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time. This assumption is violated for many datasets, resulting in incorrect or misleading
communities. Many different algorithms to rectify this problem have been proposed.
Most of them, however, focus on community evolution rather than abrupt changes.
The problem of change detection is easier than that of community evolution, and is
often sufficient. Here, we propose an algorithm for determining community-based
change points from network snapshots. Networks can then be aggregated between
change points, and analyzed without violating assumptions. There are three network
types that we have defined our algorithm for, each having a case study: static nodesets,
semi-static nodesets, and dynamic nodesets. The case studies for these network types
are: the Ukrainian Legislature, the Enron email network, and Twitter data from Ukraine.
We empirically verify our algorithm in each case study, and compare results to two
popular alternatives: Generalized Louvain and GraphScope. We show the impracticality
of Generalized Louvain and that our method is less sensitive than GraphScope. Lastly,
we use our first two case studies to determine optimal parameters for an
anomaly-detection-based streaming method. We then demonstrate that the
streaming method was capable of determining events both from data collection errors
and from internal network disruptions.

Keywords: Dynamic communities, Community detection, Temporal networks,
Streaming data, Verkhovna rada, Twitter networks, Enron

Introduction
While a vast body of literature addresses the problem of community detection in net-
works, only a small portion considers their dynamic aspects. Recently, this problem has
received more attention. The majority of networks are truly time-varying, and commu-
nity detection should reflect that. Often, large periods of time are aggregated into a static
network, or they are aggregated at regular intervals and analyzed individually. At best, this
smooths over any interesting temporal features of the network data, at worst, combining
links from old and new communities can yield misleading results.

Although infrequently used in practice, there has been work in this area which is well
summarized in (Aynaud et al. 2013; Rossetti and Cazabet 2018). Much of this work
focuses on community evolution, or how communities change in time (Aggarwal and
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Subbian 2014; Greene et al. 2010). We believe that an easier problem has been understudied:
We seek to answer the question: “How can we segment a dynamic network, such that
static analysis of the segments will be representative of the underlying dynamic commu-
nities?” Effectively, temporal partitions should be change points for community structure.
This problem is easier in that we assume communities are static until an event changes
them noticeably. Segmenting the network in this way gives us access to all the tools of
static network science, and simplifies the interpretation of results. “Partitions” are also
used to describe the grouping of nodes into communities. In this work, we are describing
temporal partitions, which define the ends of time segments.

The two main methods of segmenting networks in practice, Generalized Louvain and
GraphScope, have some shortcomings. The first is their dependence on a specific group-
ing algorithm. As is well known, each grouping algorithm has strengths and weaknesses,
and should not be used a universal tool. Generalized Louvain has the disadvantages of
relying on user-defined parameters, and needing a static nodeset. GraphScope is parame-
ter free, but relies on information-theoretic clustering and is not robust to noisy networks.
Through two case-studies, we demonstrate the effects of these shortcomings in practice.

In this work, we propose a simple method for placing temporal partitions in dynamic
networks such that static community analysis accurately represents the dynamic com-
munities. This method is parameter free, works with any grouping algorithm, and is
somewhat robust to noise, as demonstrated through trials with synthetic datasets and two
case studies.

The initial framing of the method relies on static nodesets, where the Ukrainian Par-
liamentary voting network is analyzed as a case-study. This assumption is relaxed for
semi-static nodesets, and the Enron email database is studied. Finally, a streaming alter-
native is introduced and optimized to achieve similar results to the first two case studies.
It is then applied to Twitter data streamed from Ukraine.

Current tools are typically only defined for one or two of these classes of node-
sets. As such, we will only compare to methods that are applicable. Generalized
Louvain is most appropriate for static nodesets, so is compared to our work in
the “Comparison to Generalized Louvain” section. GraphScope, is most appropriate for
semi-static or dynamic nodesets, so is compared to our work in the “Comparison to
GraphScope” section. We do not compare to GraphScope for our streaming work, though
it is applicable. The Twitter application is shown as a proof of concept; many case stud-
ies would need to be performed to fit parameters with generalizability. However, given
the empirical validation of the method with our two case studies, we feel this method is a
promising avenue for future work.

Prior work

The problem of community detection in complex networks has received a tremendous
amount of attention, resulting in many popular algorithms that have been empirically ver-
ified (Blondel et al. 2008; Newman 2004; Ng et al. 2002). However, these algorithms all
assume that the network being analyzed is static. If this assumption is violated, different
communities may have been averaged together over time, resulting in obscured or mis-
leading results. While dynamic aspects of communities are still often ignored in practice,
many potential methods of dynamic community detection have been proposed. Rossetti
and Cazabet posit that this is due to a disconnect between researchers in the field, and a
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lack of visibility (Rossetti and Cazabet 2018). Here, we discuss how prior work in dynamic
community detection has motivated our approach.

Using the terminology of Rossetti and Cazabet, there are two types of dynamic network
models: snapshots, and temporal networks. Snapshots segment the data into networks
that are assumed to be static, while temporal networks assign a birth and death time-
stamp to each edge. The temporal network model is pure in that it does not aggregate
links, and the network is never assumed to be static. While this is more accurate than
the snapshot approach, it comes with limitations. Namely, the analysis for such objects
require more computational power, and a set of tools separate from those created for
static networks. Network snapshots, however, have access to the large toolset of network
science. Furthermore, it is critical that community detection can extend to streaming data.
Snapshots are a natural way of handling this: aggregate links in the stream until the snap-
shot length has been reached, then analyze it. This approach has been used by one of the
most popular streaming methods in this space, GraphScope (Sun et al. 2007). Currently,
the length of a time slice is best chosen according to the rule of thumb: “slices should be 5
times shorter than the scale of interest” That is, if week-level changes were of interest to
a researcher, slice length of one day might be appropriate.

