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Abstract
Social networks often has the graph structure of giant strongly connected component
(GSCC) and its upstream and downstream portions (IN and OUT), known as a bow-tie
structure since a pioneering study on the World Wide Web (WWW). GSCC, on the other
hand, has community structure, namely tightly knitted clusters, reflecting how the
networks developed in time. By using our visualization of enhanced multidimensional
scaling (MDS) and force-directed graph drawing for large and directed graphs, we
discovered that a bow-tie in the WWW usually has clusters, which are locally-located
mini bow-ties that are loosely connected to each other, resulting in a formation of
GSCC as a whole. To quantify the mutual connectivity among such local bow-tie, we
define a quantity to measure how a local bow-tie connects to others in comparison
with random graphs. We found that there are striking difference between the WWW
and other social and artificial networks including a million firms’ nationwide supply
chain network in Japan and thousands of symbols’ dependency in the programming
language of Emacs LISP, in which a global bow-tie exits. Presumably the difference
comes from a self-similar structure and development of theWWW speculated by others.
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Introduction
Two decades studies of complex networks have revealed some aspects of complex
systems. Up to now, many network indices (centralities) have been proposed to under-
stand complex networks quantitatively. Many new methods for communities extraction
have been also proposed and clarified the inner structure of complex networks. However,
there is only one notion characterizing an overall structure of complex networks. That
notion is a “bow-tie" structure discovered by Broder et al. (2000) when they investigated
two AltaVista crawls in 1999 with over 200 million pages and 1.5 billion links (Broder
et al. 2000). The bow-tie structure has been actively examined in the information science,
especially in the study of the topology of world wide web. However, the bow-tie struc-
ture takes a vital role in a metabolic network in biology (for example, see Refs. (Csete and
Doyle 2004; Kitano 2004; Zhao et al. 2006; Kawakami et al. 2016)).
A schematic bow-tie structure of the web is depicted in Fig. 1. This figure shows that

the web consists of a giant connected component and many disconnected components.
This giant connected component is called a giant weakly connected component (GWCC).
Broder and colleagues found that the GWCC consists of the equal size of the giant
strongly connected component (GSCC or SCC) (27.7%), the IN set (21.3%), the OUT set
(21.2%), tendrils (21.5%), and tubes. The GSCC is made up of a single strongly connected
component. The IN set contains nodes that can reach the GSCC but cannot be reached by
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Fig. 1 The schematic bow-tie structure of the web graph

nodes in GSCC. The OUT set contains nodes that can be reached by the nodes in GSCC
but cannot reach nodes in the GSCC. Tendrils hang off the IN set and the OUT set, and
contain nodes that are reachable from portions of the IN set or that can reach portions of
the OUT set, without passing through the GSCC. Tubes contain nodes that passage from
a portion of the IN set to a portion of the OUT set without touching the GSCC.
Some investigations have checked the bow-tie structure of the web as summarized in

Table 1. Donato et al. (2005, 2008) investigated three national (Italy, Indochina, and UK)
webs (collected by the “Language Observatory Project" and the “Institute Informatica e
Telematica) and suggested that these tree national webs almost consist of the GSCC and
the OUT set, and also investigated the global web (collected by the WebBase project
at Stanford in 2001) and suggested that the global web resembles the bow-tie structure
(Donato et al. 2005; 2008). They also investigated the detailed structure of the IN set and
the OUT set and found that IN and OUT sets are fragmented into a large number of small
and shallow “petals" (weakly connected components; WCCs) hanging from the GSCC.
They called such a structure of the web graph as “daisy" structure. They also found that
different components (i.e., the GSCC, the IN set, and the OUT set) have a very distinct
structure. This means that there is no self-similarity in the individual components of the
web graph.
Zhu et al. (2008) investigated the Chinese web in 2006 from the viewpoint of a hierarchy

of three levels, i.e., page level (830million pages), host level (17million hosts), and domain
level (0.8 million domains) (Zhu et al. 2008). They found that the page level web has
“tea pod" structure (with a large size of the GSCC, a medium size of IN, and small size
of OUT). They also found that the Chinese web becomes increasingly close to the daisy
structure when the aggregation level is increased from the page level to the host levels and
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Table 1 Components of some web graphs

