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Abstract
The use of networks to analyze biological data, such as large gene or protein
expression datasets, is on the rise. Often, there is an interest of identifying modules (or
communities) of biological molecules that may be associated to known functions. This
functional modularity analyses usually revolve around a workflow that combines 1) a
method for network reconstruction from biological data, 2) a community or clustering
algorithm on a network, and 3) an enrichment analysis to associate modules to known
biological categories. With this, it is possible to identify sets of functions associated to
modules in networks of distinct biological conditions, allowing for the comparison of
such different phenotypes.
Currently there is no set of recommendations for such analyses, which can lead to
problems in assessing these results for a given biological context. Furthermore, without
properly identifying the methodological scopes and limitations at each stage for a
given functional modularity analysis, it is not immediately possible to compare the
biological implications of analyses in different phenotypes.
In this work, critical points in a functional modularity analysis for biological networks are
identified, and methods are proposed for assessing the topological and biological
results of functional modularity analyses in biological networks, and to calculate
topological and functional similarity between comparable phenotypes. These methods
are demonstrated on biological networks artificially constructed from known biological
pathways.

Keywords: Communities, Modularity, Biological networks, Functional enrichment

Background
The emergence of high-throughput technologies for the study of biological systems has
lead to the use of several data-centric strategies for their study. Among these, techniques
derived from network science are increasingly being adopted (Ma’ayan 2011; Dobrescu
and Purcarea 2009; Barabási and Oltvai 2004). A well described property of biological
systems is their modular structure (Lorenz et al. 2011), with different biological functions
being controlled by different sets of molecular interactions (Ames et al. 2013).
As biological network analysis becomes an increasingly important tool in the study

of biological systems, the detection of modular structures in this networks, and module
enrichment (the association of these modules or communities to known biological func-
tions) becomes more commonplace (Alcalá-Corona et al. 2017; Langfelder and Horvath
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2008; Liu et al. 2017; Adamcsek et al. 2006). A PubMed query for networks, clusters,
modules, and enrichment returns over 900 hits, with 222 from the year 2018 alone (see
Additional file 1: Figure S1 for an illustration). As this trend continues, it will be impor-
tant for biological and biomedical researchers to identify critical points in the workflows
used for such analyses.

Critical points in a typical modular analysis of a biological network

There are many different methodological strategies available for the construction of
networks from biological data, for the identification of biological communities or mod-
ules in these networks, and for the association of known biological functions to these
modules of biomolecules). In general, these analysis pipelines will consist of three steps:

1. A methodology for network construction: these include the integration of known
biomolecular interactions from available literature (Hur et al. 2009) or public
databases such as The Kyoto Encyclopedia of Genes and Genomes (KEGG)
(Kanehisa and Goto 2000) or the Search Tool for the Retrieval of Interacting Genes
database (STRING-db) (Szklarczyk et al. 2017), or probabilistic methods of gene or
protein co-expression inference (Langfelder and Horvath 2008; Margolin et al.
2006; Madhamshettiwar et al. 2012).

2. An algorithm for the identification of communities or modules in the network:
there is an abundant body of published algorithms for the detection of communities
in large complex networks based on different approaches (Fortunato 2010).

3. An enrichment analysis to associate the modules to known biological processes or
functions: There is a variety of methods using different approaches
(García-Campos et al. 2015) that may be used to associate, the sets of biomolecules
that form each module to sets of biomolecules that are known to be involved in
biological functions, such as those described in databases like the aforementioned
KEGG or the Gene Ontology (Consortium 2015).

With many different combinations of methodologies available for these module enrich-
ment studies, it becomes difficult to assess whether the results obtained through one
pipeline are comparable to results obtained from another. In this work, we will find
parameters that allow for the quantitative comparison of modular structures of biological
networks from a topological and functional perspective.

Data
In thiswork, we use four different biological networks, with nodes representing genes.
These networks are constructed by merging different pathways obtained from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) (Kanehisa and Goto 2000) into undirected,
unweighted graphs. A visualization of this networks is found in Fig. 1.
We will describe different measures to compare these networks and their modular

structures from a topological and functional perspective. For this, we will identify each
network as follows:

1. The first network is the Main network. It is constructed by merging 5 pathways (as
mentioned in “Methods”). This will be the network against which other networks
will be compared.
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Fig. 1 Network visualizations. Panel a,Main Network. Panel b, Alternative Network. Panel c,Mixed Network.
Panel d, Rewired Network

2. The second network is the Alternative network. It was constructed from pathways
with almost no overlap to the ones used to build the Main network.

