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accounting for the contingencies that lead a user to change her/his adoption of one or

alternative information items, and leveraging trust/distrust in the users'’ relationships
and its effect of influence on the users’ decisions. To the best of our knowledge, no
diffusion model unifying all of the above requirements has been developed so far. In
this work, we address such a challenge and propose a novel class of diffusion models,
inspired by the classic linear threshold model, which are designed to deal with
trust-aware, non-competitive as well as competitive time-varying propagation
scenarios. Our theoretical inspection of the proposed models unveils important
findings on the relations with existing linear threshold models for which properties are
known about whether monotonicity and submodularity hold for the corresponding
activation function. We also propose strategies for the selection of the initial spreaders
of the propagation process, for both non-competitive and competitive influence
propagation tasks, whose goal is to mimic contexts of misinformation spread. Our
extensive experimental evaluation, which was conducted on publicly available
networks and included comparison with competing methods, provides evidence on
the meaningfulness and uniqueness of our models.

Keywords: Information diffusion, Influence propagation, Trust/distrust relationships,
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Introduction

Since the early applications in viral marketing, the development of information diffusion
models and their embedding in optimization methods has provided effective support to
address a variety of influence propagation problems.

However, due to the shrinking boundary between real and online/virtual social life
(Bessi et al. 2014) along with the unlimited misinformation spots over the Web, e.g., fake
news (Kumar et al. 2016; Kim et al. 2018), deciding whether a source of information is
reliable or not has become a delicate task. For these reasons, understanding the com-
plex dynamics of information diffusion phenomena has emerged as a task of paramount
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importance, since the way people act on the Web reflects how people behave in reality,
which eventually depends to some extent on the way everyone consumes and acquires
information.

A few studies on the spreading of fake news and hoaxes (Metaxas and Mustafaraj 2010;
Mustafaraj and Metaxas 2017) argued that, the likelihood of people to be deceived by a
spreading information item is increased because assessing the reliability and trustworthi-
ness of the source generating and/or sharing such item becomes harder. Within this view,
one side effect is the tendency of users to access information from like-minded sources
(Koutra et al. 2015) and at the same time, to be trapped inside information bubbles, thus
favoring network polarization phenomena (Garimella et al. 2017).

When it comes to debunking misinformation, two main strategies can be devised: real-
time detection and correction, or delayed correction (Kumar and Geethakumari 2014).
However, in both cases, the response time plays a crucial role into the effectiveness of
the correction attempt, because users tend to reinforce their own belief — a cognitive
phenomenon known as confirmation bias. Moreover, there is no guarantee about the
effectiveness of such corrections: on the contrary, highlighting a fake news may even
produce a backfire effect, i.e., driving users’ attention towards the misleading piece of
information.

In this scenario, it appears that one recipe to deal with the interleaving of information
and dis/misinformation should be to educate people to be mindful of the informative
source. Unfortunately, it is often difficult to understand where an information item origi-
nated from. Therefore, it turns out to be essential to capture the effects that different types
of social ties, particularly trust/distrust relationships, can have on both the user behavior

and propagation dynamics. Two related questions hence arise:

Q1 What are the key-features that make a diffusion model able to explain the inherent
dynamic, and often competitive, nature of real-world propagation phenomena?
Q2 Do the currently used models of diffusion already incorporate such features?

To address question Q1, we recognize a number of aspects as essential constituents of a
“realistic” information diffusion model, namely: (1) leveraging trust/distrust information
in the user relationships to capture different effects of influence on decisions taken by a
user; (2) accounting for a user’s change in adopting one or alternative information items
(i-e., relaxation of the diffusion progressivity assumption); (3) accounting for a user’s hes-
itation or inclination towards the adoption of an information over time; (4) accounting
for time-dependent variables, such as latency, to explain the propagation dynamics; (5)
dealing with multiple cascades of information that might occur competitively.

Motivating example. Our above hypothesis is supported by the following example:
consider a typical scenario occurring in a political campaign, where two candidates want
to target the audience of potential electors. Let’s assume, at the start of the political cam-
paign, every elector has a complete unbiased opinion towards one of the two candidates.
The ultimate decision about which candidate to vote it will likely be affected by both
“exogenous” and “endogenous” influencing factors, i.e., one may be genuinely influenced
by decisions taken by her/his social contacts — impact of homophily factors — but s/he
may also have formed her/his own opinion outside the network of friends. In fact, not
only friends, but also the network of foes has some degree of influence over the decision
process of an individual. As a consequence of such negative influence received by foes,
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one may become more hesitant in taking a decision, which would be reflected by a qui-
escence state of the elector before being fully engaged in the promotion of the chosen
candidate. Moreover, despite an elector may alternate her/his opinion in favor of one or
the other candidate before the final endorsement, it will be more difficult to induce this
change over time. In this regard, a time-aware notion of activation threshold is needed to
mimic the effects of the confirmation bias. Finally, all decisions must be taken before the
time limit, i.e., the election day, which constrains the political campaign period.

Question Q2 has been addressed by a relatively large corpus of research studies in the
last few years. A variety of methods, mainly built upon classic information diffusion mod-
els such as Independent Cascade (IC) and Linear Threshold (LT) (Kempe et al. 2003), have
tried to explain realistic propagation phenomena in order to solve optimization problems
related to influence propagation. As we shall discuss in “Related work” section, diffusion
models have been developed to incorporate one or more of the following aspects: multi-
ple, competitive cascades of information; time horizon for the unfolding of the diffusion
process; time-dependent influence; delay in the propagation; and trustworthiness of the
influence relations. However, to the best of our knowledge, all of the above aspects have
never been unified into the same (LT-based) diffusion model.

Contributions. In this paper, we propose a novel class of diffusion models, named
Friend-Foe Dynamic Linear Threshold Models (FDLT). They are based on the classic
LT model and are designed to deal with non-competitive as well as competitive time-
varying propagation scenarios. In our proposed models, the information diffusion graph
is defined on top of a trust network, so that the strength of trust and distrust relation-
ships is encoded into the influence probabilities. The response of a user to the influencing
attempts is described by the means of a time-varying activation function, depending
on both the inherent activation-threshold of the user and her/his tendency of keeping
or leaving the campaign-specific activation state over time. We also introduce a quies-
cence function to model the latency or delay in the propagation, which accounts for the
involvement of the user’s foes in the information diffusion. Remarkably, in our models, the
trusted connections and distrusted connections play different roles: only friends can exert
a degree of influence for activation/contagion purposes, whereas foes can only contribute
to increase the user’s hesitation to commit with the propagation process. For competi-
tive scenarios, we define two models with clearly different semantics: a semi-progressive
model, which assumes that a user, once activated, is only allowed to switch to a different
campaign, and a non-progressive model, which instead requires a user to have always the
support of her/his in-neighbors to keep the activation state with a certain campaign.

We provided several theoretical insights into the proposed models. In particular, we
demonstrated how each of our models could be reduced to other LT-based models for
which properties are known about whether monotonicity and submodularity hold for the
corresponding activation function.

Another contribution of this work is the definition of four seed selection strategies,
which mimic different, realistic scenarios of influence propagation. These strategies are
central to our methodology of propagation simulation, since the development of opti-
mization methods under our diffusion models is beyond the goals of this work. Notably,
in competitive scenarios, we have focused on combinations of strategies (to associate with
competing campaigns) that might be reasonably considered for a misinformation spread

limitation problem.
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Experimental evaluation conducted on four real-world networks, also including com-
parison with stochastic epidemic models and the dynamic linear-threshold (DLT) model,
has provided interesting findings on the meaningfulness and uniqueness of our proposed
models.

Related work

We overview information diffusion models that, in the attempt of explaining realis-
tic propagation phenomena, incorporate one or more of the following aspects: multiple,
competitive cascades of information, time horizon for the unfolding of the diffusion pro-
cess, time-dependent influence, delay in the propagation, trustworthiness of the influence
relations. Table 1 provides a guide to our discussion.

Please note that here we refer to the vast literature on probabilistic models originally
designed to explain stochastic processes of information diffusion, which include the clas-
sic Independent Cascade (IC) and Linear Threshold (LT) models (Chen et al. 2013), and
relating optimization problems, such as influence maximization. By contrast, we will leave
out of consideration deterministic models, such as the structural cascades specifically
designed to model context/content-sensitive diffusion over an interaction network (e.g.,
(Krishnan et al. 2016; Das et al. 2016)). Also, it is worth noting that the information dif-
fusion modeling problem we tackle in this work is significantly different from the one
addressed by epidemic models, such as SIS, SIR(S), and SEIR(S) (Hethcote 2000), already
for the non-competitive scenario. Standard epidemic models are originally defined as
compartmental models, since the individuals of a population are divided in compart-
ments that describe an epidemiological state. The parameters used to represent transition
rates for changing states are absolute constants, which means that the infection process
in compartmental models has a deterministic behavior. Also, standard epidemic mod-
els are of mass-action type, since individuals are represented as normalized fraction of
a population which randomly interact with each other. As discussed in (Dodds 2018),
even social contagion based on stochastic or generalized epidemic models (i.e., there is

Table 1 Summary of related work based on optimization problem, basic diffusion model (DM),
competitive diffusion (C), non-progressivity (NP), time-aware activation (TA), delayed propagation
(DP), trust/distrust relations (TD)

Ref. Problem DM C NP TA DP ™D
(Budak et al. 2011) Rumor blocking IC v

(Tong et al. 2017) Rumor blocking IC v

(He et al. 2012) Rumor blocking LT v

(Fan et al. 2013) Rumor blocking distrib. v

(Chenetal.2011) Positive influ. max. IC v

(Lou et al. 2014) Active time max. IC v

(Fazliet al. 2014) PTS min. LT v

(Chen and He 2015) Positive influ. max. Voter v v
(Talluri et al. 2015) Positive influ. max. LT v v
(Weng et al. 2016) Positive influ. max. LT v v
(Liu et al. 2012) Time-constrain. influ. max. IC v
(Chenetal.2012) Time-constrain. influ. max. IC v
(Mohamadi-Baghmolaei et al. 2015) Positive influ. max. IC v v v v
(Litou et al. 2016) Rumor blocking LT N v v