# node # link SCC(%) IN(%) OUT(%) Tendrils(%) Disc.(%)

Broder AltaVista 203.5M 1.45G 27.7 21.3 21.2 21.5 8.2

Donato Italy 41.3M 1.15G 72.3 0.03 27.6 0.01 0

Indochina 7.4M 194.1M 51.4 0.66 45.9 0.66 1.4

UK 18.5M 298.1M 65.3 1.7 31.8 0.8 0.4

WebBase 135.7M 1.18G 32.9 10.6 39.3 12.6 4.6

Zhu China (page) 836.7M 43.28G 44.1 25.5 14.6 15.8

China (host) 16.9M 43.28G 50.7 1.4 47.4 0.5

China (domain) 16.9M 43.28G 63.3 0.7 34.9 1.1

Meusel CC12 (page) 3.563G 128.786G 51 32 6 5 6

CC12 (host) 101M 2043M 47 17 20 2 13

CC12 (PLD) 43M 623M 52 8 31 1 8

the domain level. This fact means that the absence of self-similarity between page level
and host/domain levels.
Meusel et al. (2014, 2015) investigated the publicly accessible crawl of the web gath-

ered by the Common Crawl Foundation in 2012 (CC12) (Meusel et al. 2014; 2015). The
CC12 is available to the public outside companies such as Google, Yahoo!, Yandex, and
Microsoft, and contains over 3.5 billion web pages and 128.7 billion links. They analyzed
the CC12 on three different levels of aggregation: page, host, and pay-level domain (PLD)
(one "dot level" above public suffixes). They also obtained almost the same results founded
by Zhu et al. (2008). Thus there is no self-similarity between page level and host/PDL
levels.
When we study complex networks, it is rarely possible to get a complete set of nodes

and edges of the networks that we are studying. Thus, we tend to abandon clarifying the
gross structure of the network. However, if the network has self-similar property, it is
anticipated that we can elucidate the overall structure by studying subgraphs. Although
previous studies explained above suggest the absence of self-similarity, Dill et al. (2002)
found that the web exhibits self-similarity, i.e., each thematically unified region (for
instances, pages on a site or pages about a topic) plays the same characteristics as the
web at large (Dill et al. 2002). This finding means that the thematically self-similarity of
the web. Thus, we can elucidate the overall structure from thematically subgraphs, i.e.,
communities.
The purpose of this paper, therefore, is to extract communities of networks by using

a modern algorithm of community extraction, such as the map equation, and show the
self-similar property, i.e., the bow-tie structure of each community, by using visualization
techniques and introducing the new measure quantifying the local bow-tie structure. In
the next section, we explain the data set used in this paper. We summarize methods of
network analysis used in this article in “Methods” section. “Analysis and results” section
is the main part of this paper, and we show the self-similar property, i.e., the bow-tie
structures of each community in the web. The last section is devoted to the conclusion
and discussion.

Data
Here we explain the network data analyzed in this paper. The web data is from the Web
graphs datasets of Stanford Large Network Dataset Collection “SNAPNETS” (Leskovec
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and Krevl 2014). Basic statistics of the data are listed in Table 2. These networks have
contributed to revealing a notable feature of community size in Ref. (Leskovec et al. 2008).
Figure 2 depicts the complementary cumulative degree (number of links assigned to a

vertex) distributions of four web data. This figure shows that the degree distributions of
four webs follow almost same distributions except for a gap around the degree equals to
300 in the case of Notre-Dame.
As described in “Introduction” section, our purpose is to show the self-similar property,

i.e., the bow-tie structures of each community in the web. Thus, to clarify whether this
nature is typical in the web or not, we investigate other types of network data listed in
Table 3.
Japanese production network consists of more than one million firms which are appro-

priately half of the total number of firms in Japan and five million links which are
supplier-customer relations. Emacs24 (text editor “Emacs” of version 24) LISP means the
relationship between functional definitions of symbols written in programming language
LISP. Existence of GSCC in the symbol definition relation means there are direct or indi-
rect recursive definitions. The size of GSCC is not particularly large and less than two
percent of the whole network. The degree distribution of Japanese production network
and Emacs24 lisp is shown in Fig. 3