3. The third network is the Mixed network, constructed from two pathways from
Main and two pathways from Alternative.

4. The last network is a Rewired network derived from the Main network.

Modular structure comparison pipeline
Consider a pipeline for the comparison of modular structures in biological networks,
containing the aforementioned critical points. In Fig. 2, a graphical representation of
this proposed pipeline is shown, indicating the quantitative parameters that may be used
for the comparison of networks at each level. In what follows, we will explore each of
these comparison levels, using a set of artificial networks generated from known biolog-
ical pathways, which attempt to represent likely structures of networks generated from
biological data.

Network topological comparison
The first critical step is to assess the comparability of biological networks. To do so we
must describe the topological features of these networks. Since a common use-case for
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Fig. 2 Methodological pipeline for the comparison of modular structures in biological networks from a
topological and functional perspective

network analyses in the biological sciences is data exploration, these descriptors are read-
ily available. Importantly, these features will be directly related to the way the networks
are originated: whether they are curated from literature, inferred using a probabilistic
approach from high throughput data, reconstructed through experimental methods, etc.
The decision on whether networks are comparable based on their structural patterns can
only be assessed based on the biological question of interest. For instance:

• Two sets of genes associated to two different biological conditions are used as the
bases for network construction; these gene sets may have different sizes, and
therefore the number of nodes will be different.

• A method for the inference of whole-genome co-expression network is used for two
different biological conditions; the set of associated co-expression relationships may
differ between the two conditions.

A researcher shall consider, based on their originating data and the biological ques-
tion at hand, at what level the networks are comparable. Furthermore, the results and
biological insights derived from these networks shall be explicitly described in this
context.
By construction, we generated two networks (Alternative andMixed networks) that are

different from our Main Network in terms of number of nodes and edges. Meanwhile,
we generated a Rewired network that has the same number of both nodes and edges.
Some basic descriptors of these networks are found in Table 1. Furthermore, none of the
networks have the same degreedistribution, as illustrated in Fig. 3.
For the purposes of functional comparability of nodes, perhaps the most immediate

parameter to consider is the similarity in number of nodes, as this will be a decision point
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Table 1 Basic Network Descriptors

Main Alternative Mixed Rewired

No.Nodes 276 228 189 276

No.Edges 692 723 596 692

No.Components 1 11 3 3

in further comparison. Differences in the number of edges are however, quite important
in the context of module analysis, as these modules are defined not only by nodes but by
the connections between them. This consideration could be extended to the influence of
a difference in component number, as a network with more than one component will, by
definition, have at least one pair of nodes without a linking path.
The biological network structures associated to different phenotypes will hopefully

reflect the differences between the underlying biological phenomena. The modular struc-
ture will inherit from these network structures. This shall be kept inmindwhile discussing
the results of further analyses.

Node set identity comparison

It is important to assess not only the topological similarity of networks, but whether the
biological elements that are represented in the networks are comparable. In order to do
this, a similarity measure is used to compare the identity (ie, labels) of nodes in differ-
ent graphs. For instance, we could use the Jaccard index (J), as seen in Table 2. Jaccard
index and other measures used throughout the manuscript are defined in the “Methods”
section.

Fig. 3 Degree frequency for the four networks analyzed in this work
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Table 2 Node similarity, compared to the Main network

Jaccard Index, nodes

Main 1.00

Alternative 0.03

Mixed 0.32

Rewired 1.00

The rewired network has exactly the same set of nodes representing genes, as it was
generated by reconnecting the Main network, whereas the others are dissimilar to the
original one. It can be noticed that the alternative network is not completely dissimilar
to the original one (as one may naively guess), since there is a small overlap in the genes
composing the pathways used for the construction of the Main and alternative networks
(13 genes in total). Edge similarity can also be evaluated, as seen in Table 3.
Again, a similarity threshold for nodes and edges must be defined in terms of the bio-

logical question that is being studied. For instance, a biological question in itself could
be if networks reconstructed from two different conditions using the same methodology
is composed of the same biological molecules. In other cases, it is necessary for the net-
works to be composed by the same set of nodes. For the purposes of module comparison,
whether the node set of each network to be compared is a critical point that defines which
methods are available to compare the modular structures of two different networks.

