzed

Dataset n m 〈k〉 CWS c

Sina Weibo 79.4M 1046M 26.4 0.155 1.3M

Friendster 65.6M 1806M 55.1 0.205 1.6M

M represents a million. n andm are the number of vertices and edges. 〈k〉 is the average vertex degree. CWS is the average local
clustering coefficient. c is the number of communities detected by PCMA. More detailed information is given in the appendix
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Characteristic 1. Multi-membership vertices or overlapping vertices account for the
majority of the community, and they are everywhere. These vertices were often thought
to be peripheral members. A recent study on metadata groups (Yang and Leskovec 2014)
found that these vertices are more likely core members. Our analysis on the two large-
scale social networks reveals that the overlapping vertices can be anywhere, i.e., core and
periphery, in the community. In general, a vertex v may belong to mv communities. The
vertices can then be sorted by their values of mv = m for m � 1. The belongingness bv,C
of a vertex v to a community C can be defined as

bv,C = kintv,C
nC − 1

(1)

where nC is the community size and kintv,C is the number of other members in C that are
connected to v. A high (low) value of bv,C means that v is closer to the core (periphery) ofC.
If overlaps occur more often at the periphery (core), we would expect multi-membership
vertices with m > 1 to have a lower (higher) belongingness b than those with m = 1.
Figure 1 shows that the belongingness distributions for vertices with different values ofm
are almost identical, with an insignificant tendency of multi-membership vertices having
a slightly higher belongingness. The results imply that mv is basically uncorrelated with
bv,C, and multi-membership vertices exist everywhere in a community with no preference
towards the core or the periphery as compared with non-overlapping vertices.
Figure 2 shows the distribution pm of the number of memberships among the vertices

with m � 1. About 50% of the vertices, i.e., those with m > 1, have multiple member-
ships in Sina Weibo. For Friendster, the proportion is ∼ 60%, which is about twice of that

Fig. 1 Belongingness distribution of vertices with different number of memberships in Sina Weibo network.
The bin width of the x-axis is 0.02. A vertex withmmemberships hasm independent values of belongingness
b, each for a community that the vertex belongs to. The distributions are almost the same, i.e. uncorrelated to
m, for different values ofm, withm = 1 shifted slightly to the left. The noisy peaks are due to the fact that
belongingness b as defined in Eq. (1) is discrete, especially when nC is small. The Friendster network (not
shown) shows the same pattern
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Fig. 2 Membership distribution pm of vertices withm � 1 and the empirical probability Pm that amember of
a community hasmmemberships. Pm is right skewed because a vertex withmmemberships is countedm
times (since it appears inm communities) compared to pm

reported in Ref. (Epasto et al. 2017). A related quantity is

Pm = pm · m
〈m〉 , (2)

which gives the empirical probability that a member of a community hasmmemberships.
Here, 〈m〉 = ∑∞

m=1 pm ·m is the mean value ofm. Note that Pm and pm are related but dif-
ferent. Pm is the expected membership distribution of the members within a community,
and pm describes the distribution inm of all vertices withm � 1. Referring to Pm in Fig. 2,
Pm=1 = 18.8% and 12.9% for Sina Weibo and Friendster, respectively, implying that on
average more than 80% of the members in a community are multi-membership vertices.
This is in sharp contrast to the preconceived idea that only a small fraction of members
in a community belong also to other communities. The results reveal that most members
of a community have multiple memberships and they are everywhere in the community.
Characteristic 2. The multi-membership vertices lead to a community overlapping

with many other communities. We refer to them as neighbor communities. Figure 3
shows the relationship between the number of neighbor communities dC and the size nC

of a community in the two social networks. To extract information, the expected number
of neighbor communities for a community of size nC is roughly

d̄C (nC) ≈ (〈m〉C − 1) · nC · rnd (3)

where

〈m〉C =
∞∑

m=1
Pm · m =

〈
m2〉

〈m〉 (4)