(Lu et al. 2015) Positive influ. max. IC v
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a probability distribution of rates to govern the infection process) is originally defined
on random networks, and its revision to deal with social networks would lead to more
complicated models. In this regard, one direction is taken by the stochastic individual-
contact, network models, whereby SIS and related models are reformulated by considering
a stochastic infection process and a network-based population of individually identifiable
elements. In “Comparison with the IC, SIR and SEIR models” section, we present a stage
of experimental evaluation devoted to a comparison with such models. However, even if
epidemic models have also been used for social influence, they are not the most common
approach to such topic (Porter and Gleeson 2016). This is manly due to the fact that iden-
tifying and modeling the causal mechanisms of the spread of ideas is more difficult than
for the spread of diseases. By constrast, the threshold models for influence propagation
(even the simplest ones) have two important features that are not clearly present in epi-
demic models. First, individuals have different behaviors, being such differences reflected
in the distribution of activation thresholds associated with the individuals; by contrast, in
stochastic epidemic models, the state-transition probabilities are drawn independently of
the individuals’ relations. Second, an individual’s behavior also depends on the behavior
of other individuals s/he is linked to: here, it is helpful to think about threshold models
as an example of complex contagions, whereby an individual takes an action as a result
of the exposure to multiple sources of influence; by contrast, epidemic models are more
likely to represent simple contagion, in that a single source of influence (as social contact)
may suffice to cause an individual’s action. Moreover, while the transition to the recovered
state assumes non-progressivity in stochastic diffusion models such as LT or IC, such a
transition in SIR(S) is defined to happen spontaneously, discarding any influence that may
result from the interaction with other individuals. For all such reasons, thresholds models
are usually considered more appropriate in contexts like the adoption of new technolo-
gies or controversial ideas (Chen et al. 2013). And, in our work, we indeed follow this
line of research. One further point of divergence adheres to the notion of competitiveness
that is somehow found in advanced epidemic models: this refers to the presence of two or
multiple groups of individuals (with some distinguishing characteristics) which are how-
ever affected by the same, single disease (Han et al. 2003; Ji et al. 2012; Hu et al. 2013),
therefore it corresponds to a totally different notion than what is addressed in our work.

In the following, we briefly recall the definition of the LT model, which is at the basis
of our proposal; then, we focus on related work that address the aforementioned aspects
concerning complex propagation phenomena.

The classic Linear Threshold model. Given a directed graph representing a social
network, with estimates of influence probabilities provided as edge weights, nodes can
be “activated” (i.e., influenced) through an information cascade starting from an initially
selected set of seed nodes (i.e., early-adopters). At the beginning of the information dif-
fusion process, each node is assigned a threshold uniformly at random from [0, 1]. The
diffusion process unfolds in discrete time steps and follows certain rules: nodes are either
active or inactive; once activated, nodes cannot deactivate; an active node may trigger
activation of neighboring nodes; a node can be activated at time ¢ + 1 by its active neigh-
bors if their total influence weight at time ¢ exceeds the threshold associated to that node.
The process runs until no more activations are possible.

Competitive diffusion. A number of studies have been devoted to model competitive
diffusion; see, e.g., (Chen et al. 2013) for a general introduction to IC and LT classes of
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competitive diffusion models. Focusing on competitive diffusion and related optimiza-
tion problems under the context of misinformation spread limitation, one of the earliest
work is (Budak et al. 2011), which proposes a multi-campaign IC model to address the
influence limitation problem, i.e., to find a seed set of size k for one, “good” campaign
such that the number of nodes influenced by the other, “bad” campaign is minimized. In
(Tong et al. 2017), the problem of rumor blocking is addressed under the competitive IC
model and a randomized algorithm is developed for the selection of the seed set able to
yield the maximum reduction in the number of bad-infected nodes. An influence block-
ing maximization problem is also addressed in (He et al. 2012), using competitive LT. In
(Chen et al. 2011), the two competing cascades correspond to opposite opinions, where
the negative one may emerge spontaneously from any user in the network, e.g., a user
got disappointed with a purchased item and decides to spread negative opinion among
her/his contacts. Lu et al. (2015) also address the aspect of complementarity between two
competing campaigns, under the assumption that if the two information items are corre-
lated then the adoption of one item might favor further adoption of the second item over
time.

Non-progressive diffusion. While modeling the competitive nature of information
cascades, the above works however refer to progressive models. On the contrary, a few
studies have been proposed to model non-progressive diffusion. For instance, (Lou et
al. 2014) introduces a deactivation function into a continuous non-progressive model,
whereas an extension of LT is proposed in (Fazli et al. 2014) to define a non-progressive
strict majority model. However, both models are also non-competitive.

Social ties and temporal aspects. All of the aforementioned works discard two impor-
tant aspects: (i) the nature of social ties and their impact on the influence propagation, and
(i) time aspects concerning the diffusion process. The dichotomy between opposite types
of social ties (e.g., friend vs. foe relations) has been widely studied in OSN analysis (e.g.,
(Leskovec et al. 2010b)), however its incorporation into diffusion models has been rela-
tively little explored so far. For instance, two extensions of competitive LT with negative
relations are defined in Talluri et al. (2015), to support positive opinion maximization, and
in Weng et al. (2016), to model the adoption of opinions from friends or opposite opin-
ions from foes. All of such models are competitive but do not consider temporal aspects
in the activation or propagation processes.

Several works have studied different types of temporal variables and their impact
on spreading processes (e.g., (Liben-Nowell and Kleinberg 2008; Vazquez et al. 2007;
Iribarren and Moro 2009)), mainly focusing on lags and delays due to the diverse
response-time and heterogeneous susceptibility of users. In (Liu et al. 2012), the authors
propose a latency-aware IC model inspired by (Iribarren and Moro 2009), in which an
influencing delay is introduced in the activation function. Under this model, a time-
constrained IM problem is defined, i.e., to find a seed set of size k such that the expected
number of nodes is activated before a given time limit. Another extension of IC is
proposed in (Chen et al. 2012), where a notion of meeting probability is introduced
to control the activation of neighbors. The models in Liu et al. (2012); Chen et al.
(2012) are non-competitive. By contrast, the trust-based latency-aware IC model pro-
posed in (Mohamadi-Baghmolaei et al. 2015) features competitiveness, non-progressivity,
temporal delay in propagation, and is also designed to deal with trust/distrust

relations.
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Dynamic behaviors. All of the previously mentioned works still lack aspects model-
ing the dynamic behavior of the users. In particular, according to recent studies about
polarization of opinion in OSNs (Anagnostopoulos et al. 2015) and related works about
misinformation reduction (Kumar and Geethakumari 2014; Lewandowsky et al. 2012),
a crucial aspect is to intervene before a competing campaign can reach the users, or at
least soon enough, so that a user does not have time to radicalize her/his thoughts. This
idea was first captured in (Litou et al. 2016), where a dynamic LT model (DLT) is defined
to deal with competitive information cascades. The influence weights temporally decay
according to a Poisson distribution, and every node can be either positively or negatively
activated at a given time depending on the absolute value of the cumulative influence
of its neighbors, while the activation sign depends on the sign of the cumulative influ-
ence. Moreover, a dynamic behavior aspect lays on the update of the activation threshold
whenever a user switches her/his belief.

The latter work shares with our proposal all features of competitiveness, non-
progressivity (although deactivation is not allowed), time-aware propagation, dynamic
influence behavior, and incorporation of opposite opinions in the influence probabilities;
moreover, it is also based on LT. However, our competitive models differ from DLT in
(Litou et al. 2016) since (i) we explicitly model trust and distrust relationships to define
the influence probabilities, (ii) our activation function takes into account only the trusted
connections while (iii) distinguishing between the two information cascades; (iv) we
introduce a quiescence function to model a delay in the information propagation depend-
ing on the strength of influence exerted by distrust relations (i.e., foe neighbors); finally,
(v) the activation threshold in our models becomes stronger over time as a node is hold-
ing a particular belief. In “Comparison with the DLT model” section we shall compare our
models with DLT.

Friend-foe dynamic linear threshold models

In this section we describe our proposed class of Friend-Foe Dynamic Linear Thresh-
old (F2DLT) models, which is comprised of: the Non-Competitive F2DLT (nC-F>DLT),
the Semi-Progressive Competitive F2DLT (spC-F>DLT), and the Non-Progressive Com-
petitive F2DLT (npC-F2DLT). We first provide an overview of the framework based on
F2DLT. Next, we introduce key features common to all models, then we elaborate on each
of them.

Overview

Figure 1 illustrates the conceptual architecture of a framework for information diffusion
and influence propagation based on our proposed models. Given a population of OSN
users, the framework requires three main inputs: (i) a trust network, which is inferred
from the social network of those users to model their trust/distrust relationships; (ii) user
behavioral characteristics that are intrinsic to each user (i.e., exogenous to an informa-
tion diffusion scenario) and oriented to express two aspects: activation-threshold, i.e., the
effort needed to activate a user through cumulative influence from her/his neighbors, and
quiescence, i.e., the user’s hesitation in being actively committed with the propagation pro-
cess; and, (iii) one or multiple competing campaigns, i.e., information cascades generated
from the agent(s) having viral marketing purposes. Moreover, the information diffusion
process has a time horizon, and its temporal unfolding is reflected in the evolution of
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Fig. 1 lllustration of the information diffusion framework based on our proposed F2DLT

the information diffusion graph: this also depends on the dynamics of the users’ behav-
iors in response to the influence chains started by the campaign(s), which admit that
users may switch from the adoption of a campaign’s item to that of another one. Putting
it all together, our F2DLT based framework embeds all previously discussed aspects
that are required to explain complex propagation phenomena, i.e., competitive diffu-
sion, non-progressivity, time-aware activation, delayed propagation, and trust/distrust
relations.

Please note that inferring a trust network from a social network is not an objective
of this work; rather, we assume that trust relationships between users of an OSN are
available and, as we shall describe next in this section, they are exploited as key infor-
mation to develop our proposed models. Several heuristics have been proposed to infer
a trust network from social relations and interactions among users in an OSN. A com-
mon approach is to infer trust relationships based on the social influence exerted by users
over the network and propagation of trust ratings (Golbeck and Hendler 2006; Overgoor
et al. 2012; Hamdi et al. 2013; Jiang et al. 2014). Other studies utilize users’ activities in
social media (Gilbert and Karahalios 2009), or users’ attributes and interactions (Liu et
al. 2008), or combinations of aspects concerning user affinity, familiarity and reputation
(Yin et al. 2012), social influence, social cohesion and the afffective valence expressed by
the users in the textual contents they produce (Vedula et al. 2017). The interested reader
may refer to (Tang and Liu 2015; Sherchan et al. 2013) for an exhaustive overview on
the topic.

