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Abstract
Dynamic networks are networks with temporal relationship features which evolve over
time by the inclusion and deletion of nodes and edges. Suppressing the epidemic
spreading in such networks is quite challenging. The problem of protecting a limited
number of nodes to restrain the spreading of malicious attacks or dangerous rumor in
the networks is called graph protection problem. However, most of existing strategies
only consider to protect at once regardless the evolving network structure and
incoming attacks over time, i.e., these strategies either pre-protect important nodes
before the epidemic starts or post-allocate the protection while the attacks have
already spread over the network. In this paper, we introduce multiple-turns protection
strategies, which divide the size of protection budget into several turns and protect
nodes according to the currently observed temporal snapshot of dynamic networks.
We construct a minimum vertex cover of the input network efficiently using
reinforcement learning approach. To capture the state of the input network, a
feature-based representation of each node is constructed using a graph embedding
technique. Experimental evaluations show that our proposed methods, namely
ReProtect and ReProtect-p effectively restrain epidemic propagation in synthetic and
real-world network datasets. By protecting about 15% of nodes, our methods can
obtain up to 84% of surviving nodes and outperform other baseline methods on two
popular epidemic models: SIS and SIR.

Keywords: Graph protection, Node immunization, Dynamic networks, Reinforcement
learning

Introduction
With the rising popularity of massive-scale online social networks such as Facebook,
Instagram, Twitter, etc., people are more connected and can share information with each
other (Zhuang et al. 2013). These platforms play a vital role in the dissemination of posi-
tive information such as new ideas, innovations, and hot topics. However, they may also
become channels for the spreading of malicious rumors, misinformation, or even dan-
gerous virus and malware. The rumor spreading can severely threaten public safety and
financial stability. For instance, some people may post on social networks a rumor about
an upcoming big earthquake. It will cause chaos among society and hence may hinder the
normal public order. In this situation, it is necessary to find individuals, if their account
deactivated or removed from the network, would block further rumor spreading. The
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problem is known as graph protection problem where the goal is to protect a number of
nodes to restrain the epidemic propagation by maximizing the ratio of surviving nodes in
a network (Wijayanto and Murata 2017; 2018b). In this problem, the protection budget
constraints the number of nodes we are allowed to protect.
Real-world social networks and collaboration networks have highly dynamic structures,

and they evolve rapidly over time (Zhan et al. 2017; Wang et al. 2016). The inherently
dynamic nature of the network leads to dynamic network representations. Dynamic net-
works are defined as networks which evolve over time by the addition and removal of
nodes and edges (Bakker et al. 2018; Moore et al. 2006; Zhuang et al. 2013). Dynamic
networks have temporal relationship features which specify the number of connection
among nodes that are active at a certain time.
Restraining the epidemic spreading in dynamic networks is obviously more challeng-

ing than in static networks because of the temporal changing of the network structure.
However, most of the existing work failed to address the incoming rumor or virus attacks
during the temporal transition in dynamic networks. The existing strategies either pre-
emptively protect critical nodes prior to epidemic attacks, behaving as prevention efforts
(Prakash et al. 2010; Chen et al. 2016; Wijayanto and Murata 2017), or post-emptively
allocate the protection while the epidemics have already propagated over the network,
simulating as delayed reactions (Zhan et al. 2017; Zhang et al. 2017; Zhang and Prakash
2015; Song et al. 2015). In this paper, we introduce a multiple-turns graph protection
strategy by dividing the protection budget into several turns and protecting nodes based
on the currently observed temporal structure of networks.
On the other hand, most of the current works of graph protection strategy mostly fall