is the expected number of memberships of a member in the community. Although each
member connects the community to 〈m〉C − 1 other communities of which it is also a
member, (〈m〉C − 1) ·nC overestimates the number of neighbor communities due to dupli-
cation, i.e., some members in the community have common neighbor communities. A
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Fig. 3 The relationship between a community’s size and the number of its neighbor communities. Data are
shown for community sizes from 6 to 100. The values in each vertical cut of the histograms are rescaled by
mapping the highest value to unity. The bottom figure shows the averaged values and their standard
deviations

factor rnd is introduced to represent the non-duplicate rate. Consider the simple case of
a size-nC community with x members all in only one neighbor community. In this case,
(〈m〉C − 1) · nC = x while d̄C = 1, implying rnd = 1/x. Thus, the value of rnd also indi-
cates the extent of overlap between two communities. For overlaps of just 2 or 3 vertices,
rnd drops below 50%. The analysis in Fig. 3 confirms that d̄C ∼ nC, but with a slope grad-
ually decreasing with increasing nC. Thus, rnd is negatively correlated with nC. The slopes
are around 3 ∼ 4, which are about 30% smaller than the values 4.36 and 5.25 calculated
by (〈m〉C − 1) from empirical data of Sina Weibo and Friendster, respectively. Note that
these slopes are very large, e.g. a community of size as small as 30 could overlap with
∼ 100 other communities concurrently. The resulting non-duplicate rates rnd are above
70%, strongly indicating that most overlaps concern just one vertex.
Characteristic 3. In contrast to the generally believed notion that a community should

have more internal edges than outbound edges, we found that more than 99% of the 2.9
million communities havemore outbound edges than internal edges. For each community
identified by PCMA, we evaluated the total number of internal edges kintC and outbound
edges koutC :
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kintC =
∑

v∈C
kintv,C , koutC =

∑

v∈C
koutv,C (5)

where kintv,C (koutv,C ) denotes the number of a vertex v’s edges that go inside (outside) the
community C. The summations are over all nC vertices in the community. Note that each
internal edge is counted twice as both ends are within the community and each outbound
edge is included only once. Figure 4 shows that the number of outbound edges of a com-
munity is not only greater, but often many times greater than the number of internal
edges. More than 99% of the 2.9 million communities have more outbound edges than
internal edges, in contrast to the traditional notion.
To investigate into the network structure, we focused on the outbound edges and

classified them into 3 categories (see Fig. 5) as

E1: outbound edges from amember to a neighbor community to which themember also
belongs;

E2: outbound edges from a member to a neighbor community that the member does
not belong to;

E3: outbound edges not to a neighbor community.

Their proportions e1, e2, e3, with e1 + e2 + e3 = 1, are calculated for each commu-
nity. Figure 6 shows the histograms. Typically, the edges to a neighbor community are
usually through the common member(s) of the two communities as e1 is much greater
than e2. In addition, a significant proportion of outbound edges go to neighbor com-
munities. In Sina Weibo, most communities (red region) have e1 + e2 ≈ 0.5. It means
that ∼ 50% outbound edges are due to the vertices’ multi-membership and communities