Snapshots are limited, however, when the goal is to find fine-grained evolutions in a
network. In this case, temporal networks are more appropriate. Here, we are looking for
events, or large changes in communities, rather than evolution patterns, so we have cho-
sen to use the snapshot modeling approach. Given this, our partitioning techniques will
work best under the assumption that network communities undergo rapid change, mean-
ing in few time slices, rather than communities undergoing constant structural evolution.
This assumption is often met when major events occur in the network’s timeline.

Using network snapshots, it is common to take an “instant optimal” or a “two-step”
approach, wherein snapshots are grouped statically and then compared (Aynaud et al.
2013; Rossetti and Cazabet 2018). Some others have criticized this approach, claiming
that it is too vulnerable to noise and the snapshot groups do not use valuable historical
data (Lin et al. 2008; 2009). These concerns have merit. It has been shown that static
grouping algorithms are unstable, and can give very different result under only small per-
turbations to a network (Aynaud and Guillaume 2010). Given that slice groupings are
expected to be noisy, we compute pairwise comparison for all time slices. Comparing all
slices addresses both of the concerns voiced in (Lin et al. 2008; 2009); historical data is
used when finding similar segments, and pairwise-noise will be present, but should aver-
age out when considering an entire block of similarities. It seems that only Goldberg et al.
have used all slices in the comparison step of a two-step approach (Goldberg et al. 2011).
Our work differs from Goldberg et al’s in two ways. First, our goals are different. They
sought to identify evolutionary patterns in groups, while we aim to find disruptive events
with respect to communities, in hopes of aggregating network snapshots into a smaller
series of networks with meaningful divisions. Second, our approaches differ. They iden-
tified common community cores across time, while we calculate the overall correlation
between communities.

A very similar approach is given by Masuda and Holme, who use hierarchical cluster-
ing to label slices as “states” of the system, which are expected to recur (Masuda and
Holme 2019). Their work differs from ours in two major ways. First, they take a “one step”
approach, where states are decided based on the network rather than its communities.
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Second, no temporal continuity is imposed for states. For our purposes, this is essential.
Without temporal continuity, states cannot be collapsed and analyzed as a static net-
work. Also, we rely on a different comparison mechanism: product-moment correlation.
The fact that pairwise temporal similarity operations find success in network aggregation
(our work) and chain-like state changes (Masuda and Holme), shows the power of the
approach for solving new problems in temporal networks.

Our approach is a special form of link aggregation. The problem of link aggregation has
been studied in (Taylor et al. 2017). Taylor, Caceres, and Mucha examine the effect that
aggregation has on community detection. They look at both aggregation over network
modes and over time slices. It was concluded that aggregation can enhance or obscure
communities depending on their size and persistence. Matias and Miele recognize a sim-
ilar problem, questioning the assumption that most nodes do not change groups (Matias
and Miele 2017). While Taylor et al suggest analysis on multiple scales and Matias and
Miele attempt to control for short term group-switching, we take a different approach:
only aggregate slices that have similar community structure.

While much of network analysis ignores group dynamics, analysis considering group
dynamics often uses one of two tools: Generalized Louvain or GraphScope (Mucha
et al. 2010; Sun et al. 2007). As such, we will demonstrate our results through compar-
ison to these two methods in the “Case study: Ukrainian Parliament” and “Case study:
Enron emails” sections, respectively. Mucha et al. have generalized the original Louvain
grouping algorithm from unipartite to multipartite graphs. Network snapshots, then, are
considered an ordered multipartite graph. This algorithm uses two resolution parame-
ters. We show that tuning these parameters in practice is very difficult, and still leads to
imperfect results. GraphScope is a streaming algorithm, meaning that it takes in snap-
shots sequentially. It groups each snapshot and calculates whether or not it should be
included with the previous time slice, all using the concept of minimal descriptive length.
As previously stated, streaming approaches are necessary for analyzing certain datasets,
such as those coming from social media. However, GraphScope’s biggest weakness is that
it relies on information-theoretic clustering, which is not as well-verified as other com-
mon methods. We show that GraphScope is also likely to be too sensitive in detecting
changes. To rectify these problems, we modify our approach to support streaming in
the “Dynamic nodesets: a streaming approximation” section. Instead of information the-
ory, we draw on basic principles of anomaly detection, which has been done by others,
such as in (Li et al. 2017; McCulloh and Carley 2011; Priebe et al. 2005). A similar
streaming method has been proposed by Morini et al (Morini et al. 2017). However,
their work is more similar to Goldberg et al’s. Further differences will be discussed in
the “Dynamic nodesets: a streaming approximation” section.

Other recently developed streaming or online techniques have also analyzed the Enron
dataset (Miller and Mokryn 2018; Peel and Clauset 2015). Peel and Clauset couple the
generalized hierarchical random graph model with Bayesian hypothesis testing to find
breaks. Miller and Mokryn argue than analyze networks or communities directly, the
degree distribution can be used to find structural breaks. Both methods only analyze the
151 management employees in the Enron dataset, so will not be used for comparison here.

In summary, there is a need for simplistic community-based event detection in net-
work science. Work has been done in this space, specifically using network snapshots,
but focuses on community evolution patterns, rather than shocks to the overall structure.
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In the following sections, we outline a method for detecting such events, and com-
pare results to two popular algorithms: Generalized Louvain and GraphScope, showing
benefits of our method for each case.