Page 8 of 41
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Basic definitions

We are given a trust network represented by a directed graph G = (V, E, w), with set of
nodes V;, set of edges E, and weighting function w : E [ —1, 1] such that, for every edge
(u,v) € E,wyy := w(u,v) expresses how much v trusts its in-neighbor u. Positive, resp.
negative, value of w,, corresponds to a trust, resp. distrust, relation.

For every v € V, we denote with Nﬁf (v) and N™(v) the set of neighbors trusted by
v (i.e., friends of v) and the set of neighbors distrusted by v (i.e., foes of v), respectively.
Moreover, as required in linear threshold models, the constraints ), Niny) Wuy < 1 and
D uenin ) [Ww!| < 1 must be fulfilled.

Let G = G(g,q, T) = (V,E,w,g,4q, T) be a directed weighted graph representing the
LT-based information diffusion graph associated with trust network G, where T denotes
a time interval for the diffusion process, g and g denote time-dependent activation-
threshold and quiescence functions. These are introduced in G to model the aspects of
time-aware activation and delayed propagation, respectively. We use symbol S; to denote
the set of active nodes at time ¢, and symbol S; to denote the set of active nodes for which,
at ¢, the quiescence time is not expired yet, i.e., the quiescent nodes.

Activation-threshold function. According to the LT model, every node v € V is asso-
ciated with an exogenous activation-threshold, 6, € (0, 1], which corresponds to the
a-priori effort needed in terms of cumulative influence to activate the node. We enhance
this concept by defining an activation-threshold function, g : V, T ~ R™, such that for
everyve Vandte T:

g, 1) =6, + 0 (6, 1),

i.e., the activation of v at time ¢ depends both on the user’s pre-assigned threshold, 6,, and
on a time-evolving activation term, ¥ (-, -), which models the dynamic response of a user
towards the activation attempt exerted by her/his neighbors.

To specify ¥ (-, -), we devise two main scenarios for g(-, -):

e A biased scenario, modeled as a non-decreasing monotone function, to capture the
tendency of a user to consolidate her/his belief, according to the confirmation-bias
principle (Anagnostopoulos et al. 2015).

e An unbiased scenario, modeled as non-monotone function, whereby we assume that
a user could revise her/his uncertainty to activate over time, thus becoming more or
less inclined to change her/his opinion on an information item. This is particularly
meaningful in applications such as customer retention, or churn prediction (i.e., a
decrease in the activation-threshold would correspond to the tendency of a user to

churn in favor of another service).

Both variants ¥ (-, -) range within the interval [0, 1], for any v € V.
Let us first consider the biased scenario, which is focused on the confirmation bias
principle. We choose the following form for the activation-threshold function, by which

the value increases by increasing the time a node keeps staying in the same active state:

1-0
g, t) =0, + 0 (0y,t) =6, + 68 X min{ i V,t—tf,““}, 1)

where tf,““ denotes the last (i.e., most recent) time v was activated and § > 0! represents
the increment in the value of g(v, t) for consecutive time steps. Thus, the longer a node has
kept its active state for the same information cascade (campaign), the higher its activation
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value, and as a consequence, it will be harder to make the node change its state, or even
no more possible (i.e., g(v, t) saturates to 1, as the difference (t — tffm) exceeds (1—6,)/3).

In the unbiased scenario, we define the activation-threshold function such that, for each
v, the value of the function is maximum (i.e., 1) just after the activation, i.e., at time t =
tf,““ + 1, then for subsequent time steps, the function exponentially decreases towards 6,

g, t) =6, + 00, ) = 6, + exp (—5 (t — last _ 1)) — 6,1 [t — last 1] )

where [[[ -] denotes the indicator function, i.e., it equals 1 if £ — tf,““ = 1, 0 otherwise. Note
that § is used differently w.r.t. the previous scenario, as it acts as a coefficient that controls
the decrease of the activation-threshold function over time.

Quiescence function. Each node in G is also associated with a quiescence value, which
quantifies the latency in propagation through that node. We define a quiescence function,
q : V,T — T, non-decreasing and monotone, such that for everyv € V,t € T, with v
activated at time ¢£:

qw,t) = + ¥ (N"(v),¢),

where 7, € T represents an exogenous term modeling the user’s hesitation in being fully
committed with the propagation process, and ¥ (N”(v), t) provides an additional delay
proportional to the amount of v’s neighbors that are distrusted and active, by the time the
activation attempt is performed by the v’s trusted neighbors:

qv,ty =1+ (Ni”(v),t) =1 +exp|Aix Z Wl |, (3)

MES,g,l

where A > 0is a coefficient modeling the average user sensitivity in the perceived negative
influence. Intuitively, this coefficient would weight more the negative influence as the
diffusing informative item is more “worth of suspicion” Note also that, in Eq. 3, wy, is a
negative value, since  is a distrusted neighbor of v, i.e., u € N"(v).

Rationale for activation and propagation. Our choice of using, on the one hand,
friends for the activation of a user, and on the other hand, foes to impact on delayed
propagation, represents a key distinction from related work (Litou et al. 2016; Talluri
et al. 2015; Weng et al. 2016). Therefore, in our models, the trusted connections and
distrusted connections play different roles: only friends can exert a degree of (positive)
influence, whereas foes can only contribute to increase the user’s hesitation to commit
with the propagation process. It should be noted that both activation and delayed propa-
gation terms also include exogenous factors. We indeed take into consideration both the
existence of environmental and personal factors of influence on an individual’s behav-
ior. Several studies in information diffusion and influence maximization have reported
evidences that, apart from influence coming from social contacts, an individual may
be affected by some external event(s) and/or personal reasons to adopt an information
(Goyal et al. 2010) as well as to delay the adoption of an information (Iniguez et al. 2018).
In our setting, we tend to reject as true in general, the principle “I agree with my friends’
idea and disagree with my foes” idea” (which is also close to the adage “the enemy of my
enemy is my friend”), since this would imply that the behavior of a user should be com-
pletely determined by the stimuli coming from her/his neighbors. Rather, according to
most conceptual models developed in social science and human-computer interaction
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fields (see, e.g., (Tedjamulia et al. 2005; Bishop 2007)), we believe that the individual’s
influenceability has a component based on personal characteristics.

Non-competitive model

We introduce the first of the three proposed models, which refers to a single-item prop-
agation scenario. Figure 2 shows the life-cycle of a node in the diffusion graph under this
model.

Definition 1 Non-Competitive Friend-Foe Dynamic Linear Threshold Model (nC-
F’DLT) Let G = (V,E,w,g,q, T) be the diffusion graph of Non- Competitive Friend-Foe
Dynamic Linear Threshold Model (nC-F>DLT). The diffusion process under the nC-F>DLT
model unfolds in discrete time steps. At time t = 0, an initial set of nodes Sy is activated.
At time t > 1, the following rule applies: for any inactive node v € V \ (S;—1 Ugt_l),
if ZueN}f(v)ﬂSt,l Wy > g(v, t), then v will be added to the set of quiescent nodes S, with
quiescence time equal to t* = q(v, t). Once the quiescence time is expired, v will be removed
from S; and added to the set of active nodes Sg+. The process continues until T is expired or
no more activation attempts can be performed. O

Competitive models

Here we introduce the two competitive F2DLT models. Let us first provide our motivation
for developing two different competitive models: through the following example, we
illustrate a particular situation that may occur when dealing with two campaigns compet-
itively propagating through a network. Please note that, throughout the rest of this paper,
we will consider only two competing campaigns for the sake of simplicity; nevertheless,

our proposed models are generalizable to more than two competing campaigns.

Example 1 Figure 3 shows an example activation sequence in a competitive scenario
between two information cascades, distinguished by colors red and green. At time t = 0,
nodes u and z are green-active, and their joint influence causes green-activation of node
v as well (since 0.3 + 0.5 > 0.6). At time t = 1, as fully influenced by node x, node z has
switched its activation in favor of the red campaign. After this switch, at time t = 2, it hap-
pens that v’s activation state is no more consistent with the (joint or individual) influenced
exerted by u and z. In particular, two mutually exclusive events might in principle happen
at t = 2: either v is deactivated or v maintains its green-activation state. |

The uncertainty situation depicted in the above example prompted us to the definition
of two models, namely semi-progressive and non-progressive F2DLT: the former corre-
sponds to the case of v keeping its current (i.e., green) activation state, whereas the latter
corresponds to v returning to the inactive state. Clearly, the two models’ semantics are
different from each other: the semi-progressive model assumes that a user, once activated,

tart @ activation
start —

quiescence time expired

Fig. 2 Life-cycle of a node in the nC- F2DLT model
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Fig. 3 Uncertainty in an example two-campaign activation sequence

cannot step aside, unlike the non-progressive one, which instead requires a user to have
always the support of her/his in-neighbors to keep activation.

Given two information cascades, or campaigns C',C", for every time step t € T we
will use symbols S, and S} to denote the sets of active nodes, such that S; N S} = ¢, and
analogously symbols E; and §£’ as the sets of quiescent nodes, for C' and C”, respectively.
Also, §; = S; U S/ and §t = g’t U SN”t.

It should also be noted that, while sharing the time interval (T of diffusion, C’ and C”
are not constrained to start at the same time £y. Nevertheless, for the sake of simplicity,
we hereinafter assume that to = f; = t; (with fo € T), unless otherwise specified (cf.
“Results” section).

Definition 2 Semi-Progressive Competitive Friend-Foe Dynamic Linear Threshold
Model (spC-F?DLT). Let G = (V,E,w,g, q, T) be the diffusion graph of Semi-Progressive
Competitive Friend-Foe Dynamic Linear Threshold Model (spC-F>DLT), and C', C" be two
campaigns on G. The diffusion process under the spC-F>*DLT model unfolds in discrete time
steps. At time t = 0, two initial sets of nodes, Sy and Sy, are activated for each campaign.
At every time step t > 1, the following state-transition rules apply:

R1. For any ino:ctive nodev € V \ (St—l Ugt_l), ifZNT(v)ﬁS;_l Wy = g, 0), thez %
will be added to S'y; analogously, ifZNﬂf(v)ﬂS;’_l Wyy = g, t), then v will be added to S";.
If both conditions hold, i.e., v can be simultaneously activated by both campaigns, a tie-
breaking rule will apply, in order to decide which campaign actually determines the node’s
transition in the quiescent state.