into one of the following drawbacks: (1) protecting only particular areas of the networks, as
demonstrated by centrality-based methods (Prakash et al. 2010; Buono and Braunstein
2015; Zhao et al. 2014) (2) scalability issue, as demonstrated by dominator tree-basedmethods
(Zhang and Prakash 2014; Zhan et al. 2017; Zhang and Prakash 2015) (3) lack of con-
vergence guarantee in large size networks, as shown by eigendecomposition-based methods
(Tong et al. 2010; Chen et al. 2016; Wijayanto and Murata 2017; Prakash et al. 2010).
We propose the construction of minimum vertex cover to determine the protected
nodes in an efficient and scalable method. The minimum vertex cover (MVC) is the
set of nodes which cover all edges of networks in a minimum possible size of nodes.
As we explain later, MVC serves as the protection threshold of the network (see
“Proposed methods” section for our detailed explanation).
In recent years, reinforcement learning (RL) approaches have obtained many state-

of-the-art results in solving various complex problems (Mnih et al. 2015; Riedmiller
2005). RL allows autonomous agents to learn to improve their performance with
experience. In this work, we utilize RL approach to construct MVC from the cur-
rently observed network snapshot. Specifically, we propose n-step fitted Q-Learning
to obtain the MVC solution of input network by leveraging the neural network as
a function approximator. Neural network architecture allows us to efficiently acceler-
ate the training and execution of our proposed methods in mini-batch processing and
multiple graphics processing units to deal with large size networks. In order to han-
dle the different size and structure of each temporal snapshot of dynamic networks,
each node is represented in a fixed-length feature vector using a graph embedding
technique.
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Extensive evaluations in both synthetic and real-world network datasets show that our
proposal effectively restrains epidemic spreading. In Email network dataset, by protect-
ing about 15% of nodes, our methods can achieve up to 84% of surviving nodes and
outperform other baseline methods. Comprehensive evaluations under two most popu-
lar epidemic models, i.e., SIS and SIR, confirms the effectiveness and scalability of our
methods.
The novelty of our methods arises primarily from the application of more stochasticity

and learning ability to graph protection problem, specifically on dynamic networks. In
large-scale social networks, the changing of relationship structure and rumor spreading
patterns may come and arise on a regular basis. Therefore, there is an opportunity to
learn the current condition into a model using reinforcement learning. By learning the
given temporal structure of observed networks and existing epidemics, this will provide
a new incentive to predict future protection from previously learned actions in the same
dynamic networks.
This paper extends our preliminary idea in (Wijayanto and Murata 2018a). In addi-

tion to the contents in (Wijayanto and Murata 2018a), this paper includes the following:
detailed explanation of the proposed methods; evaluation on synthetic networks, as well
as more real-world network datasets; review of the relevant related work; discussion of
scalability and computational complexity; evaluation of parameter sensitivity; addition
of stronger baselines methods such as Betweenness, GraphShield and NetShield+; and
evaluation on SIR epidemic model.
The remainder of this paper is organized in the following manner. We formalized the

problem and definition in “Problem formulation” section. The review of recent most
related studies is presented in “Related work” section. Our proposed methods, namely
ReProtect and ReProtect-p are described in “Proposed methods” section. The result
of experimental simulations are provided in “Evaluation” section. Finally, concluding
remarks of our work is provided in “Conclusion” section.

Problem formulation
In this section, we formalize the definitions and problems used throughout this paper. We
summarize the symbols and notations in Table 1.
Definition 1. Protecting a node means removing all of its corresponding edges. The

number of nodes we are allowed to protect is constrained by the protection budget (k ∈
Z>0). At time t, a node in a network can belong to any of the following states: susceptible
and infected. Attacking a node means initially infect the node in a network. Figure 1
shows the example of protection and attack in a static network.
Definition 2. Graph Protection Problem
Let G = (V ,E) be an undirected connected graph with set of nodes V and set of edges

E. Let θ be the surviving ratio of nodes that remain uninfected at the end of epidemics.
Given an input graph G, SIS or SIR epidemic model, and a protection budget k, the goal

is to find a set of nodes S ∈ V such that θ is maximized, subject to the size of S is equal to
constraint budget k. The protection is performed by removing all edges connected to the
set of nodes S in graph G to get a new graph G(S).
Definition 3.Dynamic Network
Let {1, · · · ,T} be a finite set of discrete time steps. Let VD = {1, · · · , n} be a set of

nodes which appear within time {1, · · · ,T}. Let Gt = (Vt ,Et) be a graph representing the
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Table 1 Summary of Symbols and Notations