Static nodeset

Methods

Informally, the goal of the work is to partition the time dimension of a network such that
each segment forms cohesive groups, and adjacent segments are noticeably different from
each other. This section will formalize a procedure that achieves this goal.

We will begin by taking an offline, or non-streaming approach. While streaming approaches
have advantages, as discussed in the “Dynamic nodesets: a streaming approximation”
section, many datasets are analyzed after they are collected in full. Streaming has no
knowledge of “future” data, and non-streaming approaches can leverage all of informa-
tion available to obtain better results. The most notable disadvantage of many streaming
approaches is the inability to determine whether abrupt changes in incoming data is
indicative of a real change or a relatively short burst of noise.

Additionally, we start with a fairly restrictive assumption: the nodeset is static. That is,
every node is present in every time slice. While many datasets violate this assumption,
this is a natural starting point. Dynamic nodesets introduce complications such as the
problem of comparing groups with different nodes, which are further investigated in the
“Semi-static nodesets” section.

Each community detection algorithm has strengths and weaknesses, and is thus more
or less suitable for certain types of networks. For example, Louvain grouping has proved
to be extremely successful, but is ill-defined for dense weighted networks. Further a “no
free lunch theorem” for community detection networks has been proven, stating that no
algorithm is optimal for all community structures (Peel et al. 2017). As such, a temporal
partitioning procedures which are independent of grouping algorithm are preferred over
those that rely on a specific method, such as Generalized Louvain (Mucha et al. 2010).

A partitioning method independent of community detection algorithm can be con-
structed using the co-group network. That is, the network between nodes where links
represent shared group membership. After calculating the co-group matrices, we will
compare them to find natural partitions in time. This way, the user can choose any algo-
rithm they like to group the slices before the temporal analysis begins. It is important
to note that comparing co-group networks relies heavily on the static nodeset assump-
tion. One way of comparing two networks is through the Product-Moment Correlation
(Krackhardt 1987). The correlation, p, between two co-group matrices A, and B is

given by:
cov(A, B)
p(A,B) = 1)
J/cov(A, A)cov(B, B)
cov(A, B) = ) (Aij — jta)(Bij — 1tB). (2)
ij
Throughout the work we define A;; = 1 in co-group matrices, to indicate that a node is

always in its own group.
We take what is known as a “snapshot” approach to dynamic networks in the language
of Rossetti and Cazabet. That is, the initial temporal network can be defined as a series of
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adjacency matrices, A1, ...AT, at every time step, 1,..., T. After these are all grouped there
is a series of co-group matrices, CGj, ..., CGt. Pairwise similarity is calculated between all
of these slices to obtain the similarity matrix, S:

Stl,l'z =p (Cth’ CGEz) . (3)

Under the assumption that community change occurs rapidly, S will have near block-
diagonal structure. Communities will remain roughly unchanged between events, causing
diagonal blocks in S with high similarity. After changes, two segments will be fairly differ-
ent, resulting in low similarity in S’s off-diagonal blocks. We now formally define a method
for locating each block’s boundaries, which correspond to community change points.

Now that similarity is defined for our temporal network, we can formalize the goal of
“cohesive groups” as high internal similarity. For example, if a time segment begins at
t = 10 and ends at ¢ = 20, the values within the square similarity matrix S19.20,10:20 should
be high. As such, we define the time partitioning problem to maximize this term. The
general temporal partitioning problem is to find a list, b, which contains start and stop
points, or boundaries, of time segments. We will assume there are P partitions, and b is
strictly increasing with fixed ends b; = 1 and bp = T + 1, so that the partitions are well
defined. Then, the problem is stated as:

arg max Sinternal (S, b) @
b

P—1bg41—1bg1—1

Sinternal(s!b)— Z Z Z S,]: (5)

k=1 i= by j=by
where #; is the number of entries in all the internal blocks, and i,; are the indices of the
sub-matrices. Given P, this problem can be solved quickly, especially considering that P
will typically be small in practice. This could potentially be written as a dynamic program,
though with the scale of data used here such an improvement is unnecessary.

However, P should not have to be given. Domain knowledge might give a reasonable
guess as to what P should be, but there is no telling whether or not the structure of groups
would have actually changed due to outside events. There could also be unknown events.

A natural criteria for determining P comes from the second stated goal: find adjacent
segments which are noticeably different from each other. Now, P can start at its minimal
possible value, 3, and be iteratively increased to meet both goals. Just as segment similarity
isencoded in S, so is segment difference. Using the example from before, where a segment
begins at £ = 10 and ends at ¢ = 20, add the fact that the next segment ends at ¢ = 30. If
these segments are very different the values within S10:20,20:30 should be low. Calculating
this difference for a full time segment with length P, the external similarity is:

P—2bj1—1bjin—1

Sexternal(s!b) = Z Z Z S,]: (6)

k=1 i=b j=biy
where 7, is the number of entries in all the external blocks, and i,j are the indices of
the similarity matrix, and k indexes the boundary list b. Naturally, there is a tradeoff
between these values. We can expect the internal similarity to increase even beyond the
optimal partitions, albeit more slowly. This happens by splitting already cohesive sections
into more cohesive segments. When this happens, the external similarity should begin to
increase. Since similarities will be calculated iteratively, a subscript will be used to denote
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which iteration the similarity was calculated on. For example, silnt ernal 1S the initial internal
similarity.