R2. When a node v enters the quiescent state corresponding to C' (resp. C") for the first
time, it will stay in the quiescent node-set s ¢ (resp. S ¢) until the quiescence time is expired.
After that, v will be moved to S, (resp. S}), i.e., it will become active for C' (resp. C").
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R3. Given a node v active for C", i.e, v € S/, if ) Ningyns  Wuv = g(v,t) and
ZNT(v)mSQ_l Wyy > ZNf(v)msg’_ | Wuw then v will be removed from S, and added to S};
analogous rule holds for any node active for the first campaign.

Every node for which none of the above transition-state rules is triggered at time t, it will
keep its current state at time t + 1. O

The life-cycle of a node in spC-F2>DLT is shown in Fig. 4. Note that, once a node
becomes active, it cannot turn back to the inactive state, but it can only change the

activation campaign. Moreover, switch transitions occur instantly.

Definition 3 Non-Progressive Competitive Friend-Foe Dynamic Linear Threshold
Model (npC-F>DLT) Let G = (V,E,w,g, q, T) be the diffusion graph of Non-Progressive
Competitive Friend-Foe Dynamic Linear Threshold Model (npC-F>DLT), and C',C" be
two campaigns on G. The diffusion process in npC-F>DLT evolves according to the same
rules as in spC-F>DLT plus the following rule concerning the deactivation process of an
active node:

RA4. For any active node v at time t — 1, lfzj\[f(wmg;i1 Wyy < 0, and ZNK’(V)HSQLI Wyy <
0,, then v will turn back to the inactive state at time t.

Every node for which none of the transition-state rules is triggered at time t (including the
ones defined for spC-F>DLT), it will keep its current state at time t + 1. O

It should be noted that a node’s deactivation rule depends on 6, only (rather than on
the whole function g(v, t)); otherwise, every node activated at a given time could deac-
tivate itself in the next time step, due to the increase in its activation threshold. This
would eventually lead to a configuration in which all nodes in the network, except the ini-
tially activated ones, are in the inactive state. The life-cycle of a node in the npC-F2DLT
is illustrated in Fig. 4. Note that, unlike in spC-F2DLT, transitions to inactive state are

allowed.

Theoretical properties of the models
In this section we provide insights into the proposed models. Our main goal is to under-
stand how the features introduced in each of our LT-based models impact on the models’

e
-,
y 3
Y

Fig. 4 Life-cycle of a node in competitive models. Straight lines represent the transitions common to both
spC-F2DLT and npC-F2DLT, while dashed lines refer to npC-F2DLT only
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spread behavior, particularly on monotonicity and submodularity properties. We orga-
nize our analysis into two parts: the first corresponding to non-competitive diffusion, and
the second to competitive diffusion.

Non-competitive diffusion

We show that nC-F2DLT can be reduced to LT with quiescence time, hereinafter denoted
as LTgt. By proving the equivalence between the two models, we hence claim that both the
monotonicity and submodularity properties hold for nC-F2DLT. Note that since we deal
with a progressive model, we assume without loss of generality that, for every node v, the
activation-threshold function has a constant value for the whole duration of the diffusion
process, i.e., g(v,t) = 6,.

Definition 4 Reduction of nC-F>DLT to LIgt. Given G = (V,E,w,g,q,T) for
nC-F2DLT, a diffusion graph Grr = (Vir,Err) can be derived, under L1gt, such that
Vir = V and E;r = {(u,v)|(u,v) € E,wy, > 0}. Every node v € Vir is assigned
a quiescence time equal to the maximum value of the quiescence function q,(-), i.e.,
T = 1, Y (N (). O

Definition 4 exploits the fact that the distrust connections are not involved in the activa-
tion process, but only in the calculation of the quiescence time. Therefore, we can assume
this time to be the maximum possible value, and hence we can study the propagation
under LTgt. The reduction of nC-F2DLT to LTgt is meaningful since the two models are
proved to be equivalent, as we report in the following theoretical result.

Proposition 1 The Non-Competitive Trust Threshold Model (nC-F>?DLT) and the
Linear Threshold Model with quiescence time (LTgt) are equivalent. <

Proof According to the definition of equivalence of two diffusion models in
(Kempe et al. 2003; Chen et al. 2013), in order to prove the equivalence of nC-F2>DLT and
LTgt we need to prove that the distribution of the active sets for any given seed set S is
the same under the two models. We provide a proof by induction, hence we consider the
evolution of the active sets during the diffusion rounds.

For the L1gt model, the probability of a node to be activated exactly at time ¢ + 1 (with
t > 1) is given by:

r(ve Ser1,v & St)
Pr(v ¢ Sp)
Pr (Zuest,l Wiy < Oy < ZueSL WW)

Pr (ZueSH Wyy < 9V>

_ uesp\Si W

1= 2 ues,  Wav

—~ p
PI‘(V S St—i—l | 14 ¢ St) =

(4)

Above, it should be noted that the joint probability Pr (V € S:l, vé St) corresponds to
the probability that the threshold associated with node v falls into the interval denoted
by the influence received by v until the previous time step and the one received at the
current time step. Moreover, Pr(v ¢ S;) is just the probability that, at time (¢ — 1), the
influence received by v is still below its threshold. Finally, we derive the last equality in
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Fig. 5 Activation sequence for the LTqt model

+

Eq. 4, which intuitively denotes that the influence exerted by the nodes in S;\ S;—1, i.e., the
nodes turning into the active state exactly in the current time step, is decisive to exceed
the threshold 6,.

For the an—FZDLT model, the conditional probability Pr (v € S:l |vé St) can be
derived starting from Eq. 4 by constraining w,, such that u € N _’f (v), i.e., only trusted
relations are considered. This leads to an equivalent definition of conditional probability,
which holds for every time step ¢ and seed set Sp. Therefore, we can conclude that the
final active sets will be the same for both models. O

It should be noted that, due to the quiescence times, the sets of active nodes in the two
models may not be the same at every time step, but the two final active sets will match
each other.

Since the introduction of quiescence time in LT does not have effect on the distribution
of the final active nodes (Chen et al. 2013), we obtain the following equivalence: LT =
LTyt = nC-F 2DLT. Therefore, the activation function is still monotone and submodular
under nC-F?DLT.

Example 2 Consider Fig. 5, where the propagation process unfolds according to the L1gt
dynamics. Nodes u and z are chosen as initial seeds. Thresholds and weights are set such
that 0 < wy,y and max{Wyy, Wi} < 0y < Wyx + Wyy, therefore the combined influence of v
and z is required for the activation of node x. The dashed edge denotes a distrust connection
removed as a result of the reduction defined in Definition 4. In the initial time step (t = 0),
u activates v causing its transition from the inactive state to the quiescent state (in yellow).
When t = t[", v turns to the active state, and together with z it becomes able to trigger
the activation of node x (which will eventually become active by the time-horizon T).

It should be noted that the same dynamics holds for the nC-F>DLT model, apart from the

max

difference that concerns the quiescence time of node v: this would be less than t)

since v,
a foe of v, is not involved in the propagation process. |

Competitive diffusion

We focus here on spC-F2DLT and npC-F2DLT, and show that both models can be
reduced to the Homogeneous Competitive Linear Threshold (H-CLT) with Majority Vote
as tie-breaking rule (Chen et al. 2013). This is a competitive, progressive model based on
LT, for which it is known that its activation function is monotone but not submodular

regardless of the particular tie-breaking rule.
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To begin with, we might recall that the non-progressive LT-based diffusion can be
reduced to the progressive case, using a particular form of layered graph (Kempe et al.
2003). Given a time interval T and a diffusion graph G = (V, E) for non-progressive LT,
a new graph G” can be derived such that every node v € V will have a replica v; in every
layer at time ¢ € T, and for every edge (u, v) € E there will be an edge (u;—1,v;) in GT.

Unfortunately, this serialization technique cannot be directly applied to our models,
since it is not designed to deal with competitive or non-progressive diffusion and it dis-
cards activation or delayed propagation aspects. In the following, we define serialization
techniques that are suitable for our competitive models and treat one particular con-
figuration at a time. One general requirement is related to the time horizon to bound
the unfolding of the diffusion process. In fact, when dealing with competitive models,
the termination guarantee is lost. A simple example is provided next to depict such a
non-termination scenario.

Example 3 In Fig. 6, nodes u and z are chosen as seed for the green campaign and
the red one, respectively. Nodes v and x become green-active and red-active, respectively,
at time t = 1. Next, they will constantly switch their activation campaign, causing
non-termination of the diffusion process. |

CONFIGURATION 1: No quiescence time, constant activation-threshold. We assume
that g(v) = 0 and g(v,t) = 6, forallv € V,¢ € T. For both spC-F?DLT and npC-F2DLT,
we claim their reduction to the H-CLT model with majority voting as tie-breaking

rule.

Definition 5 spC-F>DLT graph serialization for reduction to H-CLT. Given a time
interval T, we define a layered graph GT = (VT,ET> such that, for each layer at time
t € T, every node v € V will be represented in VT as a tuple (v}, v?,v}). Instances v} and
v? have activation-threshold equal to 0, while v has the same threshold as the original
node v € V. The set of edges is defined as ET = {(u}, V?_H) | (u,v) e E;t,t+1¢€ T} U
(v IveV,ee Ty U{(vivi) Ive V,ee TV U {(vi,v2,) lve V.t € T}, and the
following constraint on edge weights must hold:Vv? € VI, w(vi_,v?) <w(v3,v}). O

In the above definition, triples act as connectors between two consecutive time-layers.
The role of any connector component is as a sort of “switch” to enable a node choosing
between its activation state in a layer and the one in the subsequent layer. In other words,
node v} is the main instance of node v, since the activation state of v} reflects the state of
v in the original graph, under spC-F2DLT at time t; node v3 is the instance of v connected
with other nodes from layer at ¢ — 1, therefore it reflects the influence received by v in the

Fig. 6 An example of non-terminating diffusion process
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original graph, at time ¢ — 1; if the activation attempt to v} fails, node v will be activated
with the same state of v; otherwise, according to the edge weight constraint (cf. Defini-
tion 5), v? will switch to the other campaign, and then will propagate to instance v}. Recall
that v}, v? have zero activation-threshold. Figure 18 in Appendix A shows an example of
serialization for a spC-F2DLT diffusion graph with time horizon set to 2.