Notation Definition and description

GD = (VD , ED) dynamic network GD with the node set VD and the edge set ED

Gt snapshot of dynamic network GD at time t

k protection budget, i.e., the number of nodes in graph GD that can be protected

S set of k nodes selected for protection

N number of nodes in graph GD

M number of edges in graph GD

β infection rate

δ recovery rate

θ ratio of surviving nodes in graph GD at the end of epidemics

w(u, v) edge weight between node u and v

Vc vertex cover of graph Gt
V∗
c minimum vertex cover of graph Gt
S current partial solution, set of selected V∗

c nodes of graph Gt
d size of embedding vector dimension

h(S) feature-based representation of S in d-dimensional vector

B batch samples of training

M experience replay memory of n-step fitted Q-Learning

ψi set of neural network parameters (weights) of respective embedding variable i

� collection of neural network’s set of parameters (weights) � = {ψi}7i=1

snapshot of the network at time t. Vt ⊆ VD is a subset of nodes VD observed at time t.
(t,u, v) represents an edge from vertex u ∈ Vt to v ∈ Vt at time t.
A dynamic network GD = (VD,ED) is a series 〈G1, · · · ,GT 〉 of static networks where

each Gt = (Vt ,Et) is a snapshot of nodes and their edges at time t such that VD = ⋃
t Vt .

For the sake of consistency, the time during which the nodes are observed is assumed
as finite. Following the definition by (Habiba et al. 2010) and (Bakker et al. 2018), the
temporal length of G is assumed to be divided into discrete steps {1, · · · ,T}. The non-
trivial problem of appropriate time discretization is beyond the scope of our work.

Fig. 1 Example of a static network. Green colored node indicates the node is protected. Dashed green
colored edges indicate the edges are removed or inactivated because of protection. Initial red colored node
on network indicates the node is attacked. Other red colored nodes indicate the nodes are infected
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Definition 4. SIS Epidemic Model
Susceptible-Infected-Susceptible (SIS) is an epidemic epidemicmodel which define that

each node in graph G with N number of nodes would be in one of the following two
states: susceptible and infected. Let S(t) be the number of susceptible nodes, and let I(t)
be the number of infected nodes at time t. At each timestamp t, susceptible nodes can be
infected by their infected neighbors with infection rate β . Also, each infected node can
get recovered to susceptible state with recovery rate δ. In the homogeneous case of well-
mixed populations, this model can be formalized as non-linear differential equations:

ds
dt

= −βis,
di
dt

= βis − δi, (1)

being s(t) = S(t)/N and i(t) = I(t)/N the respective proportions of states at time t.
A continuous-time epidemic process under constant infection rate β and recovery rate
δ on any network can be described by Markov theory. Following the definition of SIS
epidemic in network by Pastor-Satorras (2015), the individual-based mean-field (IBMF)
and degree-based mean-field (DBMF) approach can be used to analytically simulate the
SIS model.
Definition 5. SIR Epidemic Model
In Susceptible-Infected-Recovered (SIR) model, each node in graph G belong to any

of the susceptible, infected, or recovered state. Each of recovered node is resistant of any
infection. Let R(t) be the number of recovered nodes. Following the definition by Ker-
mack and McKendrick (1927), for the homogeneous case of well-mixed populations, this
model is formalized as:

ds
dt

= −βis,
di
dt

= βis − δi,
dr
dt

= δi, (2)

being s(t) = S(t)/N , i(t) = I(t)/N , and r(t) = R(t)/N the respective proportions
of states at time t. In addition to IBMF and DBMF approach, following the definition
of SIR epidemic in network by Pastor-Satorras (2015), we can analytically describe the
SIR model using generating function approach, where the probability that a link exists
is related to the probability of transmission of the disease from an infected node to a
connected susceptible one.
Definition 5.Multiple-turns Graph Protection Problem on Dynamic Networks
Let GD = (