Increasing external similarity is a sign of over-partitioning, so is naturally a good stop-
ping criteria. However, we cannot expect real-world data to exhibit perfect block-diagonal
structure. Thus, we propose a stopping criteria based on the rate at which each similarity

. t t .
changes. ASinternal’ ASexternal'
o _ gl
t __ “internal internal
ASinternal - 1 ’ (7)
Sinternal

t
external®

—1 % ASexternal, t00 many partitions have been placed. The negative sign is due to the

replacing “internal” with “external” yields the equation for As If ASinternal >

expectation that Asexternal is negative. Thus, the final algorithm is:

Initialize P=3,t =1

2. Select partition list b’ of length P that satisfies the partition requirements and
maximizes internal similarity

3. Calculate Sitnternal’ sixternal
P=P+1,t=t+1

5. Select partition list b of length P that satisfies the partition requirements and
maximizes internal similarity

6. Calculate s s

internal’ “external

¢ t
Calculate ASinternal’ ASexternal
8. If Asinternal < —1 * ASexternal: return to step 4.

Else: final partitions are given by b*~1.

This two-step procedure first ensures that the segments are as similar as possible, and
then stops when increasing P fails to yield additional segments that are meaningfully
different. Combining the two goals into a single objective function sometimes led to
inaccurate partitions, since segments were blended in order obtain low external similarity.

The algorithm could be forced to continue, which will give more breakpoints. These
could also be interesting but it should be remembered that they are not as significant as
the initial break-points.

Testing on synthetic datasets

Network datasets with ground truth communities are rare. Rarer still, are network
datasets with ground-truth community disruption. Therefore, we test the validity of our
approach using a series of experiments on synthetic datasets. With synthetic datasets, we
can impose change points and access our ability to recover them. Throughout these exper-
iments we chose a nodeset size of 500. Additionally, we are only considering Erdgs-Rényi
random networks of varying density between experiments. Random networks typically
have low modularity, and as such are a good test case. Further, Peel et al. have concluded
that verification on embedded communities is flawed, so we do not rely on manually
embedded communities here (Peel et al. 2017). If our algorithm can detect changes in
weak communities, it should perform well in the easier case of strong communities. For
all tests, a temporal network with 20 slices was considered. The ground-truth breaks were
placed at £ = 4, 8,17. Every experiment was repeated 100 times.
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First, a very basic set of tests were performed. At time ¢ = 0, a random network was
constructed. Then, each slice up until the first break was set to this network. When a break
occurs, a new random network was generated and the process repeats. Basically, slices
are identical within breaks, but completely different random networks between breaks. In
this case, then, the ideal internal similarity score is 1, and the external similarity will likely
be close to 0. This construction method was tested with density 0.1, 0.2, and 0.5. For each
experiment the algorithm gave the exact set of breaks for all 100 repetitions.

Second, a more realistic set of tests were performed. Again, a random network was
generated and slices were set to that network up until a break. This time, when a break
occurred some fraction, f, of the links were randomly rewired. In these experiments,
internal similarity is still 1, but the network is retaining some of its original structure
throughout the timeline, giving higher external similarity. For these experiments, den-
sity was held to a constant 0.1, but f was varied: f €[0.5,0.1,0.05,0.01], to measure how
the algorithm performs on changes of varying scales. For f €[0.5,0.05] the exact parti-
tions were recovered in all 100 trials. For f €[0.1,0.01], the partitions were recovered
in 99 trials. In the remaining trial the break at ¢ = 4 was not detected, while the other
breaks were. As f decreases, it is increasingly likely that the underlying communities do
not change, so it is expected in some instances we will not see breaks. Given our results
up to changes in only 1% of links, it seems that our method is extremely accurate in a
noiseless environment.

Lastly, two additional experiments were conducted to study the effect of noise. Now,
since the networks in question have low modularity, random changes in links can poten-
tially have a large impact in group structure. To test this we followed the same procedure
as in the second set of experiments, but adding the additional step of swapping some frac-
tion, #, of the links at each time slice. In these experiments we held density to a constant
0.1, f to a constant 0.5, and tested # values of 0.01 and 0.05. The exact partitions were
recovered in 88 and 66 trials, for 1% and 5% rewiring, respectively. Typically, the algo-
rithm had only one of the following errors: one of the partitions was misplaced by 1 slice,
one of the partitions was missing, or an additional partition was added.

Given the extremity of the experimental conditions (testing on networks with low
community structure and high sensitivity to noise), and the results (>99% accuracy
in noiseless scenario, >65% accuracy under extreme noise), these results bolster the
method’s validity.

Case study: Ukrainian Parliament

It is known that the Ukrainian Parliament, the Verkhovna Rada, has interesting political
groups within it called “factions” (Duncan 1958). Factions are interesting as they extend
beyond party boundaries and change dynamically. Prior work shows that factions can be
obtained from network analysis of voting data (Poole 2005; Poole and Rosenthal 1985).
Further, there is known to be a large disruption of alliances in convocation 7, spanning
from 2012 to 2014, in which a revolution took place.

Thus, in this case study we analyze the Rada voting data from convocation 7, which is
available publicly (Verkhovna Rada of Ukraine 2018). The dataset from this convocation
analyzed included 493 bills, over 91 time slices. Time slices are defined using the day
in which bills are registered. Some time slices may have multiple bills, some may not.
There are six voting options in the Rada: for, against, did not vote, no vote, absence, and
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abstain. Domain experts have suggested that votes other than for and against are all used
to mean the same thing: they are not in favor of the bill, but do not want to send a strong
signal against it. As such, these votes are not considered as ties between MPs. The voting
network, then, is the network constructed so that nodes are parliamentarians and the
weighted links are the instances of co-voting between two parliamentarians in the given
time period.

One method of determining factions from this network is using Louvain grouping.
Thus, we use Louvain grouping at each of the 91 slices, and obtain the similarity matrix.
Note that this procedure can lead to a significant number of isolates at each time slice.