Fig. 4 Histogram of communities grouped by the average internal and outbound edges per member. The
numbers of bins in the x and y axes are 200 and 400, respectively. The counting in each bin is normalized by
dividing the count by the total number of communities and the bin area. The bin area of the right panel is
two times the left panel. To make the normalized values comparable to those in Fig. 6, we set the bin area of
the left panel to 1. The normalized counting in each bin is given by the color, as defined by the color bar.
More than 99% of the detected communities have koutC > kintC , and koutC is usually much greater than kintC
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Fig. 5 Edges can be classified into five types: (1) intra-community edges; (2) inter-community edges between
two overlapped communities; (3) inter-community edges between two communities that do not overlap; (4)
edges between vertices with membershipm > 0 and isolated vertices (m = 0); (5) edges between isolated
vertices. Focusing on the outbound edges of the green community with 5 members (circled), the edges 1b,
2, and 3+4 correspond to categories E1, E2, and E3 outbound edges of the green community, respectively,
as defined in the text. Different from the five types which classify edges of the whole network, the three
categories E1, E2, and E3 are used to classify the outbound edges of a community and thus are introduced
from the viewpoint of a particular community. There are some overlaps between the two types of
classification: (1) An E1 outbound edge is by definition a Type 1 edge; (2) A Type 2 (Type 3) edge is also an E2
(E3) outbound edge of the two corresponding communities that the edge connects. However, the reverse
relationship is not always true. These types and categories are not interchangeable

are densely connected to their neighbor communities. Note that if a community’s out-
bound edges were randomly connected to vertices in the network, most edges would be of
category E3.
Characteristic 4. How can communities ever be distinguished when each community

overlaps with a significant number of others? The answer is that the overlap size between
two communities is usually small, and the connection between them is mostly through
the overlap. Table 2 lists the frequency of occurrence of the most common overlap sizes.
Out of 232M (millions) overlaps among the 2.9M detected communities, more than 80%
are of just a single vertex. Figure 7 shows the actual structure of two detected communi-
ties. The outbound edges from communityA (left) to its neighbor community B are highly
organized through the overlap. Members of B usually only know the overlapping part of
A, and vice versa. The overlapped vertex serves as the sole bridge and plays a unique role



Xu and Hui Applied Network Science            (2019) 4:27 Page 9 of 16

Fig. 6 Histogram of communities grouped by the proportions of E1 and E2 outbound edges. The numbers
of bins in the x and y axes are 400 and 200, respectively. The counting in each bin is normalized by dividing
the number by the total number of communities in each panel

in passing information between the communities. Yet, there may exist some E2 edges
between the communities. In social networks, they are possibly due to the commonmem-
ber introducing members of the two communities to know each other. In Fig. 6, e2 is
below 10% or even 5% for most communities and far less than e1. It is the small propor-
tion of E2 edges that facilitates the easy separation of communities. The proportion e2 is
thus an indicator of the clearness of the boundary between a community and its neighbor
communities. We checked every pair of overlapped communities on E2 edges. Results are
listed in Table 2. For 37.8% (SinaWeibo) and 30.1% (Friendster) of them, there is not even
a single E2 edge. The communities maintain a good separation from their surrounding
despite each overlaps with a significant number of neighbor communities.

Mesoscopic view of social network structure
For the 2.9 million detected communities, we can classify all the edges in the two social
networks into 5 types (see the caption of Fig. 5). The results are given in Table 3. The
number of Type 1 edges suggests that the communities account for 30 ∼ 35% of the
entire network in terms of edges. These communities, connected together by the huge

Table 2 Distribution of overlaps as a function of size of overlaps and the number of E2 edges
between a pair of communities

Dataset No. of overlaps
Overlap size (no. of vertices) No. of E2 edges of an overlap

1 2 3 4 0 1 2 � 5

Sina Weibo 77 million 84.5% 8.3% 2.6% 1.3% 37.8% 10.5% 6.0% 64.0%

Friendster 155 million 86.1% 7.7% 2.4% 1.1% 30.1% 11.0% 6.7% 59.4%
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Fig. 7 A real example of a pair of overlapped communities detected by PCMA. The overlap is a single vertex
colored half purple and half red. The outbound edges from the left (right) community to the right (left) are all
through the overlapped vertex (category E1), except for one edge that interconnects the two communities
directly (category E2). Since an E2 outbound edge of a community is also an E2 outbound edge of the
corresponding neighbor community, we adopt a simplified term that the edge is an E2 edge of the overlap.
Most overlaps are like those in this example, having only one vertex and very few E2 edges, making the
corresponding pair of communities well separated from each other