VD,ED
)
be an undirected dynamic graph as an input, with a series of a

known sample 〈G1, · · · ,GT 〉 of snapshots where each Gt = (Vt ,Et) represent a static
network at time t. Let k be the protection budget, which k < |VD| and allocated into
several turns according to the number of observed snapshots of GD. Protection budget
for snapshot Gt at time t is denoted by kt such that k = ∑T

t=1 kt .
Let us denote S, a set of k protected nodes from graph GD and S = ∑T

t=1 St where St
denote a subset of kt protected nodes of snapshot graph Gt at time t. Protection means
removing corresponding edges of the set of nodes St in graph Gt to get a new graph G(S)

t .
Under random attack strategies, l nodes are randomly attacked (i.e., initialized as infected
nodes) from graph GD such that l = ∑T

t=1 lt at each turn in time t. We define θ as the
ratio of surviving nodes of graph GD.
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Given an input graph GD, SIS or SIR epidemic model, and a protection budget k, the
goal is to find S such that θ is maximized, subject to the size of S is equal to constraint
budget k, i.e., calculating the following combinatorial optimization:

S∗ = arg max
S∈V

θ

s.t.|S| = k,k =
T∑

t=1
kt

(3)

Related work
In this section, we review the relevant existing studies related to our work.We first review
the fundamental work of epidemic modeling on dynamic networks, then we discuss
some related work on graph protection strategy and its application in dynamic networks.
Finally, some problems related to graph protection on dynamic networks are presented.

Fundamental work of epidemic modeling on dynamic networks

The properties of dynamic networks are essentially different from those in static net-
works. (Braha and Bar-Yam 2006; 2009) found that the overlap of the centrality in
dynamic networks and that in the aggregated (static) network is quite low. They also
demonstrated that the static topology is unable to capture the dynamic properties of social
networks. Hill and Braha (2010) propose a reinforced random walk approach to explain
dynamic centrality phenomena and qualitatively reproduce the characteristic features of
real-world networks. Those studies (Braha and Bar-Yam 2006; 2009; Hill and Braha 2010)
provide an important foundation of dynamic network properties.
Holme presents a systematic review of dynamic networks and discusses methods for

topological and temporal structure analysis (Holme and Saramäki 2012; Holme 2015).
More specifically, Pastor-Satorras et al. (2015) discuss a fundamental review of epidemic
model on dynamic networks, which also recently emphasized by Enright and Kao (2018).

Graph protection strategy and its application in dynamic networks

The study of graph protection strategies has mostly been introduced by assuming the
static topologies of network structure. Pastor-Satorras and Vespignani investigated the
effect of random uniform and targeted high-degree immunization of individuals on
homogeneous complex networks and scale-free networks (Pastor-Satorras and Vespig-
nani 2002). Chen et al. proposed NetShield (Tong et al. 2010) and NetShield+ (Chen et al.
2016) which use the properties of matrix perturbation to find a set of nodes in static net-
works to be pre-emptively protected (Tong et al. 2010). Zhang and Prakash (2014; 2015)
developed DAVA and DAVA-fast, two post-emptive polynomial-time heuristics methods
which merge all infected nodes into a supernode by building a weighted dominator tree
of input network. NIIP (Song et al. 2015) extracts a maximum directed acyclic graph from
a static network then implements a Monte Carlo simulation to approximate the distribu-
tion of k over each time point t given the probability of a functional node getting infected.
Wang et al. investigated a rumor blocking in static networks by considering dynamic Ising
propagation model which consists of the individual tendency and global popularity of the
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rumor Wang et al. (2016; 2017). Under the constraint of user experience utility, they pro-
posed DRIMUX method to protect a set of nodes in t time interval to limit the spreading
of rumor.
In dynamic networks, Prakash et al. proposed greedy algorithms, called NLDS, as pre-