Methods
Visualization

In order to visualize a large-scale structure of directed graph, we shall use our method of
graph drawing, which is based on the so-called force-directed graph drawing (Fruchter-
man and Reingold 1991) with a nice property so as to calculate a layout for a large and
directed graph in an aesthetically-pleasing way. Let us briefly explain our algorithm (see
(Fujita et al. 2016) for more details).
The algorithm has two steps of calculation. The first step is to determine the initial

positions of nodes in a graph by using a multi-dimensional scaling (MDS) algorithm. We
assume the initial positions are given in a two-dimensional Euclidean space in this paper.
In the second step, we perform a physical simulation, in which nodes have electric charges
(with a same sign, say plus) with repulsive forces between pairs of nodes by Coulomb’s law,
while edges are regarded as “springs” exerting attractive forces between adjacent nodes
by Hooke’s law. In addition, each edge has a magnetism and is aligned with a globally
given magnetic field (see (Sugiyama and Misue 1995) for example). Frictional forces are
additionally given to nodes so that the physical system will be relaxed into a quasi-stable
configuration, which is the visualization result that we shall use.
We call the algorithm DMDS (direction-aware MDS), because it can capture the

direction of edges appropriately in the following manner.

Table 2 Basic statistics of the web graphs data

Name # nodes # edges Description

Google 875,713 5,105,039 Web graph from Google

Stanford 281,903 2,312,496 Web graph from Stanford.edu

Berk-Stan 685,230 7,600,595 Web graph of Berkeley and Stanford

Notre-Dame 325,729 1,497,134 Web graph from Notre Dame
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Fig. 2 Degree distribution of four web data. Degree on horizontal axis of logarithmic scale and
complementary cumulative proportion on vertical axis of logarithmic scale. Google-web in purple “+”,
Stanford in green “x”, Berkeley-Stanford in pale blue “*” and Notre-Dame in orange box

Let u, v ∈ V be arbitrary nodes in the set of vertices, V, of a directed graph G. Denote
by du(u, v) the shortest distance between u and vwhenG is regarded as undirected graph.
Let d1(u, v) denote the shortest distance in the directed graph G. When v is not reachable
from u, d1(u, v) = ∞ by convention. Let us define

dd(u, v) = min{d1(u, v), d1(v,u)} (1)

in order to define a general distance d(u, v):

d(u, v) =
{
dd(u, v) if du(u, v) = dd(u, v)
du(u,v)

2 otherwise
(2)

We use the defintion (2) to determine similarity (or dissimilarity) between nodes in the
standard calculation of MDS.
To illustrate how (2) works, consider two cases of three nodes depicted in Fig. 4. In the

left-hand case, in which there exists a path from node A to node C, one has d(A,C) = 2
with d(A,B) = d(B,C) = 1 from (2). If theMDS yields a spatial configuration, one expects
that the three nodes are aligned along a line. In the righ-hand case, there exists no path
from A to C (and also from C to A) so that d(A,C) = d(A,B) = d(B,C) = 1. One can
expect that the three nodes are placed with equal distance forming a triangle.
Thus we can determine the initial configuration by using the MDS in our first step of

graph layout. Practically, the computational cost ofMDS, both in space and time (memory

Table 3 Basic statistics of Japanese production network and Emacs24 lisp network

Name # nodes # edges Description

Japanese production 1,234,687 5,481,427 Production network of Japan

Emacs24 LISP 8,689 40,127 LISP symbol relations
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Fig. 3 Degree distribution of Japanese production network (JP) and emacs24 lisp network (LISP). Referenced
distribution is for Google shown in Fig. 2