It should be emphasized that, compared to the serialization method in (Kempe et al.
2003), we require replication of each node in each layer, and additional edges connecting
the replica-instances, in order to allow the maintenance of the activation state when no
activation event occurs between two time-consecutive layers.

Analogous reduction technique can be defined for the npC-F>DLT model.

Definition 6 npC-F>DLT graph serialization for reduction to H-CLT. Given a time
interval T, we define a layered graph GT = (VT,ET> such that, for each layer at time
t € T, every node v € V will be represented in V' as a tuple (v;,v},v}). Instances
vl and v} have activation-threshold equal to 1 and 0, respectively, while v has the
same threshold as the original node v € V. The set of edges is defined as ET =
{Wh v} )| wv) € Et,t+1e THU{(vi,v}) |ve V,te TYU[{(viv}) [ve V,te T}U
() lveV,teT}u {(v%,vfﬂ) |veV,t,t+1 € T}, and the following constraints
on edge weights must hold:Vv? € VT, w(vl_,v}) < w (v},v}), and¥v} € VT, w (vZ,v})+
w (V?, v}) =1. O

It should be noted that the last condition in Definition 6 imposes nodes v? and v} to
hold the same activation state in order to activate v5.

Analogously to the reduction of spC-F2DLT to H-CLT, we can conveniently devise a
notion of “connector” component between any two consecutive layers, which however in
this case should also account for node deactivations. Figure 19 in Appendix A shows an
example of connector for the npC-F2DLT model.

Claim 1 For any given diffusion graph G under spC-F>DLT (resp. npC-F>DLT), assum-
ing constant activation-threshold and no quiescence time, every node v in G is active at
time t € T if and only if its corresponding instance v} is active in the serialized graph GT

(resp. npC-F>DLT). <

CONFIGURATION 2: Constant quiescence time, constant activation-threshold. We
assume that g(v) = 1, and g(v,t) = 6,, for all v € V. For both spC-F>DLT and
npC-F2DLT, we claim their reduction to H-CLT with majority voting as tie-breaking rule.

In this case, we need to consider that, whenever a node is activated, its quiescence
time may not expire before the time horizon; for this reason, we will consider only nodes
reachable from Sy = Sj U S within T, for any two given seed sets S; and Sj. To iden-
tify such nodes, we define a quiescence-aware distance measure that accounts for the
quiescence times along the path connecting any two nodes. Given nodes u, v, and the
set P(u,v) of all paths between u and v, the distance from u to v will be measured as
d(u,v) = minyep(u,y) erp 7. Moreover, we denote with d(Sy, v) the minimum distance
between nodes u € Sy and v. By exploiting this distance, we will discard all nodes that
cannot be “contagious” before the end of T, say t,4x. Therefore, the node set VT of the
layered graph is defined as:
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VI = (W2, 93) Ve V, te T, d(So,v) < byax) -

Each node v € V with quiescence time 7, will have connections from the previous
layers according to the following rule: for any layer at time ¢, if t < d(So, v) then v will not
have any incoming edges, otherwise all incoming edges of v will be from the layer at time
t—1,—1.

Using the above settings in the serialization method previously presented, it can easily
be demonstrated that both spC-F>DLT and npC-F2>DLT can be reduced to an equivalent
H-CLT model.

Claim 2 For any given diffusion graph G under spC-F>DLT (resp. npC-F>DLT), assum-
ing constant activation-threshold and constant quiescence time, every node v in G is active
at time t € T if and only if its corresponding instance v} is active in the serialized graph

GT (resp. npC-F>DLT). <

CONFIGURATION 3: Variable quiescence time, constant activation-threshold. We
assume that g(v, ¢) is variable, while g(v,t) = 0,, forallve V,t € T.

Like in the previous case, we need to specify the seed sets S, S(’)’ . However, note that
the quiescence time of a node now depends on the actual activation state of its in-
neighborhood (cf. Eq. 3), which makes it unfeasible a direct serialization of the whole
diffusion graph.

Starting from the original diffusion graph G, we derive an “intermediate” graph G, which
is equivalent to G unless each node v € V is associated with a quiescence time interval
[ T, 7,**], where T)'%* = 1, + Yy (N (1)). Let us denote with G the instance of é such
that the quiescence time of every v € G is 7,, and with G"%* the instance of G such that
the quiescence time of every v € § is 7).

Although we cannot assert that spC-F2DLT and npC-F>DLT are equivalent to H-
CLT under the layered graph obtained by applying the previously described serialization
techniques, an important theoretical result can nonetheless be provided, as reported next.

Claim 3 For any diffusion graph G under spC-F>DLT (resp. npC-F>DLT), with cam-
paigns C', C", assuming constant activation-threshold and variable quiescence time, for
any seed sets Sy and Sy, it holds that:

UI/-17CLTmax(SE)’SE)/) = O—/(S(/)’S(/)/) = U]/-I-CLTmin(S(/)’Sg)’ (5)

where o' is the number of nodes activated by C' under spC-F>DLT (resp. npC-F>DLT),
011 crmax (00 S0) and oy ¢y 1y (So, Sg) are the number of nodes activated by C' under H-
CLT in the layered graph obtained by serialization of spC-F>*DLT (resp. npC-F2DLT) on
G4 and G™", respectively. <

Enabling variable quiescence time, i.e., 1 (-), means that the exact time required by each
node to make a transition from the quiescent state to the active one cannot be established
in advance at the beginning of the propagation process. Since for any node v the quies-
cent time ranges within [ 7,, 7)"**], we devise two opposite scenarios. In the first scenario,
represented by the rightmost side of Eq. 5, each node is assumed to wait the minimum
amount of time, i.e., 7", before its activation; this leads to a higher fraction of nodes that
could be activated before the time horizon T is reached. The second scenario, represented
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by the leftmost side of Eq. 5, assumes that each node has to wait the maximum possible
quiescence time, i.e., T""**; as a consequence, a smaller fraction of nodes will be able to
complete the activation process before the time limit, thus leading to a lower spread.

CONFIGURATION 4: No quiescence time, variable activation-threshold. We assume
that g(v) = 0 and g(v,t) = 6, + ¥ (6,,t), forallv € V,¢t € T. For both spC-F>DLT and
npC-F2DLT, we claim their reduction to H — CLT with majority voting as tie-breaking
rule. In the following, we refer to the biased activation-threshold function, although it is
easy to show analogous considerations for the non-biased activation-threshold function.

Because of the dynamic behavior of the activation-threshold function, we cannot
predict its value at any particular time step of the diffusion process; nevertheless, by spec-
ifying the value of coefficient § in Eq. 1, we can derive the value of ¢]"**, which would
suggest how many time-layers we have to look back in order to know the actual thresh-
old value of v at a particular time ¢. In order to capture such dynamic aspect in H-CLT,
we define a further serialization technique, built on top of the previously defined. We will
restrict to a particular case, afterwards we provide some rules that apply to the general
case.

Let us assume to focus on a particular node v, and at any two consecutive time steps
of activation for the same campaign its threshold increases by §. Again, node v will have
replicas for any time-layer ¢, i.e., (v, v2,v3), with the first replica, v}, holding the actual
state of v in the corresponding serialized graph for the competitive model. In addition,
we introduce further replicas, in number equal to the value £**¥; suppose, for the sake
of simplicity, ##* = 3, we derive replica nodes <v§’r Ly, vf’r3>, such that each of them
will have a threshold value in [6,, 1] with increment of §. Figure 7 illustrates this new

component in the serialized graph.

1 3,13
Uy

w]]:3 3,7"1

1 3,r1
Vi1 U

Fig. 7 Example connector for modeling the time-varying activation-threshold in the serialized graph under a
competitive model
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Because this component is introduced as an extension of the previous techniques, the
meaning of the nodes V},p vtliz, VLB remains the same as in the previous cases. On the
right side of Fig. 7, each of the additional replicas has a different value of threshold and
it is connected with nodes coming from the previous layers. Clearly, the overall behavior
of this component depends on the weights attached to every edge in the structure. In this
regard, we define the following constraints on the edge weights:

wrl > W}B (a)
Vi>1 WLB = w3 b)
Vi>1 w? > 7>iw]-13 (¢) (6)
Vi>1 wdi> Z;;w&ri (d)
wdl — WF’ < w}f’ (e)

It should be noted that the activation attempts are performed directly on the replicas.
Therefore, the above constraints on the edge weights control whether a node assumes the
state derived as the outcome of the most recent activation attempts, or the one consistent
with its personal history. as the outcome of the most recent activation attempts or the one
consistent with its personal history. Each of the aforementioned inequality contributes to
this decision process, following a different purpose. Eq. 6(a) ensures that the state derived
from the last activation attempt is always preferred to the one derived from the previous
time step. Eq. 6(b) ensures that the information coming from the previous time steps shall
be given the same importance as the one derived from the current replicas. Eq. 6(c-d)
ensures that the most recent information, i.e., the closest previous time steps, has higher
priority than the earliest one. Eq. 6(e) ensures that there is consistency with respect to the
state assumed in the closest previous time step and farthest involved time step (e.g., the
third previous time step in the addressed scenario).

Moreover, the threshold of the “central” node in the component (V?) is set to w*, to

371 we avoid that V? can be

ensure sequentiality of the diffusion. By setting OV? equal to w
activated by its own replicas belonging to layers preceding the £ — 1-th layer.

Figure 8 shows how the above defined connector is integrated into a serialization tech-
nique. In the figure, only the connections incident on vertex v are expanded. The red edges
are the ones connecting consecutive layers, therefore the replica V?’r ! is connected with
the previous layer, the replica v?”z is connected with the second previous layer and so on.

Blue edges represent the new connections due to the introduction of this new component.

Claim 4 For any given diffusion graph G under spC-F>DLT (resp. npC-F2>DLT), assum-
ing variable activation-threshold and no quiescence time, every node v in G is active at
time t € T if and only if its corresponding instance v} is active in the serialized graph G

(resp. npC-F2DLT). <

Evaluation methodology

Data

We used four real-world, publicly available networks, namely: Epinions (Leskovec et al.
2010b), Slashdot (Leskovec et al. 2010b), Wiki-Conflict (Brandes et al. 2009) and Wiki-
Vote (Leskovec et al. 2010a). Epinions is a “who-trust-whom” network of the homonymous
review site. Slashdot models friend/foe relations between the users of the homony-
mous technology-related news website. Wiki-Conflict refers to Wikipedia users involved
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Fig. 8 Serialization of a diffusion graph under a competitive model with time-varying activation-threshold

in an “edit-war’, i.e., edges represent either positive or negative conflicts in editing a
wikipage. Wiki-Vote models “who-vote-whom” relations between Wikipedia users that
voted for/against each other in admin elections. Our choice of the evaluation datasets
was mainly driven by two intents: (i) to provide a reproducible evaluation framework
based on publicly available network data, and (ii) to test our models on a diversified set of
real-world OSNs with suitable characteristics for information propagation processes.