emptive protection of the dynamic networks (Prakash et al. 2010). The methods are
composed on different variants which select protected nodes based on the highest degree
centrality, acquaintance (random neighbor) or the largest eigenvalue of the adjacency
matrix. Liu & Gao investigated a different task of influence blocking in dynamic email
networks (Liu andGao 2011). They introduced an adaptive Autonomy-Oriented Comput-
ing which actively propagates the vaccination patches to counter a virus-embedded email
spreading. VAILDN is introduced by Zhan et al. (2017) as a post-emptive scheme protec-
tion. Bymerging all infected nodes into one supernode and building a weighted dominator
tree of modified input network, VAILDN determines the protected nodes based on each
sub-tree benefit comparison.
Table 2 shows the comparison of our proposed method to the relevant existing work

on graph protection strategy. To summarize, none of the existing works investigated
the suppressing the epidemic spreading by multiple-turns graph protection strategies on
dynamic networks.

Problems related to graph protection on dynamic networks

There are some problems related to our work. Epidemic containment using link deacti-
vation (Bishop and Shames 2011; Van Mieghem et al. 2011; Matamalas et al. 2018), aims
to deactivate a set of links (instead of nodes) to contain epidemic spreading in the net-
works. Van Mieghem proposes a link removal approach to decrease the spectral radius of
graph during epidemic spreading (Van Mieghem et al. 2011). Bishop discusses a mecha-
nism for reducing the speed of disease propagation (Bishop and Shames 2011).Matamalas
introduces an epidemic controlling approach based on the deactivation ofmost important

Table 2 Comparison of the proposed method to related existing work

Method name Input network Protection
scheme

Node selection mechanism

Degree (Tong et al. 2010) Static network Pre-Emptive Degree centrality

Betweenness (Tong et al. 2010) Static network Pre-Emptive Betweenness centrality

DAVA (Zhang and Prakash 2014) Static network Post-Emptive Dominator tree-based

NIIP (Song et al. 2015) Static network Post-Emptive Dominator tree-based

NetShield+ (Chen et al. 2016) Static network Pre-Emptive Eigendecomposition-based

GraphShield (Wijayanto and Murata 2017) Static network Pre-Emptive Eigendecomposition-based

TIM (Buono and Braunstein 2015) Multiplex static
network

Pre-Emptive Degree centrality

MultiplexShield (Wijayanto and Murata 2018b) Multiplex static
network

Pre-Emptive Eigendecomposition-based

VAILDN (Zhan et al. 2017) Dynamic
network

Post-Emptive Dominator tree-based

NLDS Degree (Prakash et al. 2010) Dynamic
network

Pre-Emptive Degree centrality

NLDS EigenValue (Prakash et al. 2010) Dynamic
network

Pre-Emptive Eigendecomposition-based

Proposed method Dynamic
network

Multiple-turns Degree-ordered MVC
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links transmitting the disease (Matamalas et al. 2018). These studies are different from our
focus as they are focusing on link selection instead of node selection. Additionally, in the
real-world social networks, nodes represent users while links/edges represent friendship
connections among users. For a network administrator, such as in Facebook or Twit-
ter, it is more reasonable to temporarily deactivate a certain user in the case of rumor
spreading than to deactivate part of the users’ friendship relations. While in human con-
tact networks, it is more plausible to immunize an important person than to restrict a
combination of several peer-to-peer interactions.
Network dismantling (Braunstein et al. 2016; Ren et al. 2018) is another problem related

to our work. It is the problem of determining a minimum set of nodes in which removal
breaks the network structure into subcritical connected components at minimum cost.
Braunstein et al. (2016) provides insightful finding that the dismantling problem is an
intrinsically collective problem and that optimal dismantling sets cannot be viewed as a
collection of individually well-performing nodes. Ren et al. (2018) proposed a method
based on the spectral properties of a node-weighted Laplacian operator to solve the
problem.
Influence maximization problem on dynamic networks is also related to our work.