Fig. 4 Illustration of how DMDS (direction-aware multi-dimensional scaling) works. Left: d(A, C) = 2 with
d(A, B) = d(B, C) = 1 from definition (2) so that the MDS would give a linear configuration. Right:
d(A, C) = d(A, B) = d(B, C) = 1, which would give a triangular configuration
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usage and computational time), can be reduced by using a sophisticated method invented
by (Brandes and Pich 2006).
Also, because the calculation of the Coulomb interaction can be naively proportional

to the square of the number of nodes, one can employ a well-known algorithm devel-
oped in astronomy (Barnes and Hut 1986) to reduce the computational time significantly.
Additionally, we used a recent technique of Phantom-GRAPE (Ataru Tanikawa 2012) to
accelerate the computation.

Community detection

For our purpose, we need a community detection algorithm that can be applied to a
large and directed graph. We shall use the well-known Infomap algorithm, first proposed
by (Rosvall and Bergstrom 2008), which optimizes the so-called map equation that is a
flow-based method and operates on dynamics on the network. The algorithm works for
directed links and can cluster tightly interconnected nodes into modules (two-level clus-
tering) or the optimal number of nested modules (multi-level clustering) in a hierarchical
way (Martin Rosvall 2011). See the original papers and references therein. We employ the
code given by the original authors who invented the algorithm.

Bow-tie analysis

To examine the graph structure of giant strongly connected component (GSCC) and its
upstream and downstream portions (IN and OUT), we used a well-known algorithm of
graph search in the following way.
Let Fw(A) be a set of vertices reachable from vertex A in a directed graph G, and Bk(A)

be a set of vertices reachable from vertexA by following links in a backwardmanner. Then
a strongly connected component (SCC) can be found simply by

SCC(A) = Fw(A) ∩ Bk(A) (3)

Any pair of vertices that belong to the set Fw(A) ∩ Bk(A) are connected by some path, as
one can easily prove.
We utilize the well-known algorithm of breadth-first search to calculate (3), and then

identify the GSCC by finding the largest SCC found in the search.

Analysis and results
In this section we present our analysis and claim a remark on the feature of community
structure which is particular to the network of the World Wide Web.

Visualization and qualitative analysis

Figure 5 is a visualization of the Google Web network data from (Leskovec and Krevl
2014) by using the visualization method described in the “Visualization” section. The link
direction is shown as the relative vertical position of the vertices so that the link direction
faces upward in the picture. In the main plate and lower-right inset the color is derived
from incoming link share, higher in purple, medium in green and lower in red.
If you see see the upper right inset, we can obviously see that the network has no bow-tie

structure as its global feature. The network is a union of tightly connected communities,
within which local bow-tie structure is found. These localized bow-ties are actually com-
munities, which we can see in the lower left inset. To look into the communities we placed
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Fig. 5 Bow-tie locality of the Google web data. Main plate colored to incoming degree share in the whole
degree, from high to low in purple, blue, green, yellow and red. Upper right inset shows In, SCC and OUT
segments in blue, green and red. Lower left inset shows community detection result. Many small bow-ties
are found in the picture and most of those small bow-ties form different communities. Several visually
disjoint segments are selectively shown in the lower right inset for easy recognition of bow-tie locality

lower right inset to show several of the communities, where we can see each communities
have their own bow-ties.

Figure 5 suggests that the Google-web network has a structure composed of a number
of local bow-tie structures. We call the network with such a structure a “bow-tie locality”
or “local bow-tie structure” which means the network has the IN-SCC-OUT structure
not as global but as locally limited attribute within a community. Figure 6 illustrates the
suggested local bow-tie network in a schematic way.
As there are several other web network data available at (Leskovec and Krevl 2014),

we also analyzed Stanford, Berkeley-Stanford and Notre Dame web data. Stanford and
Berkeley-Stanford data are visualized in a single Fig. 7 and Notre Dame data is visualized
in Fig. 8. Each figure has insets to show community separation result. Additionally Notre
Dame figure (Fig. 8) hasan inset in the upper left corner to show that it lacks “IN” segment.
Bow-tie locality can also be seen in other three web data.
For comparison we show a visualization of Japanese production network and symbol

definition relation network of a programming language in Fig. 9. We can recognize that
both Japanese production network and symbol definition network have bow-tie structure
as their overall feature. However, the locality of the bow-tie structure is not observable in
these two networks.