Comparison of modular structures
Once the structural comparability of the networks has been assessed, it would be possible
to analyze and compare the modular structures that are identified.

Election of the module detection algorithm

Selecting the module detection algorithm for a given analyses is an open problem (Jebabli
et al. 2017). Ideally, the selected algorithm would be able to recover an organization of
the constituent elements in the network that has its origin in a biological phenomenon.
Assessing how suitable an algorithm is would then consist on evaluating howwell it recov-
ers such structures. Unfortunately, in the case of biological networks such ground truth is
seldom available.
Comparing partitions generated by an algorithm to the ground truth organization is a

problem that can be approached with different well described techniques. Several meth-
ods have been developed and implemented: these include Variation of Information (Meilă
2003), Normalized Mutual Information (Danon et al.), Adjusted Mutual Information
(Vinh et al. 2009), split-join distance (van Dongen 2000), and (adjusted) Rand index (Rand
1971; Hubert and Arabie 1985). A description of these methods is beyond the scope of
this manuscript (see Vinh et al. (2010) and Orman et al. (2012)) , but are noted for such

Table 3 Edge similarity, compared to the Main network

Jaccard Index, edges

Main 1.00

Alternative 0.00

Mixed 0.26

Rewired 0.37
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cases in which such ground truth was available. When such information is unavailable, it
will be necessary to resort to heuristics, or to identify consensus between algorithms.
For this work, different algorithms were tried and the partitions generated compared

to each other (see Additional file 2: Figure S2, in which different module detection algo-
rithms are compared using Adjusted Mutual Information). For simplicity, throughout
the manuscript the results of the Infomap algorithm will be used. The decision to use
this algorithm was arbitrary, since the intention is to illustrate the critical points of the
functional module analysis workflow.

Evaluation and comparison of modular structures

Having identified modular structures in each biological network, the question is how sim-
ilar are these modular structures to each other. A first approach is to obtain and compare
descriptors of these modular structures. The modularity value Q (Newman and Girvan
2004; Clauset et al.) measures whether a proposed division of a network is adequate cap-
turing communities, in the sense of recovering groups with a higher proportion of edges
within the group than to other groups.
In the case of comparing different biological networks and their associated modular

structures, by comparing the value of Q for each network partition it is possible to assess
if there is one network in which the module detection algorithm, applied to each network,
identified a more modular structure. In Table 4, the results for the example networks are
shown.
The measure of modularity Q is readily available in network analysis packages. While

widely used, there are limitations in the use of Q as a sole measure of the modular struc-
ture of a network identified by a module detection algorithm: particularly, it should be
noted that since this metric is used as an optimization criterion for certain module detec-
tion algorithms, it could bias comparisons (Jebabli et al. 2017). Further descriptors should
be used in order to more adequately capture the differences in modular structures.
The node similarity of the networks is critical to decide how to compare modular struc-

tures. The methods available for networks with identical node sets will be different to
those for networks composed of non-identical node sets.

Comparison ofmodular structures in networks with identical node sets

If the node sets of the networks to be compared are identical, then the problem of com-
paring their modular structures is not entirely unlike the previously described problem
of comparing modular partitions on the same network derived from different algorithms:
instead of comparing a partition of graph G1 obtained by algorithm A with the partition
of G1 obtained by algorithm B (or perhaps to a ground truth partition), it would be a
comparison of the partitions obtained using algorithm A of graphs G1 and G2.