While in the influence maximization we aim to maximize the influence spreading (infor-
mation diffusion) (Tong et al. 2017; Murata and Koga 2018), the graph protection tries to
restrain and contain any of those spreading process. Tong et al. (2017) introduced a greedy
adaptive seeding strategy as an efficient heuristic for maximizing influence in dynamic
social networks. Murata and Koga (2018) proposed three new methods for solving the
problem which are the extensions of the methods for static networks.

Proposedmethods
In this section, we propose new methods for multiple-turns graph protection problem
in dynamic networks, namely ReProtect and ReProtect-p. To restrain the spreading
of epidemic in dynamic networks, we divide the protection budget wisely into several
turns. The protected nodes are selected in each turn according to the currently observed
temporal snapshot of dynamic network. Using the multiple-turns protection, we aim to
address the changing of network structure and incoming rumor or virus attacks during
the temporal transition in dynamic networks.
Figure 2 illustrates our proposed method in each turn, which takes a temporal snapshot

of dynamic networks at time t as an input and determines the set of protected nodes. In
each given turn, we determine the most critical set of nodes of the input network. A node

Fig. 2 Schematic illustration of the proposed method. Given a temporal snapshot of a dynamic network at
time t, our proposed method selects a set of protected nodes
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is considered as a critical node if it is assumed that protecting such node contribute to
block large-scale epidemic spreading (Chen et al. 2016; Wang et al. 2016, 2017).
The main idea of our method can be described in the following key points:

1. Minimum vertex cover (MVC)

At first, we aim to find the set of the most critical nodes in the input network. Many
previous studies suggest that a certain critical node criterion is best for a certain type
of network structure. For instance, degree centrality is most suitable for dense and
highly centralized network (Lawyer 2015; Chen et al. 2016), while betweenness centrality
and connectivity are well fit for clustered networks with the existence of graph bridges
(Italiano et al. 2012; Khan et al. 2015; Lawyer 2015).
We propose to consider a minimum vertex cover (MVC) as a criterion to determine set

of critical nodes from networks. Given a graph G = (V ,E), a vertex cover is a subset of
the nodes Vc ⊆ V such that every edge of G is connected to Vc. Hence, this set of nodes
Vc in graph G cover every edge in G. A minimum vertex cover is a vertex cover with the
smallest possible number of nodes. Every graph trivially has a vertex cover where Vc = V .
Figure 3a shows the vertex cover, and Fig. 3b shows the minimum vertex cover for the
same graphs. The complexity of vertex cover problem is NP-Complete, and that of the
minimum vertex cover problem is NP-Hard.
As shown in Fig. 2, our input is a static network Gt , the observed snapshot of dynamic

network at time t. We aim to completely cover all the connections in Gt , which are rep-
resented by edges, by the smallest possible size of nodes. The size definition of MVC is
intuitively aligned with the limited size of the protection budget in graph protection prob-
lem. Following the definition of graph protection problem, we can show the role of MVC
as the protection threshold in a network.

Theorem 1 (Protection Threshold) The protection threshold is the minimum required
size of S to disconnect graph G such that no propagation may occur among nodes. Given an
undirected connected graph G = (V ,E), a minimum vertex cover of G is also a protection
threshold of G.

Proof A vertex cover Vc ofG is a subset of the nodes Vc ⊆ V such that (u, v) ∈ E ⇒ u ∈
Vc ∨ v ∈ Vc. A minimum vertex cover V ∗

c is a Vc with the smallest size as follows:

V ∗
c = arg min

Vc

|Vc| (4)

(a) (b)
Fig. 3 Vertex cover and minimum vertex cover shown on the same underlying graphs. Red colored node
indicates the node in the cover because all edges are covered. a Vertex cover (not minimum). bMinimum
vertex cover Figure 3:
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Since all edges in graph G is covered by V ∗
c :

(u, v) ∈ E ⇒ u ∈ V ∗
c ∨ v ∈ V ∗

c , (5)

then by removing all corresponding edges in G connected to V ∗
c we get G(V ∗

c ) =(
V ∗
c ,E(V ∗

c )
)
. Thus, G(V ∗

c ) has no edge, i.e., E(V ∗
c ) = {},

∣
∣
∣E(V ∗

c )
∣
∣
∣ = 0.

