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Abstract
Transcriptional co-expression networks represent the concerted gene regulation
programs by means of statistical inference of co-expression patterns. The rich
phenomenology of transcriptional processes behind complex phenotypes such as
cancer, is often captured (at least partially) in the connectivity structure of
transcriptional co-expression networks. By analyzing the community structure of these
networks, we may develop a deeper understanding of that phenomenology. We
identified the modular structure of a transcriptional co-expression network obtained
from breast cancer gene expression as well as a non-cancer adjacent breast tissue
network as a control. We then analyzed the biological functions associated to the
resulting communities by means of enrichment analysis. We also generated two
projected networks for both, tumor and control networks: The first one is a projection
to a network in which nodes are communities and edges represent topologically
adjacent communities, indicating co-expression patterns between them. For the
second projection, a bipartite network was generated containing a layer of modules
and a layer of biological processes, with links between modules and the functions in
which they are enriched; from this bipartite network, a projection to the community
layer was obtained. From the analysis of the communities and projections, we were
able to discern distinctive patterns of regulation between tumors and controls. Even
though the connectivity structure of transcriptional co-expression networks is quite
different, the topology of the projected networks is somehow similar, indicating
functional compartmentalization, in both tumor and control conditions. However, the
biological functions represented in the corresponding modules resulted notably
different, with the tumor network comprising functional modules enriched for
well-known hallmarks of cancer.

Keywords: Breast cancer networks, Modularity, Bipartite networks, Functional
enrichment

Background
Co-expression networks are graph-theoretical constructs that represent global-level
regulatory interactions and expression patterns of genes. These are well-defined math-
ematical structures amenable for systematic analysis of its global and local properties,
as well as its dynamics and functionality. The case of said networks related to com-
plex phenotypes such as cancer has been an area of interest in recent times (De Craene
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and Berx 2013; Dang et al. 2006; de Anda-Jáuregui et al. 2016). Modular structure
(Girvan and Newman 2002; Newman 2006; Palla et al. 2005; Palla et al. 2007) is a quite
relevant feature of co-expression networks, since it may provide some clues as to what
are the actual biological mechanisms in complex phenotypes (Alcalá-Corona et al. 2016).
In the case of breast cancer deregulation, functional biological organization has been
shown to be related to network modularity (Alcalá-Corona et al. 2017; Alcalá-Corona et
al. 2018). Such community structure of gene organization is characteristic of the differ-
ent breast cancer molecular subtypes (Alcalá-Corona et al. 2017), so that particularities
of the molecular phenotypes are well represented in the modular partition of the network
(Alcalá-Corona et al. 2018).
Transcriptional co-expression networks can be probabilistically inferred from high-

throughput gene expression data (Basso et al. 2005; Margolin et al. 2006; Hernández-
Lemus and Siqueiros-García 2013; Hernández-Lemus and Rangel-Escareño 2011;
Delgado and Gómez-Vela 2018; Kuzmanovski et al. 2018; Wong et al. 2018; Manem et al.
2018; Liu et al. 2018), and provide a representation of the expression landscape of a given
phenotype. These type of regulatory networks consist of nodes representing genes and
links representing co-expression (i.e. strong statistical dependency) between said genes.
Given a Co-Expression Network G, composed of gene nodes and links representing co-
expression between genes, it is possible to detect non-overlapping co-expression modules
(communities) due to its topology.
The gene set of each module Mi may be tested for association to known gene-sets of

biological interest, such as biological functions, using enrichment analysis. These associ-
ations may be represented as a bipartite graph B, with a set of module nodesM and a set
of biological functions F, with links between modules and the functions in which they are
enriched. With this in mind, it is possible to project G and B into two new graphs GP and
BP (see methods) where nodes correspond to modules detected in the original graph G.
These two projections recover two distinct types of relationships between groups of

genes: on the one hand, whether different groups of genes have a level of co-expression
that may be driven by biological factors, such as co-regulation; and on the other hand,
whether different groups of genes are involved in the control of biological functions that
are necessary for a given biological context (for instance, a phenotype). An interesting
case is that of modules that are co-regulated and connected through shared biological
functions.
In this work, we analyze two coexpression networks derived from basal breast cancer

(tumors) and healthy breast tissue (controls), and explore the two modular projections
described. We identify the differences in modular structure between the two pheno-
types, and how these different modular structures differ in terms of the two types of
intermodular relationships that we have described.