It was determined that there is only 1 partition in the networks timeline, occurring on
February 6, 2014. Figure 1 shows the similarity matrix with the induced temporal parti-
tions. It can be seen that the “internal similarity” of the partitions is high, often around
0.8, and the “external similarity is low, often around 0; specifically, the average value inter-
nal similarity is 0.25, and the average external similarity is 0.03. While there are many
entries in S with low similarity during segment 2, they are not pervasive. Meaning, since
the overall block has high similarity, these intermittent entries of lower similarity are nor-
mal variations in the communities. If a meaningful change was occurring, slices would not
be highly similar to entries within the block on average, i.e. a new diagonal block would
form in the matrix.

The Ukrainian revolution started in February of 2014, culminating in the overthrow of
the Ukrainian government and the removal of President Victor Yanukovych. As expected,
our algorithm returns this as the most significant change point. Forcing our partition-
ing to continue revealed another date: May 15, 2014. This is interesting in that it is the
last slice before the presidential election, occurring on May 25. Again, groups are highly
correlated before and after these events, so there was not much of an impact on the
communities overall.

Now that the temporal network has been segmented, we can analyze the resulting
two static networks statically. First, we visualize the network in Fig. 2. This figure shows
that the initial two communities within the Rada relied on only a few parliamentari-
ans to bridge the gap between them. Then, we see that after the event, the community
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Fig. 1 The Rada’s temporal similarity matrix for convocation 7, created using Louvain grouping. The temporal
partition found with our method is drawn in black in (a), and occurs on February 6, 2014, which is the start
date of the Ukrainian Revolution. The best-fit generalized Louvain partition is shown in (b), and occurs on
April 4, 2014
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(b)

Fig. 2 Network visualization of the Rada in the first time segment in (a) and the second in (b). Links below
the mean link value are not shown, nodes are colored by Louvain grouping for the individual time segment.
The initial time segment shows clear group structure in the first time segment, with a minority group
detached from a central core. The second time segment does not have clear groups, because the groups
found are all inter-related

structure cannot be discerned visually, indicating poor grouping after the event. This
result is confirmed quantitatively using Louvain modularity; the initial time segment had
modularity 0.139 while the second only had 0.024.

To better understand how the groups have changed, a Sankey Diagram is displayed in
Fig. 3. We see that group A transitions from holding a majority to holding only a third of
the seats. This is due to a large number of its constituents joining members from group B
to form a third group, and a smaller number of constituents joining the opposing group.
Both before and after there is a small number of MP’s failing to cast a significant vote
in each time period. Here, significant refers to the fact that “co-voting” relies on non-
abstention, and some MP’s strictly cast abstention-type votes.

Comparison to Generalized Louvain

Generalized Louvain requires two resolution parameters: , y. Currently, there is no way
of objectively selecting these parameters (Mucha et al. 2010). So, we perform a grid search
over the parameters suggested in their initial work, adding additional values making the
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Fig. 3 Sankey visualization of the flow from Rada groups in time segment 1 to time segment 2. Groups in the
“Z" category are isolate nodes that were lumped together for convenience. The main finding here is the birth
of a third group, which drains the controlling faction of its majority, giving the opposing faction the most
power after the revolution

total space: w €[0.25,0.5, ...,4,5,6, ...,10], ¥ €[0,0.1,1,1.5,2,...,6]. Out of these 286 pos-
sible combinations, only 14 partitioned the data less than 10 times. Finally, one partition
was best in terms of all score metrics (internal similarity, external, ratio, difference), which
was obtained from y = 2.5,w = 8. This parameter combination yields one partition in
the voting data, on April 4, 2018. This partition is visualized in Fig. 1. Clearly, this result
is sub-optimal.

Case study conclusion

This example shows why dynamic community detection is necessary: aggregating the
entire convocation 7 data into one network would have lost the two very different behav-
iors seen in the data. Our methodology partitions the temporal network at exactly the
point that the legislature Ukrainian revolution began, giving empirical validation to our
results. Additionally, allowing our algorithm to over-partition the data revealed two other
change points, centering around the election. Finally, we show that performing General-
ized Louvain with 286 parameter combinations led to only 14 usable partitions, all still
with sub-optimal results. Additionally, the results from Generalized Louvain could not
easily be compared without introducing some similarity measures, as we have done here.

Semi-static nodesets

Methods

As stated, the above method of finding optimal time segments requires that nodes be
present in each time slices. However, many datasets do not meet this requirement. In
some datasets, such as the Enron email corpus, key actors are present in most of the time
slices. In this section we will make changes to the initial methodology that allow nodes to
be missing in some slices.

Again, each time-slice is grouped, and the co-group matrix is calculated. However, now
that nodes in our nodeset can be “out of the network” completely, isolate nodes should not
be allowed. Instead isolate nodes will be entered as “not a number” in the co-group matrix.
Then, the correlation function is adjusted to ignore these values in calculation. Basically,

Page 11 of 19
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the correlation now is calculating the similarity between groups of nodes present in both
time slices.

Additionally, an added assumption can fill in some missing data: nodes do not change
group affiliations in slices they are not present for. That is, if a node is not present until
t = 4, is present in ¢t = 5, and then is not present again, it will have “not a number” co-
groupings until time ¢ = 5, then it will retain the time ¢ = 5 co-group ties for the rest of
the dataset. To be clear, the assumption is that nodes only change group through forming
other links, or the lack of a link cannot be used to change a node’s group. Theoretically,
this seems like reasonable way to fill in missing data. In practice, however, this added
assumption actually blends the time slice networks together, making it harder to establish
temporal partitions. Thus, this assumption is not made in this work.