To begin with, we first checked the community size distribution of the four web data,
which is shown in Fig. 10. We can see that Google web network has a sharp community
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Fig. 6 Schematic diagram of the Google-web network with local bow-tie structure as demonstrated in
Figure 5. Each community of the network depicted by dotted circle, is characterized by the bow-tie structure
composed of IN (red), SCC (green) and OUT (blue) parts

Fig. 7 Bow-tie locality of Stanford (left) and Berkeley-Stanford (right) data. Colored to incoming link share,
from high to low in purple, blue, green, yellow and red like Fig. 5. Community detection results are shown in
the upper corner inset respectively
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Fig. 8 Bow-tie locality in Notre Dame web network. Lower right inset shows community detection result,
and upper left shows only SCC (green) and OUT (blue) segments as the network lacks IN segment. Main plate
is colored to the same scheme as Figs. 5 and 7

Fig. 9 Bow-tie structure exists in Japanese production network and Emacs LISP network as their global
features. IN, SCC and OUT segments’ locations are shown by blue, green and red lines. Link direction upward,
main plate colored to incoming link share like Fig. 5. Lower left inset shows community detection result
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Fig. 10 web network community size distributions

size limit around ten thousand nodes, while other networks show natural power-law
distribution.

As Fig. 11 shows clear difference in community size distribution between Google web
data and its randomized control data with identical degree distribution, community
structure of the web network does not come simply by accident.

Quantitative identification of locality

In order to identify the local bow-tie structure quantitatively, we first pay attention to the
GSCC parts of the Google-web network and Japanese production network. If the GSCC
is well divisible into pieces, those would be cores of local bow-tie structures. We carry
out the bow-tie decomposition of subnetworks isolated by the communities as shown in
Figs. 5 and 9. The Table 4 shows the number of communities and the modularity of the

Fig. 11 community size distributions of Google web network (with purple “+” marks), Google web
randomized link (with green “x” marks), and Japanese production network (with cyan “*” marks)
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Table 4 Summary of the community detection using the Infomap algorythm for the Google-web
network and the Japanese production network, showing the number of communities, the
modularity of the GSCC corresponding to the Infomap partition, and the ratio of the number of the
GSCC nodes in the subnetworks to that in the original network

Google-web Japanese production network

#Communities 172 20

Modularity 0.887 0.471

GSCC ratio 86.2% 54.9%

GSCC partitioned by the communities. Also, we give the result for ratio of the number
of the GSCC nodes in the subnetworks to that in the original network. The modularity
of the GSCC of the Google-web network is close to the unity. This means the GSCC is
extremely modular. On the other hand, the GSCC of the Japanese production network is
not so modular as compared with that of Google-web. The highly large ratio of the GSCC
in Google-web indicates that the GSCC is dominated by local loops and also confirms
that each of the subnetworks has a well-defined GSCC. As shown below, most of IN and
OUT nodes in a given community are exclusively connected to the GSCC nodes within
the same community. We can thus establish the locality of the bow-tie structure of the
Google-web network.
Next, let us further dig into the communities and see how those sub-networks are linked

to other part of the network.
For the purpose of finding the connection characteristic, we developed bow-tie modu-

larity index as follows to see the “IN” and “OUT” segments’ acting.
The bow-tie modularity index is defined to each subgraph. G be a graph and Gp be

a subgraph of G. Let Out(Gp), SCC(Gp), In(Gp) be the bow-tie segment (if any) of the
subgraph Gp.
Let Bf (Gp) be a set of links that bridges Out(Gp) and outside of Gp in forward (from