number of overlaps, form an extremely dense and tight network by themselves. There
are 10 ∼ 20% of the edges further connecting the overlapped communities (Type 2).
The total number of them is comparable to that of Type 1, but since they are distributed
among the huge number of overlaps, each overlap shares only a very few such edges. For
example, in Sina Weibo, the 117M Type 2 edges are distributed among 73M overlaps, on
average only 1.6 per overlap. The numbers further confirm the structure shown in Fig. 7.
The Types 1 and 2 edges, together occupying half of the entire network, form an immense
network of communities that can be regarded as a hidden skeleton of the social network
in the mesoscopic scale. The remaining half of the edges are outside the skeleton, mostly
Type 3 or Type 4. The former are “long-range” weak ties connecting different parts of the
skeleton, thus making the skeleton an even smaller world. Although the majority of the
vertices are outside the skeleton, i.e., vertices with m = 0, the edges among them (Type
5) account for less than 10%. For Friendster it is only 1.5%. These vertices are possibly the
inactive users in the two online social network services.

Table 3 Classification of edges and vertices in social networks. M represents a million. The types of
edges are defined as in Fig. 5

Dataset Sina Weibo Friendster

Vertices (m > 0) 21.0M 26.5% 28.0M 42.7%

Vertices (m = 0) 58.3M 73.5% 37.6M 57.3%

Edge Type 1 363M 34.7% 531M 29.4%

Edge Type 2 117M 11.2% 333M 18.4%

Edge Type 3 204M 19.5% 644M 35.7%

Edge Type 4 273M 26.1% 271M 15.0%

Edge Type 5 91M 8.7% 28M 1.5%
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The edge classification helps decompose the entire network and reveals a remark-
ably high proportion of the significantly overlapped communities. The proportion could
be even higher if less tightly connected vertices are also accepted as communities. The
immense size of the network of communities confirms its important role in social net-
works and invites in-depth analyses on the properties of the huge and dense skeleton of
social networks.

Rethinking the concept of overlapping community
The strong empirical evidence from the analyses of the two social networks contradicts
what we usually think a community is and asks for a reconsideration of the concept of
community. Despite a wide variety of definitions, most of them, if not all, share an intuitive
idea: members of a community should have some sort of internal cohesion and good sep-
aration from the rest of the network. The problem is how the idea should be interpreted,
especially what a good separation and the boundary of a community are about.
Many definitions and quality measures of a community interpret “good separation” as

the less the koutC (or koutC /kintC ), the more definite is the community. Examples include
the widely used weak community kintC > koutC (Radicchi et al. 2004), fitness func-
tion kintC /

(
kintC + koutC

)α (Lancichinetti et al. 2009; Goldberg et al. 2010), conductance
koutC /

(
kintC + koutC

)
and network community profile (Leskovec et al. 2009; Jeub et al. 2015),

dynamic-based definitions such as random walk (Rosvall and Bergstrom 2008) and label
propagation (Raghavan et al. 2007). We argue that comparing koutC /kintC is ineffective in
large-scale networks, no matter for overlapping or disjoint communities. As shown in
Figs. 4 and 6, there are more outbound edges than internal edges, even if we ignore the
neighbor community edges produced by the multi-membership vertices. The point is that
simply a larger value of koutC does not necessarily mean the community is less definite.
Consider the case that an arbitrary large number of outbound edges of a community are
randomly distributed in the whole network, the community is not really strongly con-
nected to any part of the network as long as the network size n � koutC . This point has also
been discussed in a recent review by Fortunato and Hric (2016). They suggested using
edge probabilities instead of the number of edges. Amember of a community should have
a higher probability pin to form edges with the other members than pout with vertices out-
side the community. Recent studies on detectability transitions in the Stochastic Block
Model (Decelle et al. 2011; Nadakuditi and Newman 2012; Radicchi 2013; 2014; 2018)
found that pin > pout is insufficient to guarantee that the community is detectable. There
exists a region 0 < pin − pout < � that, although the community structure exists, no
algorithms are able to detect. It is generally difficult to infer the edge probability between
each pair of vertices. A simplified way is to assume the edge probabilities within a com-
munity (to the outside) are the same and equal to the internal (outbound) edge density
δintC = kintC / [nC(nC − 1)], (δoutC = koutC / [nC(n − nC)],) where n and nC are the network and
community sizes, respectively. However for large networks n � nC, usually δoutC → 0,
making the definition δintC > δoutC not useful.
The problem of koutC (and so of δoutC ) is that it counts the outbound edges to the whole