Methods
Network inference

Co-expression networks were reconstructed from gene expression data. Basal breast can-
cer gene expression data, along with adjacent normal expression data, were obtained
from the Cancer Genome Atlas (Network and et al. 2012). Data acquisition, and pre-
processing is described in (Espinal-Enriquez et al. 2017). Briefly, we used 142 Basal-like
subtype breast cancer samples, along with 101 solid-tissue adjacent normal samples.
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15,642 annotated genes were included in each sample, after removal of low-counts tran-
scripts (< 5 per sample). This set of un-paired data were pre-processed, normalized and
bias-reduced, to have a comparable set of expression data between cancer and control
samples.
Mutual Information (MI) was computed using an implementation of the ARACNE

algorithm for all gene pairs (de Anda-Jáuregui et al. 2019). A suitable MI threshold was
selected based on the following criteria:

• At least 80% of nodes in the genome (out of 15,642) must be present in the network
by being connected to at least one other gene

• The network must have a giant connected component (i.e., the largest connected
component with more than half of the nodes)

• The highest (most restrictive) MI threshold must be selected

We evaluated different MI threshold values related to quantiles of the MI distribution.
Generated networks were imported as igraph for [R] objects. igraph version 0.71 and R
version 3.5.1 were used.
Mutual information is the maximum entropy/maximum likelihood estimate of statis-

tical dependence between two random variables (Chow and Liu 1968). It is indeed a
symmetrized version of the Kullback-Leibler divergence between the joint probability dis-
tribution for two variables and the product of their marginals (Kullback and Leibler 1951)
(i.e. the joint probability distribution under independence conditions). Being a maximum
entropy estimate it needs the least number of assumptions on the probability distri-
butions. Indeed the only needed assumption is that these distributions have compact
support. Other correlation measures assume identically distributed variables, linearity
or rank ordering among them, etc. Such assumptions are often not compliant with the
nature of gene expression data such as nonlinearity, ’delays’ (i.e. correlation shifts), and
so on. For these reasons, mutual information has been thoroughly used for the inference
of (large) gene co-expression networks. Another advantage of the use of mutual infor-
mation measures to deconvolute gene regulatory networks frommassive gene expression
data is the fact that, in most cases (whenever Hammersley-Clifford conditions apply), the
resulting graphs meet the requirements to belong to the family of Markov random fields,
something that under some scenarios may be quite useful (Dobruschin 1968).
The major drawback for the use of the mutual information approach is the fact that one

needs a way to reconstruct the probability distributions from empirical data. Even under
the relatively ’soft’ conditions imposed by Glivenko-Cantelli convergence, this means that
one still have to have a somehow large number of samples (more than approx. 100 for
the case of gene expression data) for the empirical distribution to be useful in order to
minimize the number of false positives. These conditions are fulfilled here.

Module detection and enrichment

Modules where detected using the Infomap (Rosvall and Bergstrom 2007; 2008; Rosvall
et al. 2009) implementation for igraph, using 1000 iterations to achieve convergence.
We have chosen the Infomap algorithm, since it has proven to be highly efficient com-
pared to other methods. Based on benchmarks, Infomap was the best- ranked method in
runtime, accuracy and performance (Lancichinetti et al. 2009), as it was assessed in terms
of the LFR benchmark (Lancichinetti et al. 2008).
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The field of enrichment analysis includes a wide variety of techniques (García-Campos
et al. 2015). In this work we used an Over Representation Analysis, in which a hyper-
geometric (or Fischer exact) test is used to identify a statistically significant association
between each module’s gene set, and the sets of genes involved in biological functions as
described by the Gene Ontology (GO) database (Ashburner et al. 2000).
Each module gene set was tested for enrichment of Gene Ontology (Ashburner et al.