Table 4Modularity of the Infomap Partition

Q

Main 0.75

Alternative 0.85

Mixed 0.77

Rewired 0.48
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To do such comparison, the methods previously mentioned when discussing the elec-
tion of module detection algorithms are available. For the purposes of this manuscript,
two of the constructed networks were generated to satisfy the condition of containing the
same set of nodes: the Main and Rewired networks. In Table 5, the use of the different
comparison methods is illustrated, as applied to these networks.
By using these results it is possible to provide an overall descriptor of how different is the

organization of elements in the network, derived from the differences in network struc-
ture, as identified by the module detection algorithm. However, it is important to point
out that the methods previously described consider only the membership of nodes into
different modules. Since the module structure in this networks contains also topological
information, it is possible to approach this comparison from a topological perspective.
To illustrate such comparison, three topology-based comparisons between the Main

and Rewired networks are presented. The first one consists on comparing the distribu-
tion of the module sizes identified in each network. The second is the comparison of the
distribution of embeddedness (Lancichinetti et al. 2010) , a measure of the amount of
neighbors of each node which belong to its own module. A third one is the comparison
of the distribution of modular degree (Ghalmane et al. 2018), which extends on the clas-
sical notion of degree centrality to describe both the local and global influence of a node
in the network. In Fig. 4 we observe that, based on any of these parameters, the modular
structure of each network exhibits differences.
It should be noted that the topology-based comparisons presented here are only a few

of the possible options to incorporate this dimension of analysis. In Orman et al. (2012)
a more extensive discussion on the subject is found. Nevertheless, the reader should
consider using such level of description to more thoroughly evaluate (and convey) the
differences in modular structures, and the implications regarding the differences in the
underlying biological phenomena.

Comparison ofmodular structures in networks with non-identical node sets

In the case of networks where node sets are not identical, it may not be feasible to compare
using the aforementioned metrics, as the algorithm implementations are written with
identical node sets in mind.
Let us focus on the similarity of modules in each network, in terms of nodes and edges.

A matrix of a similarity measure (such as Jaccard index) may be computed, in which each
module of the first network is compared to each module of the second network. We pro-
vide such matrices for the comparison of the Alternative and Mixed networks against
the Main network as Additional file 3. Similarity matrices allow to answer the following
questions:

Table 5 Comparison of modular structures detected using the Infomap algorithm Main vs Rewired
networks

Method Value

variation of information 2.28

normalized mutual information 0.63

split-join distance 222.00

Rand index 0.93

adjusted Rand index 0.34
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Fig. 4 Empirical cumulative density functions (ecdf) of modular structure descriptors based on topological
features, for the Main and Rewired networks. Panel a ecdf of module size. Panel b ecdf of node
embeddedness (see Lancichinetti et al. (2010)). Panel c ecdf of the tangent (phi argument) of the modular
degree, as defined in Ghalmane et al. (2018)

• Whether there are modules in the first network that have some overlap with modules
in the second network.

• Whether there are modules in the first network that are perfect matches to modules
in the second network.

A global parameter of similarity can be defined to have a descriptor for each network.
In this work, we have defined a Similarity Score in terms of the similarity matrix for each
pair of networks (see “Methods”).
In Table 6 we find the comparison of the Alternative or Mixed networks against the

Main network in terms of module node composition. It shows the number of modules in
Main that had at least one non-zero overlap with module in the test networks, and the
number of modules of Main that perfectly match with a module in the test networks.
In Table 7 we find again a comparison of the Alternative or Mixed networks against the

Main network, this time in terms of edge composition. We may notice that in terms of
edges, the similarity between the Alternative and Main network is much more penalized.
By comparing the similarities of these partitions, we are able to identify how much are

the biological differences of each condition being captured in the modular structures of
networks. Furthermore, we gain further information for the discussion of the functional
associations identified for each module: for instance, whether functions are being associ-
ated to similar or dissimilar modules. The comparison of these modules at the functional
level is the topic of the next section.

Functional comparison of modules
Now the modules will be compared in terms of the associated biological functions
identified by an enrichment analysis. This comparison involves answering three comple-
mentary questions:

Table 6 Comparison of modular structures detected using the Infomap algorithm between the
Main network and the Alternative or Mixed networks, based on module node similarity

Similarity_Score Matching.Modules Perfect.Matches

Alternative 0.020 7 0

Mixed 0.377 11 9
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Table 7 Comparison of modular structures detected using the Infomap algorithm between the
Main network and the Alternative or Mixed networks, based on module edge similarity

Similarity_Score Matching.Modules Perfect.Matches

Alternative 0.001 1 0

Mixed 0.367 11 9

• How similar are the sets of biological functions that are associated to the whole
network, through the enrichment of individual modules?