network and reports only a summed quantity. What really matters is not the number koutC ,
but where the koutC outbound edges are distributed. As discussed under Characteristic 4 of
the overlapping pattern, a multi-membership vertex may contribute much to koutC without
messing up the boundary between the community and its neighbors. On the contrary,
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adding a number of outbound edges to a particular vertex outside is sufficient to change
the boundary of the community. These two cases are due to the different distribution
patterns of outbound edges:

• Outbound edges from the same member to vertices outside the community
• Outbound edges from different members to a particular vertex outside the

community

For the first case, it does not matter how many outbound edges there are. For the second
case, however, the fewer the better. A good definition of overlapping community should
be able to distinguish between the two cases. A useful concept here, as discussed in Ref.
(Xu and Hui 2018), is the f -core – a maximal connected subgraph in which each vertex is
connected to equal to or more than a fraction f of the other vertices in the subgraph:

bv,C � f , ∀v ∈ C (6)

with bv,C being the belongingness of v to C as defined in Eq. (1). A vertex is acknowledged
as a member of an f -core as long as the vertex has sufficient connections to the other
members of the f -core. It is irrelevant whether it is connected to a large number of ver-
tices outside the f -core. This property of f -core distinguishes the two cases of outbound
edges successfully and allows a vertex to belong to multiple f -cores naturally. In contrast,
the number-based counterpart called k-core, which requires each vertex to be a neighbor
to at least k other vertices in the subgraph, is non-overlapping by definition. The “maxi-
mal connected subgraph" in the definition ensures all vertices outside the f -core having
belongingness less than f, as defined in Eq. (6), except for the case that there does exist
one vertex outside, but including it will result in some other member(s) of the f -core to
be kicked out. The fraction f defines the boundary of the community. A problem is that
there is no standard way to determine what value of f should be used. Communities in
social networks often show core-periphery structures (Csermerly et al. 2013; Rombach
et al. 2014; Zhang et al. 2015) and have no definite boundaries. A large value of f extracts
the core members of communities, and a small value results in more peripheral vertices
being accepted as members. We are of the opinion that the belongingness bv,C is a bet-
ter way to describe vertex memberships instead of forcing a vertex to be either inside or
outside of a community.
While the f -core is a good candidate, better definitions of overlapping community may

still be possible. The key point is that the definition should take into account of the
possibility of ubiquitous presence of multi-membership vertices:

• The proportion of multi-membership vertices may range from 0 ∼ 100%,
• A vertex may belong to an arbitrary number of communities,

as revealed by data analysis. These are the causes of the significant overlaps among
communities and a much greater number of outbound edges than internal edges.

Summary and outlook
We studied the overlapping structure of 2.9 million communities detected by PCMA in
the two huge online social networks. We found four main characteristics:

• Most members of a community have multiple memberships. They are everywhere, at
the periphery or in the core.
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• A community usually overlaps with a significant number of other communities, the
number typically is several times its size.

• The number of outbound edges of a community is many times greater than the
number of internal edges.

• Although communities overlap significantly, they remain relatively in good separation
from each other. Most overlaps concern just one or sometimes two vertices.