2000) terms via hypergeometric testing using the HTSanalyzer (Wang et al. 2011)
package for R. GO terms were considered enriched if they had an adjusted Benjamini-
Hochberg (Benjamini and Hochberg 1995) p-value smaller than 0.05. Enrichment rela-
tionships found were represented as a bipartite network, with a layer of modules and a
layer of GO terms.
Figure 1 presents a pictorial abstraction of this process. Panel a represents module

detection of G using Infomap. In panel B modules detected in panel A become nodes in
the GP projection; links represent intermodule connections. Enrichment of modules (i.e.
the B network) detected in panel A is presented in panel C. The three modules are con-
nected to turquoise diamonds, which represent biological processes associated to said
modules. Panel D shows a projection BP of B in which nodes are modules linked if they
share a biological process.

GP and BP projections

Topological and functional neighborhoods define two projections GP and BP as previ-
ously mentioned. The first projection, GP, is a graph where nodes are modules M, and
links exist between modules Mi and Mj if there are links in G between genes in Mi and
genes inMj: we say these modules are topologically adjacent in the original network.
The second projection, BP, is a graph where nodes are modules M and links exist

betweenMi andMj if there is overlap in the neighborhoods ofMi andMj in B: we say that
these modules are functionally adjacent.

Fig. 1 Graphical description of the workflow presented here. aModule detection of tumor and control
networks using infomap. In this figure, three modules are detected. bModules detected in a become nodes
in the GP projection; the links represent intermodule connections. c Enrichment of modules detected in a. In
this case, the three modules are connected to light-blue diamonds, which represent biological processes
associated to said modules. d Projection of c In this final case, nodes are modules linked if they share a
biological process. Notice that B and D networks are not connected in the same way, despite they have the
same nodes
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Results
Co-expression networks for breast cancer and adjacent normal

Networks were generated from the tumors and control datasets. After scanning differ-
ent threshold values for mutual information (see Additional File 1) the highest threshold
for MI that covered our criteria was found at the 0.999 quantile. These networks are
described in Additional File 2. Figure 2 illustrates how different the tumor and control
networks are; nodes are colored by the module to which they belong. It can be observed
in the tumor network, modules with nodes of the same color, whereas in the control net-
work, modules are not observable and colors are less separated. This is further supported
by the different degree distributions (Fig. 3).
Said differences can be identified even by a quick glance at the node-degree distribu-

tions (Fig. 3; χ2 testing for differences in discrete distribution was performed, with the
following results: χ2-statistic = 1074170, p− value = 4.99e−10), as well as by the obser-
vation of the force-directed network visualization. The control network is characterized
by a mono-scaled regime (the degree distribution appears to follow a power-law with a
single scaling exponent over the whole range of degree values) whereas the tumor net-
work presents an evident crossover phenomenon leading to multi-scaling, i.e. the degree
distribution does not follow a power-law with a single scaling exponent, but rather it
seems to have several different scaling regimes, with regions containing inflection points
in so-called crossover regions.

Modular structure of breast cancer and healthy breast networks

Distinct modular structures were found in each network, in agreement with previous
results from our group (Alcalá-Corona et al. 2018). The partition for the tumor network
has a smaller description length L (Rosvall and Bergstrom 2008) value (L = 8.268641)
than the control network (L = 11.80941). In the control network, we identified 981 mod-
ules, whereas for the tumor network we found 910 modules. As it can also be observed
in Figs. 2 and 3, Fig. 4 shows histograms of the different module sizes, showing the

Fig. 2 Regulatory networks corresponding to the control a and tumor b phenotypes. Nodes are colored
according to the module to which each node belongs. Notice that in B, a visible modular structure appears,
reinforced by the distribution of colors, meanwhile in A the network link distribution looks more
homogeneous
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Fig. 3 Degree distributions for both networks. Red dots form the histogram of tumor network, meanwhile
black dots take account for control network. Red dots appear to have two different regimes, with a crossover
phenomenon. Black dots, on the other hand, appear to follow a power-law with a single scaling exponent

largest modules in control network (χ2 testing for differences in discrete distribution was
performed, with the following results: χ2-statistic = 40324.45, p − value = 4.99e − 10).
For each transcriptional co-expression network, we projected the modules identified in

it to a GP network were adjacent modules in the original network are found. These GPt
(for tumors) and GPc (for controls) are depicted in Fig. 5, and described in Additional
file 3 (modular projection parameters). There are three main differences between these