Now, nodes can enter and leave the dataset. However, large sets of infrequent nodes can
disrupt results. For example, if many nodes are present in an early slice, but never return,
it is possible that subsequent slices appear more correlated than they should. Issues like
this can be resolved in two steps. The first part of this issue stems from the concept of
time slices itself. What is a time slice? It depends on the dataset, but often it is up to the
user to define a sensible time slice. Slices are arbitrarily selected as regular intervals like
days, weeks, or months. Ideally, the length of the time slices should be 4—10 times shorter
than that which meaningful change might occur for that network. Given the somewhat
arbitrary nature of the current slice length choice practices, we suggest that the node
frequency should also be taken into account. Again considering an email network, it is not
reasonable that everyone emails every single day, but most people send at least an email
a week, so this may be a better time slice. A month would include even more users over
a frequency minimum, but offers less resolution for temporal changes. These trade-offs
must be looked at on a case-by-case basis.

In the case of semi-static nodesets, many nodes in the network may appear infrequently.
If a researcher would like to answer the question “how do core members of this network
change their community structure?” Infrequent nodes may want to be filtered out. This is
not a necessary step, as nodes will only have an impact on results when they are present,
however, large numbers of less important nodes can obscure results and make analysis
more challenging. As such, a node frequency threshold can be introduced. After the net-
work slices are created, define #; as the number of slices node i is present for. Then, a
define A as a threshold such that all nodes with #n; < X are removed from the analysis. For
example, A = %T retains nodes that are present three quarters of the time. This node-
filtering step is prevents large numbers of sporadic nodes from skewing the analysis of
our segments.

This is not a parameter to be tuned, or adjusted to get better results. Rather, it is an
optional pre-processing step which may be helpful for researches interested in the evolution of
nodes that are frequently present. In the Enron example, we are only interested in how
communities change around users closely associated with the organization. If there is an out-
side user who is emailed 3 times over the 2 and a half year dataset, they are not relevant.

Case study: Enron emails

The Enron dataset has been a case study for an extensive amount of work on community
detection, including the aforementioned work on GraphScope (http://www.cs.cmu.edu/
enron/) (Rowe et al. 2007; Sun et al. 2007). We use the dataset from the company’s launch
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in November 1999 to May 2002. It contains approximately 1.6M emails. Our purposes for
using the data are twofold. First, it is a commonly used example of a dynamic network
with a semi-static nodeset. Second, we can then directly compare it with GraphScope’s
results.

Since the email network is large and fairly sparse, Louvain grouping is again appropriate.
To fairly compare with GraphScope, we use a week-level time slice, and consider the data
between July 10, 2000 and November 11, 2001, for a total of 70 time slices. Examining the
node frequency distribution showed that an overwhelming number of the email accounts
were only present for 3 or less weeks, 76.1% to be precise. Still, we set a threshold of
A= %T = 35, which drops the number of nodes from 60,637 to only 1672. This large
drop shows why the threshold is necessary in the first place. Without any filtering, 97.2%
of the nodes in the dataset would have nearly-unchanging group affiliations because they
aren’t reappearing in the data. Unfortunately, filtering nodes based on their frequency
changes the dataset significantly from its form when analyzed by GraphScope. It might
be interesting to see the dropped node’s group structure, but since they are so infrequent
that is no longer a dynamic question. Filtering down to the reoccurring nodes allows for
an unobscured view of the dynamic communities, so we proceed despite the differences
to GraphScope.

A single dynamic partition for this dataset was found on June 18, 2001. The partition
in the similarity matrix is visualized in Fig. 4. Again, our partition is intuitive, providing
high internal similarity in both segments while maintaining low external similarity. Other
events can be seen on December 18, 2000, and December 10, 2001, however, the commu-
nities before and after these events are still highly correlated, so the change was not large.
The major change occurs as Rove divested his stocks in energy, and just before Kenneth
Lay took over as CEO. Both of these changes were seen using GraphScope.

Enron Data
0.5
0.4
2
X~ =
o) 0.3
o =
= E
w
0.2
0.1
Week
Fig.4 The Enron temporal similarity matrix. Our partition is shown in black on June 18, 2001. Note that the
diagonal has been artificially set to the mean similarity for visualization purposes, where in reality it is equal to
one
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Comparison to GraphScope

The biggest difference between our results and results obtained using GraphScope is in
the number of temporal partitions. We found 1 partition that showed very different com-
munity structure given recurring nodes, while they found about 15. It seems from our
analysis that GraphScope is more sensitive to small changes, since the changes they find
lead to highly correlated time segments in our analysis.

Another potential explanation is due to the fundamental differences in the algorithms.
It is possible that the streaming approach taken by GraphScope can partition the data
based on large changes in the nodeset, and it is likely that streaming approaches give more
partitions in general. Given the restriction on the data that they have access to, quick
bursts of noise may appear to be events. These bursts are desirable in some contexts, see-
ing that they occur around major events. However, if the groups quickly normalize, those
interested in community change points may need a more coarse definition of changes.

Case study conclusion

From our analysis, only one major change in the Enron email communities occurred
over the duration of the dataset. This change occurred between two events also noted by
GraphScope: Rove divesting his stocks in energy and Kenneth Lay taking over as CEO.
While we do find change points at many major external events, as GraphScope does, we
believe this is due to non-community related changes. From our analysis, though these
changes may be important, they are not reflected in the community structure alone, and
thus cannot be detected here.