• How similar are the modules found in each network, in terms of the sets of associated
biological functions?

• In how many modules is represented each biological process?

When comparing these biological processes, it is important to remember that it is pos-
sible for networks composed of different genes to be associated to the same processes and
functions. In other words, networks could be functionally comparable even if their node
identities are dissimilar. On the other hand, if the genes that integrate the biological func-
tions being evaluated are not present in the networks, these biological functions will not
be identified by an enrichment analysis.

Comparison of biological function sets associated to the overall network

The sets of all biological functions identified in each network are to be compared in terms
of similarity. By analyzing the sets of identified biological functions for each network,
as shown in Table 8, we can compare and contrast which functions are shared by both
networks or uniquely found in each. From the biological perspective, this provides a good
starting point to discern which functions or processesmay be associated to each condition
of interest.
While this comparison is useful as a first approximation, it is soon evident that this

is not necessarily considering the modular nature of the network. As such, we will now
perform a comparison at the level of individual modules.

Similarity of modules in terms of associated biological functions

It is possible to compare each module of the network of interest to the modules of
another network, in terms of their associated biological functions. A similarity matrix
can be calculated for the pair of networks, allowing the identification of modules that are
functionally similar in each network, as seen in Table 9.
It is important to consider that, since more than a biological function could be associ-

ated to more than one module in a network, it is possible to find, for a given module in a
network, more than one functionally similar module in another network.

Table 8 Similarity of enriched processes associated to the overall network

Similarity of Enriched Processes , Jaccard Index

Main 1.00

Alternative 0.50

Mixed 0.30

Rewired 0.88
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Table 9 Number of modules in networks that have Jaccard index J = 1 with a module of the Main
network

Module of Main Network Alternative Mixed Rewired

1 0 3 2

2 0 0 0

3 0 0 0

4 0 0 2

5 0 0 1

6 0 2 3

7 0 2 3

8 0 2 3

9 0 0 1

10 0 0 1

11 0 0 0

12 0 3 2

13 0 3 2

14 0 0 0

15 0 0 1

16 0 0 1

17 0 0 1

18 0 0 0

19 0 3 2

20 0 0 1

Number of modules associated to a given biological function

As it has been mentioned before, it is possible for more than one module to be associated
to a given biological function. Therefore, another comparison parameter that can be used
to assess the similarities between two biological networks is to evaluate, for each identi-
fied biological function, the number of modules that were found to be enriched in that
particular function.
It is possible to calculate a distance (for instance, Euclidean) between two networks

based on the number of modules associated to each biological function found in the
networks, as it is shown in Table 10.

Assessing similarity of modular structures
The final integration of all comparison parameters in order to assess the similarity of the
modular structures in biological networks must be guided by the research question that
is to be answered by this comparison. In other words, it would not be possible to establish
general thresholds for what is to be accepted as similar or dissimilar.

Table 10 Functional Euclidean Distance of network modules

Functional Euclidean Distances

Main 0.00

Alternative 10.20

Mixed 8.77

Rewired 6.00
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Furthermore, the objective of the comparison will determine the weight given to a
parameter for the definition of comparability. In Table 11, we observe the overall compar-
ison of our three test networks against our Main network. As it has been shown through-
out the manuscript, it is possible to determine a quantitative (or semi-quantitative) value
of comparison for each network, which can be informative of the points of similarity and
divergence between the networks and their associated modular structures.
The alternative network is very dissimilar in terms of node composition. We observe,

however, that even then there is some similarity in terms of the overall functions associ-
ated to the network. Nevertheless, we find that there are no modules in the Alternative
network that precisely reflect the functionality associated to the modules in the Main
network. Meanwhile, the mixed network has some overlap in terms of node and edge
composition. It exhibits a degree of module topological similarity, and is also function-
ally closer to the Main network. In relative terms, it is possible to establish that the
Mixed network is both topologically and functionally closer to theMain network than the
Alternative, which is consistent with the construction of these networks.
The Rewired andMain networks are identical in terms of number of nodes and edges, as

well as the identity of nodes, by construction. They were also guaranteed by construction
to be different in terms of edges. Since these networks were composed by the same set of
nodes, it was possible to compare their modular structures using a well defined parameter
of similarity, such as NormalizedMutual Information. Furthermore, we observe that these
two networks are very similar in functionality terms.