Fig. 4 Histograms of module sizes in tumor and control networks. As it can be observed, the largest modules
correspond to the control network (black dots in the upper left part the figure). Also notice the different
concavities in red and black curves
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Fig. 5 The modular network structure in tumor and control. In this case, nodes are modules and the
connections represent inter-module genes connected in the original network. a control module network. b
Tumor module network

networks that may be observed: i) a characteristic degree distribution for each projection
(Fig. 6 χ2 testing for differences in discrete distribution was performed, with the following
results: χ2-statistic = 49532.28, p − value = 4.99e − 10), ii) the higher edge density in
GPc, which is also related to iii) the higher link/node ratio in GPc.

Functional Enrichment

We identified a set of biological functions described as GO terms associated to modules
detected in the tumor and control networks.We represented these functional associations
as bipartite graphs Bt (for tumors) and Bc (for controls) that are represented in Fig. 7a
and b, with parameters described in Additional file 4.
We identified 665 GO terms associated to Mt and 827 GO terms associated to Mc. It

is important to notice that not all modules were enriched in biological processes; in fact,

Fig. 6 Degree distributions for module networks of Fig. 5. Red dots represent the tumor network, meanwhile
black dots are for controls
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Fig. 7 Bipartite graph of GO term enrichment in network modules. a Control network. b Tumor network. In
both networks, grey diamonds represent the module that have enriched GO terms. Colored circles represent
GO categories enriched for the linked modules. In some cases, GO categories are connected to more than
one module. Colors of GO categories represent a higher category in which each GO term belongs. Colors in a
and b are not related. Notice that the categories in A are mainly related to maintenance, meanwhile in B
(tumor bipartite network) the majority of categories are related to immunity a well known hallmark of cancer

only 110 enriched modules are found in Bt and 82 enriched modules were found in Bc.
Furthermore, the set of enriched GO terms Bc and Bt are different (with a Jaccard index
of 0.34).
The projections of modules based on functional adjacency BPc and BPt are shown in

Fig. 8a and b. In the figure, modules are connected if they share at least one enriched pro-
cess. Node size represents the module degree. Edge width is proportional to the number
of shared enriched processes between modules. In both cases there are some modules
that share several enriched processes. In BPt (8b), there are clusters of modules sharing
GO terms, whereas in 8A the compartmentalization is less evident.
Additional file 5 shows some of the relevant parameters for these projections. It may

be observed that these projections are very sparse in terms of edges: only 51 of Mc are
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Fig. 8 Projection of breast cancer modules linked by shared enriched GO terms. a Control projection. b
Tumor projection. Modules which show enrichment, but are not connected to other through shared
enriched GO terms (29 in control, 40 in tumors) are not shown

connected to other modules, whereas for Mt the number is 70. Importantly, there are
modules in tumor and control networks (40 and 29, respectively) that are associated to
GO terms not shared with any other module.

Discussion

Most central modules in the GP projection are the largest ones

Themost central modules in both the GPc and GPt projections are also the largest ones. In
GPt , this central module has 231 genes and 5437 intra-modular links. It is connected to 99
othermodules. Themost central module in GPc, has 1000 genes and 17,583 intra-modular
links. It is connected to 742 other modules.
Interestingly such highly central modules are not particularly notable in terms of their

functional associations. In controls, the largest module is enriched in 6 processes of
nucleic acid regulation; it is linked through processes (i.e. in BPc) to 6 other modules. For
tumors, the largest module shows no statistically significant enrichment, and therefore is
not linked to any other module in the BPt projection.
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Functional compartmentalization in health and disease

The bipartite graphs B are topologically similar between tumor and control; however, the
enriched functions in each network are different. In both cases, the structures show star-
like motives (Fig. 7a and b), which indicate mostly unique processes associated to a given
gene module. We interpret this as evidence of compartmentalization of regulation, where
each module is controlling the activity of independent sets of biological processes.
We observe important differences in terms of the biological processes associated to the

most connected (i.e., most enriched) modules. The two most connected modules (with
146 and 121 neighbors, respectively) in Bc are associated to metabolism and cell cycle
processes, as illustrated Fig. 7a as well as in Additional files 6 and 7;meanwhile, immunity-
related processes are associated for the two most connected modules (with 95 and 81
neighbors, respectively) in Bt , which we illustrate in Additional files 8 and 9.
As it may be observed, associated processes in Bc are for maintenance, meanwhile

the processes associated to the Bt are well-known hallmarks of cancer (Hanahan and
Weinberg 2011). The identification of hallmark processes in breast cancer co-expression
networks derived from high-throughput data is consistent with recent reports by our own
group.