Dynamic nodesets: a streaming approximation

While there are plenty of examples of temporal networks with nearly-static nodesets,
there are also many examples where node presence is very inconsistent. Perhaps most
notably, social media data such as Twitter data has this property. If our line of reasoning
is to be applied to these datasets with ever-increasing importance, we need to adjust our
methods accordingly. To do this, we take a streaming approach.

For real-time analysis of large social media data, only a streaming approach is practical.
However, a streaming approach will always be worse than a holistic data approach, since
it is unable to take advantage of future data. Given this, we use our prior results for the
Rada and Enron as target results for our streaming algorithm, and tune its parameters to
match as closely as possible. A streaming approach similar in nature is given by Morini
et al. in (Morini et al. 2017), but they lack quantitative validation and empirical validation
through a non-streaming approach.

Again, the purpose of this section is to show that parameter tuning of such a model is
possible. With only 2 case studies to tune parameters, it is not possible to obtain a truly
general model. However, with tuning from only these 2 studies we find interesting change

points from real social media data.

Methods

In areas where streaming is required, speed of computation is hugely important. A major
bottleneck in our prior algorithms for dynamic partitions is the slice-level grouping com-
putation. Grouping algorithms are expensive, and while our procedure currently is more
efficient than procedures requiring multiple groupings per slice, such as GraphScope,
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limiting the number of calls to such algorithms can give great payoffs. Thus, we explore
how different our segments would be if we did not group the time slices at all, but instead
calculated the correlation of adjacency matrices directly.

In one sense, this method gives more insight to changes in the network, because small
changes are not averaged away through group assignments. However, now detected
changes might be based on inconsequential links which do not affect the community
structure. To quantify this effect, we compute the correlation of the output matrices. That
is, one temporal similarity matrix was created based on co-group slices (as before), and
one was calculated based on the adjacency slices. The correlation between these matrices
was 0.81 for the Enron network, and 0.84 for the Rada. Given these high correlations, we
proceed with the adjacency similarity for the streaming approach.

Anomaly detection is easiest to perform on one signal. As such, we seek to combine
our initial objectives into a single equation. Initially, we were trying to maximize internal
similarity while minimizing external similarity. Thus, the initial objective function was
closely related to the function:

F(Sr b) = sinternal(s: b) - Sexternal(s: b): (8)

where S was the temporal similarity matrix over the whole timeline, and b is the list
containing segment boundaries.

In a streaming setting, this function is problematic. As time goes on, the timeline
expands, so S increases in size. This results in computations that are more and more
expensive. This can be resolved by considering only a fixed window size. If a window
of size w is used, only the latest w slices are used in constructing S. While resolving the
increasing complexity issue, a windowed similarity matrix is only an approximation of the
full matrix. Still, the values within this matrix will be indicators of recent change in com-
munity structure. Thus, by detecting anomalies in F, we may recover the change points
found using the offline approach.

Previously, b was found through the algorithmic process detailed in the “Methods”
section. In a streaming setting, however, the goal is not to place partitions, but to deter-
mine if a break has just occurred. So, here, b, is predefined based on the window size. This
way, F only changes through updates in the similarity matrix, S.

The smaller the window that F is calculated at, the more precisely a partition can be
placed. Larger windows will give more accurate estimates of the objective, but are harder
to compute with large highly dynamic nodesets, and make partitioning less precise. We
proceed with the smallest possible window size, 3. If the window was smaller than 3, the
similarity matrix could not be partitioned to have meaningful internal similarity. There
are two ways to partition a matrix of size 3: after the first slice or after the second slice.
We chose the latter so that anomalies can be detected at the most recent slice.

For our choice of window and partition, the objective function can be defined:

S13+ S2.3 ©)
2 )

where S is the temporal similarity matrix of the most recent 3 time slices. If a large

G=3S1,—

change occurs the previous two time slices will have high similarity to each other and low
similarity to the new slices, yielding a large value of G.

It is standard practice in anomaly detection to estimate the running mean and vari-
ance of a signal, and report an anomaly if the signal exceeds s standard deviations of the
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signal for n consecutive time stamps. As such, we test four parameters: n time stamps,
s, standard deviations above the mean, and s; standard deviations below the mean,
and ¢, the number of values required to start detection. We grid search over the space
si,sp €(0,0.1,0.25,0.5,1,1.5,2,2.5,3], n €[1,2,3,4], £ €[3,4,5,6], to find the optimal
parameters for our two previous case studies. The temporal partitions were evaluated
using the same function F, but on the whole similarity matrix. The highest normalized
sum of objective over both domains was selected.

The optimal parameters were determined to be s; = 2,5, = 3,n = 1, £ = 5. Effectively,
this means that the most effective streaming approach made partitions when a single
large deviation occurred, provided that there was at least 5 points in the series. Using the
adjacency matrices and these parameters resulted in the same partition found for the Rada
previously, and Enron partitions on December 18, 2000, February 5, 2001, and June 18,
2001. Basically, this obtained the optimal Enron partition, plus two extra partitions, one
occurring when Jeffery Skilling took over as CEO. Since this approximation gives similar
results and is significantly more efficient, we use it moving forward.

Case study: Ukrainian Twitter data

We tested this streaming method on Twitter data streamed from Twitter’s API, placing
a bounding box over Ukraine. The data was collected from January 5, 2018 until June 9,
2018. The filtered data had a total of 1,646,446 tweets, and 169,699 unique users over
112 day-long snapshots after filtering. Due to a collection error, the month of March
is missing. The data was streamed normally to test how the algorithm handled such
problems.