Table 2 summarizes main structural characteristics of the networks. To favor mean-
ingful competition of campaigns based on selected pairs of strategies, we limited the
diffusion context to the largest strongly connected component in each evaluation net-
work; note that, for Wiki-Conflict, the largest strongly connected component coincides
with the whole graph. Also, the clustering coefficient corresponds to the definition of
global transitivity in an undirected graph (the direction of the edges is ignored).

All networks are originally directed and signed; in addition, the two Wikipedia-based
networks also have timestamped edges. In order to derive the weighted graphs of influ-
ence probabilities, we defined the following method: for every (u,v) € E, the edge weight
wy, was sampled from a binomial distribution B (|N f W], p) ifu e N j:’ (v) (i.e., v trusts
u), otherwise wy, ~ —B (IN"(v)|,p), where the probability of success p is equal to the
fraction of trust edges in the network; the rationale is that for higher fraction of trusted
connections in the network, the nodes will be more likely to trust each other, and hence
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Table 2 Summary of evaluation network data

Epinions Slashdot Wiki-Conflict Wiki-Vote
#nodes 131828 77 350 116836 7118
#tedges 841372 516575 2027871 103675
% distrusted/negative-edges 14.7% 23.3% 61.9% 21.6%
avg. out-degree 6.38 6.67 17.36 6.68
diameter 14 1 10 7
clust. coeff. 0.093 0.026 0.015 0.128
strong LCC #nodes 36490 23217 116836 1178
strong LCC #edges 602722 243600 2027871 31572

each node is more likely to be involved in the propagation process. We performed 1000
samplings of edge weights, for each of the four networks. Therefore, all presented results
will correspond to averages of 1000 simulation runs.

Seed selection strategies
We defined four seed selection strategies, each of which mimics a different, realistic
scenario of influence propagation.

Exogenous and malicious sources of information. This method, hereinafter referred
to as M-Sources, aims at simulating the presence of multiple sources of malicious informa-
tion within the network. Here, an exogenous source is meant as a node without incoming
links, e.g., a user that is just interested in spreading her/his opinion: such a node is also
regarded as malicious if a high fraction of outgoing influence exerted by the node is dis-
trusted by out-neighbors. Formally, given a budget &, the method selects the top-k users
in a ranking solution determined as r(v) = (W~ /(W™ + W1))log(|N°*(v)|), for every
v such that N (v) = @), where W+, W~ are shortcut symbols to denote the sum of trust
(resp. distrust) weights, respectively, outgoing from v.

Exogenous and influential trusted sources of information. Analogously to the previ-
ous method, this one, dubbed |-Sources, searches for the “best” influential trusted sources.
The ranking function is as r(v) = (W /(W= 4+ W1))log(IN°“(v)|). Note that this still
takes into account the negative weights, because even a highly trusted user might be
distrusted by some other users (e.g., “haters”).

Stress triads. This strategy is based on the notion of structural balance in triads
(Leskovec et al. 2010b). Figure 9 shows an example of stress-triad configuration: node v
has two incoming connections, the one from node z with negative weight, and the other
from u with positive weight, and there is also a trust link from z to u. We say that z is
a stress-node since, despite the distrusted link to v, it could also indirectly influence v
through the trusted connection with u. Based on that, our proposed Stress-Triads strategy
searches for all triads containing stress-nodes and selects as seeds the first k stress-nodes
with the highest number of triads they participate to.

Newcomers. We call a node v € V as a newcomer if all of its incoming edges are
timestamped as less recent than its oldest outgoing edge. The start-time of v is the old-
est timestamped associated with its incoming edges. We divide the set of newcomers
into two groups obtained by equal-frequency binning on the temporal range specific of a
network. Upon this, we distinguish between two strategies, dubbed Least-New and Most-
New, which correspond to the selection of k newcomers having highest out-degree among
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Fig. 9 Stress configuration

those with the oldest start-time and with the newest start-time, respectively. Both strate-
gies were applied to Wiki-Vote and Wiki-Conflict, due to the availability of timestamped
edges.

Settings of the model parameters

For every user v, the exogenous activation-threshold 6, and quiescence time 7, were cho-
sen uniformly at random within [0,1] and [0,5]. Moreover, A (used in the quiescence
function) was varied between 0 and 5, while the coefficient § (used in the activation-
threshold function) was selected in {0, 0.1} for the biased scenario (Eq. 1) and kept fixed
to 1 for the unbiased scenario (Eq. 2).

Results

We organize the presentation of our experimental results into three parts. The first part
is devoted to the evaluation of the non-competitive model (“Evaluation of nC-F>DLT”
section), and the second part for the competitive models (“Evaluation of competitive models”
section). In the third part (“Comparative evaluation” section), we present a comparative
evaluation of our non-competitive model against IC and stochastic individual-contact
epidemic models, whereas for the competitive scenario, we compare our models with the
DLT model (Litou et al. 2016).

Evaluation of nC-F2DLT

Spread, stressed users and negative influence

We analyzed the number of final activated users (i.e., spread) by varying the size (k) of
seed set, for every seed selection strategy. In this analysis, we assumed constant activation
thresholds (i.e., 9 (-,-) = 0) and constant quiescence times (i.e., ¥ (-,-) = 0). Moreover,
we distinguished between “stressed” and “unstressed” users, being the former regarded
as active users having at least one distrusted active in-neighbor. As shown in Fig. 10 for
some representative cases, besides the expected growth in spread as k increases, we found
the activation of stressed users lower in amount but following similar trend as that cor-
responding to unstressed users. For both types of users, I-Sources revealed higher spread
capability, followed by Stress-Triads, in all networks (with the exception of Wiki-Vote).
The two newcomers-based strategies (where applicable) turned out to be effective as well,
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Fig. 10 Spread of nC-F2DLT by varying seed set size (k) and selection strategy. a Epinions, I-Sources. b
Slashdot, M-Sources. ¢ Wiki-Vote, Stress-Triads. d Wiki-Conflict, Most-New

with Least-New prevailing on Most-New for lower k. By contrast, M-Sources was in general
unable to yield a spread comparable to other strategies.

We further investigated the effect of distrusted connections on the spread during the
unfolding of the diffusion process. In this regard, Table 3 shows the amount of nodes that,
at the time of their involvement in the propagation process, were negatively influenced by
in-neighbors activated at any previous time, along with their perceived negative influence.
The symbol “-” in Table 3 denotes that the corresponding seed-selection strategy does
not apply to a particular network. In general, we observed a significant presence of neg-
ative influence spread when using I-Sources and Stress-Triads. Considering Epinions and
Slashdot, the former (resp. the latter) corresponded to a negative influence spread of the
order of thousands (resp. hundreds), with average influence weight around 0.3 (resp. 0.2).
The impact of these strategies was lower in the Wikipedia networks (one order of magni-
tude below). M-Sources yielded to null (in Epinions and Slashdot) but also non-negligible
(in Wiki-Vote and Wiki-Conflict) spread. By contrast, the newcomers-based strategies
had small (in Wiki-Vote) or negligible (in Wiki-Conflict) effect on the negative influence
spread.
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Table 3 Summary about negative influence spread (k = 50)

Suategy M-Sources I-Sources Stress-Triads Most-New Least-New
Network
Epinions # nodes 0 2117 847 - -

avg weight 0 0.30 022 - -
Slashdot # nodes 0 4599 345 - -

avg weight 0 0.32 0.19 - -
Wiki-Conflict # nodes 13 829 26 1 0

avg weight 0.22 0.05 0.01 0.02 0
Wiki-Vote # nodes 45 27 175 10 12

avg weight 0.21 013 0.22 0.04 0.07

Activation loss

As partially unveiled by the previous analysis, the users’ involvement in the propaga-
tion process is affected by the behavior of the quiescence function, whose impact would
increase with the amount of distrusted influence in the spread. This further prompted us
to measure the activation loss, i.e., the percentage decrease of activated users, due to the
enabling of the time-varying quiescence factor (i.e., A > 0 in Eq. 3) in the users’ activa-
tion states. Figure 11 shows results corresponding to relatively large A (set to 5) and & (set
to 50). For each seed selection strategy, the curve is drawn by using polynomial splines,?
where the marked points (from low to high time steps) refer to the 25%, 50%, 75% and
100% of the time horizon observed for the diffusion process under the chosen strategy
without time-varying quiescence times. One general remark that stands out is a relatively
high percentage of activation loss for the initial time steps; this holds in particular for
Stress-Triads, which might be explained since the initial influenced users by means of this
strategy tend to be subjected to a certain amount of distrusted influence. As the time steps
get closer to the time horizon, the activation loss tends to significantly decrease, down
to nearly zero in most cases, with few exceptions including the use of I-Sources in Slash-
dot and Epinions, and Stress-Triads and M-Sources in Wiki-Vote — note this is indeed
consistent with the previous analysis on negative influence spread.

Evaluation of competitive models

To analyze the behavior of spC-F2DLT and npC-F2DLT, we aimed at simulating a sce-
nario of limitation of misinformation spread, i.e., we assumed that one campaign, the
“bad” one, has started diffusing, and consequently another campaign, the “good” one, is
carried out in reaction to the first campaign.

Combining seed selection strategies

Within this view, we preliminarily investigated about strategy combinations that might be
reasonably considered for a misinformation spread limitation problem. Table 4 provides
a number of statistics we collected to characterize selected pairs of strategies, for two
campaigns carried out independently to each other, i.e., in a non-competitive scenario,
with k = 50. Using Stress-Triads for the bad campaign and |-Sources for the good cam-
paign was found to be significant for all networks, with sharing percentage close to 100%
in Epinions and Slashdot and above 80% in Wiki-Conflict. Also, pairing M-Sources with
I-Sources, and Least-New with Most-New, was well-suited in Wiki networks.
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Fig. 11 Activation loss due to time-varying quiescence (for A = 5, k = 50) under the nC-F?DLT model. a
Epinions. b Slashdot. ¢ Wiki-Conflict. d Wiki-Vote

Setting and goals for the evaluation of competitive diffusion

As previously mentioned, the seed selection strategies chosen for the two campaigns
might not start at the same time, in which case we assume that the first-started one is the
bad campaign. Moreover, we used fixed-probability as tie-breaking rule, with probabil-
ity equal to 1 for the bad campaign. Also, we set the time horizon to the end-time of the
(non-competitive) diffusion of the bad campaign.