Most connectedmodules through functional adjacency are similar in health and disease

The way modules are connected through processes is similar between health and disease,
even though themodules and functions are different. Themost enrichedmodules are not,
however, the ones that are more connected to other modules in terms of functional adja-
cency. These are, as seen in the BP projections for both controls or tumors, of comparable
sizes: 86 and 74 genes, with 356 and 361 intra-modular links respectively. In controls, this
module is enriched in 20 processes. Through these processes, it is connected to 18 mod-
ules. It is also connected through co-expression links, as seen in theBPc projection, to 123
other modules. Meanwhile, the comparable module in tumors is enriched in 81 different
processes, but through these is linked to only 20 other modules. Through co-expression
links, it is connected to 123 other modules. Interestingly, again there is little overlap in
the processes associated to these modules, sharing only one function,Membrane protein
complex, a general homeostatic event.

Connections betweenmodules through functional and topological adjacency are seldom found

By comparing the set of links in the GP and BP projections, we may observe that there are
very few links between modules appearing in both projection. In the case of tumors, GPt
and BPt have 37 shared links (Additional file 9), whereas in controls, GPt and BPt have
51 shared links. As such, we may observe that both in health and disease, the connectiv-
ity patterns among gene modules in terms of co-expression and functionality are quite
different.

Conclusions
Networks of gene regulation are known to exhibit a modular behavior. The co-expression
of gene modules is a form in which cellular processes are regulated. In this work, we
demonstrate that modules in transcriptional co-expression networks have different ways
to interact, either through co-expression or through jointly regulating functional pro-
cesses. There are instances in which modules are connected both transcriptionally and
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functionally, but these are rare. transcriptional co-expression networks of cancer have a
more modular structure than those found in health. Modules found in the health network
have higher degrees, whereas modules in the breast cancer network are less likely to have
transcriptional relationships to other modules.
We observe that the set of biological functions associated to gene modules are vastly

different in breast cancer and health, with gene modules of cancer associated to functions
that drive disease, whereas gene modules in health are linked to functions associated to
the maintenance of homeostasis. However, we may observe that the connectivity patterns
formed by associations of genemodules and biological functions are similar in both health
and disease, which indicates that compartmentalization of functional regulation through
gene expression remains, even though the processes that are being regulated change.
The behaviors in terms of transcriptional and functional connectivity that gene mod-

ules in transcriptional co-expression networks exhibit, may allow for the identification
of important modules in terms of either transcriptional, or functional, importance
associated to biological conditions of importance, such as cancer.

Available code

All the code used for the present work is available in our repository: https://github.com/
guillermodeandajauregui/ModuleEnrichmentAndProjection.
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Additional file 1: Supplementary Data. Includes two TXT files with tables of the analysis parameters for both tumors
and controls at different MI thresholds. The files include the threshold quantile, number of nodes, edges,
components, and largest component sizes for each quantile threshold tested. (TXT 478 b)

Additional file 2: Supplementary Data. Excel file with Topological parameters for co-expression networks (TXT 478 b)

Additional file 3: Supplementary Data. Excel file with Topological parameters for topologically adjacent module
networks (XLSX 34 kb)

Additional file 4: Supplementary Data. Excel file with Topological parameters for bipartite networks (XLSX 465 kb)

Additional file 5: Supplementary Data. Excel file with Topological parameters for functionally adjacent networks
(PNG 630 kb)

Additional file 6: Bipartite control network for cell cycle-related processes. (PNG 413 kb)

Additional file 7: Bipartite control network for metabolism-related processes. (PNG 488 kb)

Additional file 8: Bipartite tumor network for immunity and signaling-related processes. (XLSX 11 kb)

Additional file 9: Bipartite tumor network for immune system-related processes. (PDF 208 kb)
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