This resulted in 4 temporal partitions: April 6, April 13, May 16, and May 23. Basic
statistics for each segment are shown in Table 1. Note that the first partition occurs on
April 6, two network snapshots after the collection error. This verifies that our algorithm
can handle “built-in” change points due to errors or some other internal source. The
algorithm segments the timeline into 2 short, dense segments, and 3 longer more sparse
segments. Hashtag analysis shows that the conversation in each time segment revolves
around the K-Pop Band, BTS. Segments then seem to give campaigns for different music
award shows: iHeartMusic Awards, MTV Miaw, Billboard Music Awards, and MTV Miaw
again. The last segment also contains discussion around the UEFA Champions League
soccer final, which took place in Kiev. It is possible that this is the product of bot activity
programmed to support the super-group, but it is also possible that these are real users.
The top hashtag in the longest segment only occurred 400 times per day, so it could be
from a relatively small but dedicated following.

Table 1 Summary statistics for the each Twitter segment

Start Date End Date Days Tweets per Day Users per Day Density
January 5 April 6 48 2505.2 1765.5 1.67e-5
April 7 April 13 6 33457 3127.2 5.70e-5
April 13 May 16 33 3045.0 21924 1.92e-5
May 17 May 23 7 53836 38253 5.26e-5
May 23 June 9 17 41221 3039.6 2.62e-5

Note that “day” normalization is days in the dataset. We noted that a collection error led to no tweets in March, the day count used
is less than the days from the beginning to the end. Density refers to the density of the network created between tweeters from
mentions and replies
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Beyond this, we study difference in the key players in the Twitter network over each
time period. We measure importance using eigenvector centrality, and plot the centrality
measure for the anonymized top five members in Fig. 5. We see that the most important
tweeter, Tweeter A, is far more central than the other tweeters. While tweeter A main-
tains highest centrality, tweeters B-E jockey for the second highest. Other than A, each
tweeter is more central in a different segment of the ongoing conversation. Also, we see
that second time segment has no tweeters much higher in centrality than another. This
indicates a different type of conversation structure than the other segments.

Case study conclusion

We demonstrated that the internal/external similarity approach can be used in a stream-
ing context. While we only used two case-studies for parameter tuning, we showed that
parameter tuning of this kind is possible, and yields reasonable approximations of prior
results. Applying this to our Twitter data, we found 5 segments, each with different
network characteristics and central tweeters. While we have shown that this type of anal-
ysis is feasible and gives interesting segments, many more case-studies must be used to
optimize the parameters before this can be used generally.

Threats to validity and further work
The networks examined here were small enough to be easily stored in memory. For much
larger networks this method might be too computationally expensive. For large networks,
calculations with sparse matrices would have to be implemented. For many time slices,
aggregation or artificial splitting of the data before analysis could be performed to reduce
runtime. For a very long dataset, analyzing each half separately would cut runtime in
half. Future work may entail how aggregation and splitting could be used to determine
interesting regions, which could then be decomposed and analyzed in detail.

In terms of our comparison to Gernealized Louvain, we only performed a grid search
over 286 parameter combinations. It is possible that a more fine-grained search would
have led to better segmentation than that which we found. Our goal here was to point out
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Fig. 5 Eigenvector centrality for the top 5 tweeters is shown for each network segment. Here we see Tweeter
A dominates the conversation in general, while the other 4 tweeters jockey for second place. Also, the
second segment’s network is concentrated such that no one tweeter is much more central than other
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this limitation, and the lack of ability to determine an appropriately large search space.
Also, we acknowledge that the Generalized Louvain algorithm is not trying to optimize
our similarity functions, so it is expected that it will not reach an optimal solution. How-
ever, since our similarity function is based on first principles of networks, we believe any
temporal partitioning algorithm should performed reasonably well on our measures.

A major simplification was made in the streaming algorithm when the adjacency matrix
was used in place of the the co-group matrix. Given the similarity values of 0.84 and 0.81,
we believe that this simplification is worth the trade-off in computational cost. If one does
not believe this, or if the computational cost is not a problem, the co-group matrix could
easily still be used. However, the streaming parameters found here would probably not
be applicable. More generally, the streaming parameters here were found as a proof of
concept. Parameter for a streaming algorithm would have to be optimized over far more
than 2 networks to be considered truly valid generally.

Conclusion

We began by introducing a simple algorithm for dynamic partitioning of networks with
static nodesets, through the product-moment correlation. Applying this to the 7th con-
vocation of Ukraine’s legislature, the Verkhovna Rada, showed a large disruption during
the revolution. Specifically, the majority faction split and some joined with their oppos-
ing group, leading to three factions similar in size. We compared this to the Generalized
Louvain algorithm, and showed that it was impractical to get similarly optimized results
due to its parameter tuning problem.

Then, we extended the algorithm to semi-static nodesets, and applied this to the Enron
email dataset. We found only one partition, significantly less than found with Graph-
Scope. We hypothesized that this is largely due to our different approach, and that
streaming algorithms tend to give more partitions.

Lastly, we proposed an anomaly-detection-based streaming alternative. This algo-
rithm’s parameters were optimized over the two previous case studies. The streaming
algorithm was applied to Twitter data obtained from Ukraine over 6 months. From this
data four partitions were found, in which the network segment’s characteristics, central
tweeters, and topic was slightly different, though most revolved around the K-Pop group
BTS. Effectively, we demonstrated that similarity-based anomaly detection is a feasible
method of segmenting social media data in real time.

As dynamic network data becomes more and more ubiquitous, tools and frameworks
to analyze such networks become more and more important. This work allows the vast
variety of static community detection tools to be used in a dynamic analysis. Our methods
allow researchers to test the harm of collapsing their temporal data into a single network.

If harm is done, partitions minimizing this harm are given.
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