Note that PCMA does not impose any constraint or implications on the fraction of
overlapping vertices in a community or the number of communities a vertex may have.
It is also capable of detecting non-overlapping or slightly overlapping communities, as
verified in the LFR benchmarking test (Lancichinetti et al. 2008) in Ref. (Xu and Hui
2018). The significant overlapping pattern found in the two empirical social networks
asks for a rethinking of what the boundary of a community really is. We discussed sev-
eral traditional interpretations and related issues, and suggested the f -core as a possible
definition for overlapping community. Our study also showed a dense and tight net-
work of communities, with the communities taking the role of vertices and the overlaps
being the edges. Most overlaps are just of a single vertex. Each of these vertices plays
a unique role in passing on information between the communities that it belongs to.
This network of communities accounts for almost half of the entire network. It serves
more studies on how its structural properties would couple to many phenomena in
social dynamics.
As implied by the no-free lunch theorem for community detection that there can be no

algorithm which is optimal for all possible community detection tasks (Peel et al. 2017),
methods based on different approaches may reveal different aspects of the community
structure. In fact, there is no standard answer to what a community really is, and it is
largely unnecessary to enforce only one definition. This is especially the case for empir-
ical networks. The important thing is that the communities detected satisfy the general
notion of a community that they have internal cohesion and relatively clear boundaries.
We verified that the 2.9 million communities analyzed in the present work have good sep-
aration among each other, and high values of the intra-community edge density, as shown
in the Appendix.
In conclusion, our empirical study unfolded new aspects of overlapping community.

The results provided researchers with clues for designing effective detection algorithms,
generativemodels, and benchmarks for overlapping communities, especially in social net-
works. We look forward to more empirical studies powered by new tools, to cross-check
the present work and explore areas not covered by PCMA.

Appendix: Datasets
For completeness, we describe the two social networks we analyzed. Table 1 gives the
basic information. Sina Weibo is a directed network akin to Twitter. We focused on the
embedded friendship network in which two connected individuals are following each
other. Instead of sampling small subnetworks, we collected almost the whole giant com-
ponent of the network, because the structural completeness of the sampled network
is vital to the preservation of community structure, especially the overlapping pat-
tern among communities. The network data of Friendster was downloaded from SNAP
Datasets (Leskovec and Krevl 2014).
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Fig. 8 Size distributions of the communities detected in the two social networks

We detected about 1.3 and 1.6 million communities in the two networks with PCMA
(Xu and Hui 2018). The algorithm is especially suitable for detecting communities in
which the vertices have multiple memberships. Detailed information on the detection
was reported in Ref. (Xu and Hui 2018). Specifically, the three steps of PCMA were
discussed in Section 2 and the choice of the parameters for detecting the commu-
nities within PCMA were discussed in Appendix B of the paper. Using the symbols
introduced in Subsection 2.2 in Ref. (Xu and Hui 2018), we used a harsh threshold
l � 10 to ensure that the detected communities are reliable (the larger the l, the more
reliable the community). A drawback is that many small size communities were not
included. In the present work, we add additional communities of which 6 � l � 9

Fig. 9 Histograms of the detected communities grouped by their size and intra-community edge density.
The value, as given by the color, in each vertical cut are rescaled by mapping the highest value to unity
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and g > 3.0/l. The results are shown in Fig. 8. The latter condition ensures relatively
high intra-community edge density of these communities, especially for those with low l.
Figure 9 shows that all communities, including the newly added ones, have high values of
intra-community edge density.
The large values of the proportion of intra-community and E2 edges, as shown in

Table 3, indicate that the number of communities we detected is close to the possible total
number of communities in the two networks. However, it should be noted that there is
no standard answer as to how many communities there are in a real network. We found
that adding or removing the additional communities in the analyses only produces minor
changes to the statistics. In particular, it does not change the characteristics of the over-
lapping pattern we discussed. The 2.9 million detected communities are believed to be
adequate and representative.

Abbreviations
PCMA: Partial community merger algorithm
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