Our main goal in the analysis of the two competitive models was to understand
the effect of the setting of the activation-threshold function on the users’ campaign-
changes/deactivations, under the case of “real-time correction” or “delayed correction” by
the good campaign against the bad one (cf. Introduction).

Evaluation of spC-F>DLT

We present results on the campaign spreads, the number of users activated for one cam-
paign that switched to the other campaign, and the total number of switches; the latter two
measurements are represented, in the barcharts shown in Fig. 12, by the lower and upper
whiskers, respectively, in the linerange vertically placed on each bar. Results correspond
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Fig. 12 spC-F’DLT: Spread, number of switched users, and number of switches (log scale) by varying
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(right-most bar groups), k = 50. a Epinions. b Slashdot. ¢ Wiki-Conflict. d Wiki-Conflict. @ Wiki-Vote. f Wiki-Vote

to start-delays A £y of the good campaign w.r.t. the bad one (from 0 to 75% of the end-
time of the bad campaign). For this analysis, we considered the biased definition of the
activation-threshold function (Eq. 1).

One general remark is that, for § = 0, Afy = 0, the seed strategy that showed to be
most effective in spread in the non-competitive case (cf. Table 4) confirmed its advan-
tage against the other campaign’s strategy. Nevertheless, for § > 0, A ¢y > 0, the two
campaigns would tend to an equilibrium, or even to invert their trend (e.g., in Epinions
and Wiki-Vote). In particular, by accounting for (even little) confirmation bias and let-
ting both campaigns start at the same time, I-Sources slightly increases its spread (which
is explained since this strategy allows for activating first a high fraction of shared users,
e.g., 70% in Epinions); but, as the start-delay increases at 50%, the good campaign is no
more able to save users from being influenced by the bad campaign (i.e., Stress-Triads in
Epinions, M-Sources in Wiki-Vote).

Interesting remarks were also drawn from the analysis of the transitions from one
campaign to the other one. For § = 0, as the start-delay increases, the number of
switched users follows a nearly constant trend in all networks (but Wiki-Vote, where
we observed a drastic decrease for both campaigns), while the total number of switches
is subjected to a more evident decreasing trend. Moreover, we observed a higher num-
ber of (unique and total) switches from the bad campaign to the good campaign, than
vice versa, which occurred even when the spread of the bad campaign was higher than
the good one (e.g., in Wiki-Vote, for both combinations of strategy choices). Setting
8 = 0.1 led to a general decrease in the switch measurements w.r.t. the correspond-
ing previous case, and also to a substantial increase in “saved” users by the good
campaign.

Biased vs. unbiased activation-threshold function. We also investigated how our pro-
posed semi-progressive model behaves under the unbiased scenario correponding to the
activation-threshold function (Eq. 2).
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Figure 13 shows flow diagrams of the spread based on spC-F2DLT for the selection
of strategies |-Sources (red color) and Stress-Triads (green color), with the activation-
threshold function defined either for the unbiased scenario (plots on the top) or for the
biased scenario (plots on the bottom). In each plot, the height of a vertical bar along
with the percentage displayed upon it, denote the number of active users at a particular
time step and the ratio w.r.t. the maximum number of active users achieved by the cor-
responding selection strategy. The space between two consecutive bars corresponds to a
time window, here set to 6 time steps for readability reasons. In each window we record
two main events: (i) the number of active nodes that keep the same activation state, rep-
resented in base-2 logarithmic scale by the flow connecting two consecutive bars for the
same campaign, and (ii) the number of users that switched from one campaign to the
opposite one, represented in base-10 logarithmic scale by the flow connecting two con-
secutive bars with different colors.? Note that for this analysis we discarded the start delay
for the good campaign.

As expected, the number of switched users tends always to be in favor the good cam-
paign, which has typically the best strategy of activation. However, and more importantly,
the number of switched users in the unbiased scenario is significantly greater than in
the biased scenario. Moreover, when the confirmation-bias effect is enabled, the major-
ity of the switches are concentrated in the initial time-windows, then they follow a rapid
decreasing trend until the time horizon. On the contrary, in the unbiased scenario, there
is still a concentration of switches in the early stages of the propagation, but it becomes
less evident and the number of switches tends to decrease more smoothly as opposed to
the confirmation-bias scenario. This is particularly evident in Slashdot, where switches
last until the latest time-windows, while in the confirmation-bias scenario the switches
stop just after the third time-window. No significant differences can be observed on Wiki-
Conlflict, which is explained since the majority of shared nodes are activated in the early
stage of the propagation, where the diffusion seems to behave in the same way regardless
of the particular activation-threshold function.
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Evaluation of npC-F2DLT

Compared to the evaluation of spC-F2DLT, the spread trends observed under
npC-F2DLT showed no particular differences. However, more importantly, the occur-
rence of deactivation events, which are admitted by npC-F2DLT, appeared to favor the
good campaign strategy, as shown in Fig. 14. In particular, in Epinions and Slashdot, the
number of user-unique and total deactivations tend to increase for the bad campaign
and to decrease for the good one; moreover, although the spread of the good campaign
remains higher, the deactivations for the good campaign are more frequent than those
for the bad campaign as long as the start-delay remains zero or low, and the confirma-
tion bias factor is not introduced. A few differences arise in Wiki-Conflict. As concerns
Stress-Triads vs. I-Sources, although the 95% of shared users is activated first by the bad
campaign, this advantage revealed not to be enough to avoid that the good campaign
will eventually activate more users. In fact, the number of deactivations with § = 0.1
increases for Stress-Triads and is always higher than for I-Source, in which the statistic
remains nearly constant by increasing the start-delay. Similar situation was observed for
the combination M-Sources with I-Sources. Also, using Least-New with Most-New led to
no deactivations, which might be explained since the totality of shared users was reached
first by the bad campaign (cf. Table 4).

Comparative evaluation

We conducted a twofold comparative evaluation, divided in two stages. The first one
refers to the non-competitive scenario, whereby we compared nC-F2DLT to two epidemic
models, i.e., SIR and SEIR, and the IC model. inspired by the studies in the epidemiology
field. The second stage of our evaluation addresses the comparison between spC-F2DLT
with the DLT model (Litou et al. 2016), which is the closest to our work, as we previously
discussed in “Related work” section.
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Comparison with the IC, SIR and SEIR models

We begin with briefly recalling the basic principles underlying the competitor models
considered in this section. The independent cascade (IC) model is a stochastic discrete-
time diffusion model like LT, such that once a node becomes active, in the following time
step of propagation it has a single chance of activating each of its out-neighbors. As con-
cerns the epidemic models SIR and SEIR, the individuals of a population are divided in
compartments that describe one of the following epidemiological states: susceptible (S),
infective (I), latent-period or exposed (E), and recovered (R); therefore, individuals tran-
sition through those states. It is important to note that, since we need to treat each node
in a network as an individual agent in order to enable a comparison with our diffusion
model, we implemented SIR and SEIR based on a stochastic individual-contact network
modeling as opposed to the standard, deterministic compartmental modeling (cf. “Related
work” section). Within this view, the infection process in SIR is governed by two main
parameters: (i) the transmission or contact rate (8), i.e., the probability of a susceptible
node to be infected by any of its infected in-neighbors; and (ii) the recovery rate (y), i.e.
the probability of an infected node to transition to the recovery state with immunity, thus
consequently stopping propagating the disease along the network. Moreover, in the SEIR
model, the transition to the exposed state is governed by the incubation rate (o), which
defines the average duration of incubation as 1/0; note that the notion of exposed state
somehow resembles the quiescent state of nodes in nC-F>DLT.

Figure 15 shows the complementary cumulative distribution function (CCDF) of the
probability for a node of being active/infected from any given time step ¢ to the termina-
tion of the process. The presented results correspond to 8 set to 0.2 and y set to either
0 or 1: note that y = 1 implies that any node recovers immediately after its activation,
and hence similarly to the IC model it has a single chance for activating its suscepti-
ble out-neighbors; by constrast, setting y = 0 implies that a node is unable to recover
after its activation, therefore similarly to nC-F2DLT it will continue to contribute to the
activation of its susceptible/inactive out-neighbors until the end of the process. (Further
results for other settings of 8 and y are reported in Appendix B.) Moreover, for SEIR, we
set 0 = 0.4, thus imposing an average incubation time equal to 2.5 time steps; this set-
ting enables a fair comparison with our model, since each node will be expected to spend
the same amount of time in the quiescent state for nC-F2DLT (cf. “Settings of the model
parameters” section) as in the exposed state for SEIR.

Looking at the figure, as expected IC and SIR (with y = 1) show an almost identical
behavior, since most activations occur in the early stage of the propagation. On the con-
trary, when y = 0, the SIR model tends to behave relatively closer to nC-F 2DLT rather
than IC, since the activations appear more uniformly distributed along the lifetime of the
process. Also, the introduction of the exposed state in the SEIR model forces the dynam-
ics of the propagation to be further more similar to the #nC-F2DLT model, especially with
¥ = 1. One general remark that stands out is that nC-F2DLT tends to favor a slower dif-
fusion, since the propagation process lasts consistently longer than IC and the epidemic
models. Moreover, nC-F2DLT yields a smoother behavior in terms of time-decay of its
CCDF than those corresponding to the other models.

In general, we can state that already for the non-competitive scenario, epidemic models
even in their stochastic contact network formulation provide a differnt solution in terms
of behavioral dynamics w.r.t. our proposed nC-F2DLT.
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Fig. 15 Complementary cumulative distribution functions of node activations/infections for nC-F2DLT, IC,
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Comparison with the DLT model

We finally conducted a stage of comparative evaluation with the DLT method (Litou et al.
2016) (cf. “Related work” section). To this purpose, we analyzed the trends of spread and
corresponding overlaps of activated nodes, under a competitive scenario. For DLT, we
considered two cases: the one including the decay of influence probabilities (with Pois-
son decay coefficient set to 1), and the other one discarding the influence decay (as also
studied in (Litou et al. 2016)), hereinafter dubbed DLT*; as concerns our models, we were
forced to use spC-F2DLT since DLT does not allow node deactivation.