On the subject of biological comparison versus validation

An open question remains on how to decide whether a network model is comparable to
another network model for the purposes of modular structure comparison. As we have
discussed, the two most common situations where a comparison would be necessary are
A) the comparison of biological conditions and B) the validation of a biological network
model.
Consider that networks that are derived from experimental datasets may or may not be

necessarily composed of the same set of nodes, either by technical or biological condi-
tions. In this case, if the experimental settings of each condition are comparable, and the
methods for network inference, module detection, and enrichment analysis used in each
case are the same, then a comparison in terms of functional similarity is feasible. This
setting could also be used for the validation of functional findings, for instance if using a

Table 11 Comparison of the modular structure of the Main network

Parameter Alternative Mixed Rewired

No. Nodes Lesser Lesser Equal

No. Edges Greater Lesser Equal

Node Similarity (J) 0.03 0.32 1.00

Edge Similarity (J) 0.00 0.26 0.37

Modularity (Q) Greater Greater Lesser

Module Topological Similarity SimScoreedge = 0.01 SimScoreedge = 0.30 nmi = 0.63

Network Functional Similarity (J) 0.50 0.30 0.88

Main modules with functionally similar counterparts 0/20 7/20 15/20

Functional Euclidian Distance 10.20 8.77 6.00
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discovery and validation set. An example of such use-case is found in Alcalá-Corona et al.
(2018).
Meanwhile, if the objective is the validation of any of the steps of the modular analysis

pipeline, it would be important to evaluate the comparability of modular structures and
functional enrichment analyses in the context of a network with the same set of nodes
and number of edges. Importantly, if a rewiring algorithm is used, the limitations of the
implementation should be discussed; for instance, the rewiring algorithm used for the
generation of the Rewired network in this work does not preserve the degree distribution,
and as such it would not be an adequate model to generate null models for the assessment
of functional associations.

Conclusions
The study of modularity in biological networks provides opportunities to understand the
organization of biological phenomena and how these structures shape functionality. In
this work, we provide a guideline to quantitatively comparemodular structures in biologi-
cal networks, in topological and functional terms. This provides a basis to identify aspects
of network modular structures that may guide the discussion regarding phenotype com-
parison from a network perspective, as well as some critical points for the validation of
network models.

Methods
Allmethodsused for thiswork are available at https://github.com/guillermodeandajauregui/
BiologicalModuleComparison

Network Generation

We generated four networks by acquiring network representations of pathways in KEGG
using the Graphite package (Sales et al. 2012). For each of the networks Main, Alternative,
andMixed, the pathways listed in Table 12 were used. In each case, pathways weremerged
into a single undirected, unweighted network to be analyzed using Igraph (Csardi and
Nepusz 2006).
The Rewired network was generated by taking the Main network and using a rewiring

algorithm as implemented in Igraph (Csardi and Nepusz 2006), in which the endpoints of
edges from network 1 were reconnected randomly, with a uniform rewiring probability of
0.25.

Module detection

Modules for the four networks were detected using the Infomap algorithm (Rosvall
et al. 2009) as implemented in Igraph. Additionally, modules were detected for the Main

Table 12 Source pathways for the model networks

Main Alternative Mixed

Hedgehog signaling pathway Pentose phosphate pathway Hedgehog signaling pathway

NF-kappa B signaling pathway Notch signaling pathway Notch signaling pathway

VEGF signaling pathway mRNA surveillance pathway Pentose phosphate pathway

p53 signaling pathway TGF-beta signaling pathway p53 signaling pathway

RIG-I-like receptor signaling pathway IL-17 signaling pathway

https://github.com/guillermodeandajauregui/BiologicalModuleComparison
https://github.com/guillermodeandajauregui/BiologicalModuleComparison
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network using the Girvan-Newman edge-betweenness algorithm (Girvan and Newman
2002), the Fast-Greedy algorithm (Clauset et al.), the Louvain method (Blondel et al.), the
Walktrap method (Latapy and Pons), the spin-glass method (Reichardt and Bornholdt),
the leading eigenvector method (Newman), and the label propagation method (Ragha-
van et al.). A comparison of these algorithms, including a description of each along with
suggestions for algorithm selection may be found in Yang et al. (2016); further discussion
may be found in Poulin and Théberge (2019).