Out(Gp) view point) direction. Likewise Bb(Gp) be a set of links that bridges In(Gp) and
G − Gp backward. We put letter f (b) on Bf (Bb) to signify that it is a “forward” (or
“backward”) bridge.
To be precise

(vi, vj) ∈ Bf (Gp) ↔ vi ∈ Out(Gp) ∧ vj ∈ (G − Gp) (4)

and

(vi, vj) ∈ Bb(Gp) ↔ vj ∈ In(Gp) ∧ vi ∈ (G − Gp) (5)

Let Ep be the link set of the bow-tie of subgraph Gp, then bow-tie modularity BTM(Gp)

of the subgraph Gp is

BTM(Gp) = |Bf (Gp)| + |Bb(Gp)|
|Ep| (6)

Intuitively, Eq. 6measures the ratio of outside connectivity through IN orOUT segment
relative to the inside connectivity of the bow-tie. If this index is small, the bow-tie of
concerning subgraph (or community) is relatively independent to the external segment.
Here we present the comparison plot of the index values of communities of Japanese

production network, LISP definition network and four web networks as Fig. 12. To obtain
these results we started checking from largest community to proceed smaller one, until
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Fig. 12 bow-tie modularities of the four web networks and Japanese production network

the checked community population share reaches 90 percent of the total node number.
So, not all communities are inspected here.
We can see that the index value is consistently lower in web network than Japanese pro-

duction network. Emacs LISP network comes in between four web networks and Japanese
production network. Average value of the locality index values are listed in Table 5 for
convenience.
web are respectively.
It is known the community of Japanese production network is closely related to the

industrial sectors (see (Chakraborty et al.)). Industrial sector has definite economic role
within the production network. That particular role gives appropriate niche to the col-
lection of nodes within the whole economic network. For example, wholesale sector is
a customer of the manufacturing sector and a supplier of the retail sector. As we have
seen in the Introduction section, the In and OUT segment of bow-tie structure works as
a interface to the external of the network. Consequently IN or OUT segment of whole-
sale sector should be tightly connected to the outside, which is manufacturing and retail
sector’s community. The meaning of “external” depends on the network. For a produc-
tion sub-network, the external existence is either 1) other part of the production network
of that segment or 2) economic agent located outside of production network (such as
consumers or governmental organizations).
In case of the web network, IN or OUT part have less need to be connected to other part

of the network. Maybe viewer comes directly to the IN segment rather than by following
link from other web contents, although we have no way to check this supposition so far.

Conclusion
Bow-tie structure was first proposed almost twenty years ago as the overall feature of the
World Wide Web. Since then this structure served several different purposes including

Table 5 Average values of the locality index

JP Emacs Google Stanford Berke-Stan Notre Dame

Average 0.82 0.54 0.22 0.35 0.02 0.42
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the connectivity evaluation of directional network, dividing network into disjoint parts
using connectivity information only, estimate or analyze robustness of the network and
overall network feature analysis.
In this study we discovered that the bow-tie structure of web network, upon which the

structure was originally proposed as a overall feature, is actually a locally limited struc-
ture within relatively densely connected sub-networks (communities). It was found by
using originally developed two-staged directed graph visualization method. We named
this property as “bow-tie locality” and developed an index that can evaluate the degree of
locality quantitatively. Locality is quantitatively confirmed by the fact that all the web net-
work data housed in SNAP Dataset ((Leskovec and Krevl 2014)) shows more locality than
economic network (Japanese production network) or programming symbols’ network
(Emacs LISP function definition relation).
Large-scale complex networks consists of multiple networks connected together and

not a monolithic structure in general, which has been studied by various community
detection methods. Bow-tie locality concept is useful to analyze the way how these com-
ponents (communities) are connected with each other, which has so much diversity that
it is often difficult to have any research direction. Japanese production network, which is
one of the reference data in this study, is a complex of heterogeneous communities. We
will apply bow-tie locality to understand the internal structure of the network and analyze
the relation between industrial sectors in the near future.
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