Figure 16 shows results obtained on Slashdot, for the choice of strategies I-Sources
and Stress-Triads (similar trends were observed for Epinions and Wiki networks). A first
remark is that, regardless of the seed selection strategy, the diffusion process under DLT
terminates in a very few time steps, mainly due to the influence decay factor. Also, before
convergence, DLT enables the activation of more nodes than spC-F2DLT, though this
actually corresponds to a small portion of the finally activated nodes by spC-F2?DLT and,
in any case, with an overlap that is generally below the 50%.
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Fig. 16 spC-F2DLT vs. DLT: spread trends and overlaps, over time up to convergence of spC-F2DLT, on
Slashdot. a I-Sources. b Stress-Triads

We explored more in detail the spread overlap between spC-F>DLT and DLT as well as
its variant without decay (DLT*); for spC—FZDLT, we considered the settings § = 0 and
8 = 0.1. Figure 17 shows the heatmaps for the percentages of overlap of activated nodes at
convergence of their respective models. As we observe in both plots, and regardless of §,
the overlap between DLT* and spC-F2DLT is around 40-45%, which further drops to less
than 10% when the influence decay is considered (the lighter, the lower is the overlap).

Overall, we can conclude that DLT, and even its variant DLT* without influence decay,
behaves significantly different from our semi-progressive F2DLT.

Discussion and usage recommendations

Our theoretical inspection of the proposed models, whose technical details have been
presented in “Theoretical properties of the models” section, revealed two important
findings:

a . b
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Fig. 17 spC-F2DLT vs. DLT: overlap percentages at convergence of the two models, on Slashdot. a I-Sources.
b Stress-Triads
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(F1): The non-competitive, progressive model, nC-F2DLT, is proven to be equivalent
to LT with Quiescence Time; therefore, the activation function in nC-F2DLT is monotone
and submodular.

(F2): The competitive, non-progressive models, spC-F?DLT and mpC- F?DLT, can
be reduced, via graph serialization, to Homogeneous Competitive LT (Chen et al. 2013),
which is competitive and progressive, and has monotone, non-submodular activation
function; therefore, the activation function in spC-F2DLT and npC-F>DLT is monotone
but not submodular. It should be emphasized that the basic technique of graph serializa-
tion introduced in (Kempe et al. 2003) to reduce the non-progressive LT-based diffusion
to the progressive case, cannot be applied to our proposed models, since it is not designed
to deal with competitive or non-progressive diffusion and it discards activation or delayed
propagation aspects; to overcome this issue, we provided new serialization techniques
and relating definitions of layered-graphs that are suitable for our competitive models,
focusing on particular settings of the activation-threshold and quiescence functions.

The two findings clearly have different impact on the development, upon our F2DLT
models, of approximate solutions to influence maximization, rumor blocking, and related
problems. On the other hand, in terms of expressiveness of our competitive F2DLT
models, it should be noted that the serialization techniques require the construction of
layered graphs whose size easily grows with some of the models’ parameters, making the
application of such serialized graphs unfeasible at a large scale. Therefore, using our com-
petitive F2DLT models turns out to be essential in the representation of complex, dynamic
propagation phenomena.

Our proposed class of trust-aware, dynamic models for non-competitive and com-
petitive information diffusion offers a versatile solution for enhanced understanding of
complex influence-propagation phenomena that occur in real-life network scenarios. Our
models are also unique, since they have significantly different behavioral dynamics w.r.t.
epidemic models and the dynamic linear threshold model, according to theoretical con-
siderations that were also clearly supported by empirical evidence in our experimental
evaluation.

It should be noted that the setting of the dynamic activation-threshold function #
and quiescence function v, especially of their parameters § and A, respectively, plays a
crucial role in the expressiveness of our models, thus differently impacting on positive-
influence propagation and on negative-influence/misinformation limitation. We make the
following recommendations for the usage of our models.

e The results of our evaluation revealed that the average user’s sensitivity in the
negative influence perceived from distrusted neighbors (which is controlled by 1)
makes the seed identification process more aware of the negative influence spread,
thus considering the quiescence-biased contingencies by which a non-negligible
fraction of users cannot be activated before the time limit.

e The confirmation-bias effect underlying § may lead the “stronger” campaign (i.e., the
one able to activate most users at the early steps of its diffusion) to increase its spread
capability.

e As shown by simulations under the semi-progressive competitive model
(spC-F2DLT), the combined effect of increased § with an increase in the delay of the
beginning of the second-started (good) campaign may reduce its capability of
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“saving” users from the influence of the bad campaign; therefore, to limit
misinformation spread, the good campaign should concentrate its (activation) efforts
in the early stage of its diffusion.

e The non-progressive competitive model (npC-F2DLT) appears to be less sensitive to
the increase of 8. Yet, it tends to favor deactivation events (for users previously

activated by the weaker campaign) over switched events.

In this regard, it would be interesting to study how to learn the various parameters in
our models for the corresponding IM scenarios. Note that learning parameters for IM
tasks is a challenging problem, which is still largely open, given the relatively little work
done even under basic diffusion models (Saito et al. 2008; Goyal et al. 2010). Major dif-
ficulties are in the assumption of availability of past propagation data from which the
parameters would be learnt, which is in general difficult to obtain, and the large number
of parameters, which poses efficiency issues. To overcome these aspects, the approach in
(Vaswani et al. 2017) appears to be particularly promising, as it does not depend on the
rules that control how the propagation unfolds over time. Nonetheless, we expect that
the learning problem in our setting will easily become much more challenging, given the
presence of other parameters than just the diffusion probabilities, and the need for cop-
ing with competitive influence scenarios. Therefore, we believe there will be much work
to do in such a direction.

Conclusion
We proposed a novel class of trust-aware, dynamic LT-based models for non-competitive
and competitive influence propagation in information networks. Evaluation on real-
world, publicly available networks included simulations of scenarios of misinformation
spread limitation, based on realistic strategies of selection of the initial influential users.
We believe that our proposed models can pave the way for the development of sophis-
ticated methods to solve misinformation spread limitation and related optimization
problems. Remarkably, our models can profitably be used in a variety of applications
whereby there is an emergence to predict the time required to debunk fake information, or
to estimate how people are affected by the spread of competitive opposite opinions through
a social network. Also, we envisage an effective support for fact-checking, through a con-
textualization of the activation and quiescence functions to the production/consumption

of contents in interaction networks.

Endnotes

1\We assume the second additive term in Eq. (1) is zero if § = 0.

2We used the splines2 R-package, available at https://CRAN.R-project.org/package=
splines2.

3The choice of two different logarithmic scales to represent the active users and the
switched users is for the sake of readability of the plots, since the number of switched
users is typically orders of magnitude smaller than the number of active users.

Appendix A: Additional details on the properties of the models
Figure 18 shows an example of serialization for a spC-F2DLT diffusion graph with time
horizon set to 2. Dashed lines correspond to the edges in the original graph, whereas solid


https://CRAN.R-project.org/package=splines2
https://CRAN.R-project.org/package=splines2

Calio and Tagarelli Applied Network Science (2019) 414 Page 36 of 41

lines correspond to the edges in the resulting serialized graph. Each of the four nodes in
the original graph is replicated as a triple on each of the two time-layers. Triples act as
“connectors” between two consecutive time-layers.

Analogously to the reduction of spC-F2DLT to H-CLT, we can conveniently devise a
notion of “connector” component between any two consecutive layers, shown in Fig. 19,
which in the case of npC-F?>DLT needs to account for node deactivations.

Example 4 shows a selection of possible configurations for the component utilized
in competitive models shown in Fig. 7, in order to prove the correctness of the set of
constraints in Eq. 6.

Example 4 In the example of Fig. 20, we assume that node v in the original graph needs
three consecutive time steps to reach the unit value for its threshold.
On the right side of each subfigure, there are the additional node replicas:

<V?’r Ly, V?'B), where v>"> has the maximum value for the activation threshold.

Fig. 18 Serialization of the diffusion subgraph involving nodes u, v, z,x, under spC-F2DLT, with time horizon
set to 2. Symbol ¢ denotes a value chosen at random in (0.5,1]
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Fig. 21 Complementary cumulative distribution functions of node infections for SIR and SEIR with
B €{02,06},y €{0,0.251}),and o = 04, using k = 50 and strategy I-Sources. a Epinions. b Slashdot

Figure 20a represents the case when the node has already reached the maximum value
of its threshold and its in-neighbors are only able to activate the first two replicas, which is
not enough for making v change its activation campaign. We need thus to verify that:

red green

WB,rl + WS,rZ < Wi3 —|—W%3 + WéB

7)
w3l 4 3T wi3 +%/x+ wh3 ®)
Wil 13 < 13

)
Note that the inequality in (9) holds (cf. Eq. 6(e)).

Figure 20b shows the case when v is active for just two consecutive time steps. Therefore,

the configuration on the right side of the figure is enough to activate v in favor of the red-
campaign. Therefore, the following inequality must hold:

red

green
——
WAL B2 S Wig n W%B (10)
w4y WP —|—p%g+ wé?’ (11)
y1>%

(12)
Above, inequality in (12) holds as given in Eq. 6(a).

Figure 20c shows the case when the node v switched from one campaign to the opposite in

the middle of the three consecutive time steps. In this case the activation of node V?’rl

must
guarantee the change of activation campaign. So the following inequality must hold:
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red green
—— ——
w3l 4 W%B > WF’ + wég (13)

Indeed the validation is straightforward, because all the summations on the left side in 13
are by definition greater than the one on the right side.

Figure 20d shows the case when at time step t none of the in-neighbors of v is able to
activate it. In this case, the node will keep its previous state, and it will do it only after the
activation of the corresponding replica at the very previous time, this allow us to guarantee

the sequentiality of the whole process. |

Appendix B: Additional details on epidemic models

Figure 21 provides a focus on the behavior of SIR and SEIR models in terms of vary-
ing parameters (i.e., transmission rate j, recovery rate y, and incubation rate o) for the
analysis discussed in “Comparison with the IC, SIR and SEIR models” section.

We observe that, for both models, most of the infections tend to occur at the early
time steps of the propagation as 8 increases. On the other hand, higher values of y yield
cascades that show a smoother decay over time, and consequently they last longer than
those corresponding to smaller y.
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