Module enrichment

Over-Representation Enrichment analyses for the gene sets of each detected module was
performed using hypergeometric testing. This test is equivalent to the one-tailed Fisher’s
exact test, which assesses the probability of drawing k elements belonging to a set of K, by
drawing n elements out of a population N.
It is widely used as a gene set enrichment tool for gene clustering methods, where the

genes in the cluster (or module) form the set of n elements drawn from the N population
(usually, the whole set of measured genes). The genes that belong to a given pathway or
biological function gene set represent K. Finally, the members of the cluster that belong
to the pathway or biological function are represented by k.
The testing was performed using as implemented in the HTSanalyzer package (Wang et

al. 2011). The significance threshold for enrichment was set to be a Benjamini-Hochberg
adjusted p−value < 0.05. For the sake of simplicity in the analysis, it was decided that the
list of pathways used for the enrichment analyses would consist of the 10 pathways used
to construct networks 1 and 2, plus two additional pathways “Sphingolipid signaling path-
way”, and “Insulin signaling pathway” that were not originally used for the construction of
any network.

Topological network comparison

The networks were compared in terms of the number of nodes, edges and connected com-
ponents that composed them. The degree distribution of each network was also obtained.
Finally, the similarity of node sets and edge sets of the networks were compared using the
Jaccard index.

Jaccard index

The Jaccard index is a measure of similarity between sets. It considers the sizes of the
intersection and union of two sets A and B, as follows:
J = |A∩B|

|A∪B|

Modular structure comparison

Evaluation ofmodular structures

The modularity score Q (Clauset et al.) was calculated as implemented in the igraph
package for R. The topological measures of embeddedness (Lancichinetti et al. 2010) and
modular degree (Ghalmane et al. 2018) were implemented following their descriptions in
the original references, using the igraph package for R.

Networks with identical node sets

The modular structures of networks composed of identical node sets were compared
using the modularity comparison methods implemented in Igraph. These included the
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Variation of Information (Meilă 2003), Normalized Mutual Information (Danon et al.),
split-join distance (van Dongen 2000), and (adjusted) Rand index (Rand 1971; Hubert and
Arabie 1985).

Networks with non-identical node sets

For a pair of networks G1 and G2, with a modular partition M1 and M2, we calcu-
late a similarity matrix SimMatrix. For each pair of Mi in G1 and Mj in G2, each value
SimMatrix(i, j) = Similarity(Mi,Mj). In this work, the measure of similarity will be the
Jaccard index.
We define a Similarity Score in terms of the similarity matrix for each moduleMi in G1

such that SimScore(Mi) =
q∑

j=1

J(Mi,Mj)
|(Mi∩Mj) �=∅| , withMi = 0 if |(Mi ∩ Mj) �= ∅| = 0.

Furthermore, we then define a a global Similarity Score as 1
k

k∑

i=1
SimScore(Mi).

Functional comparison

Network functional similarity

Consider FunctionsG to be the set of all biological functions associated to each mod-
ule of a network G. Functional similarity of two networks is to be calculated as
FunctionalSimilarity = J(FunctionsG1 , FunctionsG2)

Functional Similarity of Modules

Consider Functionsi to be the set of biological functions associated to each module
Mi in a network G1, and Functionsj to be the set of biological functions associated to
each module Mj in a network G2. A Functional Similarity Matrix is defined such that
FuncSimMatrix(i, j) = J(Functionsi, Functionsj)

Number ofmodules associated to a given biological function

Consider FunctionsG1 and FunctionsG2 to be the set of functions associated through
enrichment to G1 and G2 respectively. Let Functionsboth = FunctionsG1 ∩ FunctionsG2 .
Let E1 and E2 be k-dimensional vectors where each element k of E1 and E2 is the num-
ber of modules in G1 or G2 to which Functionsbothk is associated. An Euclidian distance
between E1 and E2 can be calculated.
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