According to Definition 1 and 2, protecting the set S of nodes in G is removing all
edges of G connected to S. This is a minimax function of minimizing the size S to get the
maximum edges in G covered as follows:

S∗ = arg min
S

|arg max
E(S)

|E(S)|| (6)

Consequently, by protecting minimum vertex cover V ∗
c , i.e., S = V ∗

c , then G(S) has no
edge. Hence, a minimum vertex cover V ∗

c of G is also a protection threshold of G.

2. Top-k highest degree MVC

Let us recall that MVC is a set of nodes without any requirement of ordering. Intuitively,
given k budget, selecting any k nodes from V ∗

c may result in a different set of nodes.
Additionally, not all of the node in MVC should have the same priority to be protected
within a limited budget. We consider that the more connected a node v to its neighbors in
G, the more critical node v to be protected. Hence, after obtaining MVC nodes from the
input network, we reorder MVC nodes using their degree value within the input network.
Suppose that at time t we are given an input temporal snapshot graphGt and protection

budget kt . Under the constraint of limited protection budget (kt), we select top-kt MVC
nodes based on their degree value within graph Gt .

3. Reinforcement learning as solution approximation

Despite the protection threshold guarantee of MVC, finding the MVC nodes of graphs
is NP-Hard (Hartman and Weigt 2006). We consider a reinforcement learning (RL)
approach to approximate the solution. RL approach aims to obtain an optimal solution by
maximizing the cumulative rewards without given any pre-defined deterministic policies
(Mnih et al. 2015; Khalil et al. 2017). Such advantage enables us to exploit the known best
policy while also consider exploring unknown policies to obtain an optimal solution.
More specifically, we leverage the n-step fitted Q-Learning (Khalil et al. 2017) to obtain

MVC approximation with an efficient training process and scalable implementation.
Hence, our proposedmethods take the advantage of n-step Q-Learning (Sutton and Barto
1998) and fitted Q-iteration (Riedmiller 2005).
We let the n-step fitted Q-Learning iteratively learn to construct a vertex cover (Vc)

solution of the input network. We define the RL environment as follows:

• State (S): set of currently selected Vc nodes from input graph
• Action (A): add new node v to vertex cover set S
• Reward (R): -1, as our goal is to get the minimum size of vertex cover, we set a

penalty for adding a new node into Vc set.
• Termination criteria: all edges are covered

To quantify how good is taking an action a ∈ A given a state s ∈ S, in Q-Learning, we
have the Q-Function (Watkins 1989). Q-Function evaluates the pair of state and action
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and maps it into a single value, called Q-Value, using the following Bellman optimality
equation:

Q(s, a) = r + λ(max(Q(s′, a′))) (7)

where s ∈ S is a given state, a ∈ A is the current action, r is the current reward, λ is the
discount factor of the future rewards, s′ ∈ S is the next state, and a′ ∈ A is the next action.
The calculation of Q-Function is performed and updated iteratively for each possible pair
of state and action. The result of all Q-Value is stored in a table, called Q-Table. The best
action for a given state is indicated by the highest Q-Value.
To obtain the maximum expected cumulative reward achievable from a given pair of

state and action, we can compute the optimal Q-Function, denoted as Q∗, using the
following equation:

Q∗(s, a) = maxE[
∑

t≥0
λtrt|s0 = s, a0 = a] (8)

where s0 and a0 are the initial state and action respectively, t indicates a step which
consists of: observe a state, perform an action, retrieve a reward, and observe the next
state.
As the number of all possible pair of state and action can be very large, calculating

the Q-Value in Q-Table is not efficient. Especially, if we are handling a large-size input
network, using Q-Table is computationally infeasible and resource-consuming. A non-
linear function approximator can be used to estimate the optimal Q-Function in Eq. (8)
such that:

Q(s, a,�) ≈ Q∗(s, a) (9)

where � is the function parameters (weights) of our non-linear function approximator
Q(s, a,�). A neural network or a kernel function can be used as the non-linear function
approximator of Q-Function (Sutton and Barto 1998).
Recent studies show that neural networks or convolutional neural networks achieve

state-of-the-art results as function approximators (Mnih et al. 2015; Sutton and Barto
1998). The neural network architecture also speed up learning in finite problems, due to
the fact that it can generalize from earlier experiences to previously unseen states (Mnih
et al. 2015). In this paper, we propose a convolutional neural network as the function
approximator of optimal Q-Function. Recall that in Q-Function, our input is a given state
and action to obtain Q-Value as output. The state is the given input graph with currently
selected Vc nodes. The actions are the possible nodes to be included into current Vc. In
convolutional neural network architecture, our input should represents both of those state
and action. Hence, we need a same fixed-length feature representation of the graph and
each of its node. Therefore, in our construction of minimum vertex cover, our function
approximator in Eq. (9) will be denoted as:

Q̂(h(S), v,�) (10)

where h(S) and v represent the fixed-length feature representation of the state S and an
action of adding node v using the neural network set of weights � .
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4. Graph embeddings as feature-based representations

We leverage an efficient and scalable graph embedding technique, called Struc-
ture2Vec (Dai et al. 2016; Khalil et al. 2017), to embed the input graph and
each of its node. This graph embedding technique computes a d-dimensional
feature embedding μv for each node v ∈ V , given the current partial
solution S.
Given a temporal snapshot graph Gt , we embed each node v by constructing a d-

dimensional embedding μv. All of μ
(0)
v entries are initialized as zero, and for every v ∈ V

we update it iteratively in T iterations as follows:

μ(t+1)
v = ReLU (ψ1xv + ψ2

∑

u∈N(v)
μ(t)
u + ψ3

∑

u∈N(v)
ReLU(ψ4w(u, v))), (11)

with xv is node v own tag, whether being already selected or not. Selected node will be
given tag = 1, otherwise 0.N(v) is the set of neighbors of node v in graphGt .

∑
u∈N(v) μ

(t)
u

is the feature of node v neighbors. w(u, v) is the neighbors’ edge weight, to consider the
weighted connection in weighted graph. ψ1,ψ2,ψ3, and ψ4 are the function parameters
(weights) which specified as ψ1 ∈ R

d , ψ2 ∈ R
dxd, ψ3 ∈ R

dxd, and ψ4 ∈ R
d . ReLU is the

rectifier linear unit activation function applied elementwise to input where ReLU(x) = x
if x > 0 and 0 otherwise.
Here we will explain how to get the function Q̂(h(St), v;�) in Eq. (10). Once the embed-

ding μv for each node v ∈ V is calculated using Eq. (11) after T iteration, we get μ
(T)
v . The

pooled embedding of the entire graph Gt is then given by
∑

u∈V
μ(T)
u (12)

Then we can use it to estimate the optimal Q-Function in Eq. (10) as follows:

Q̂(h(S), v;�) = ψ�
5 ReLU

(

concat
(

ψ6
∑

u∈V
μ(T)
u ,ψ7μ

(T)
v

))

, (13)

being
∑

u∈V μ
(T)
u is the pooled embedding of the entire graph. ψ5,ψ6, and ψ7 are the

neural network parameters (weights) which specified as ψ5 ∈ R
2d, ψ6 ∈ R

dxd, and ψ7 ∈
R
dxd .
To this end, we show that the pooled embedding of the entire graph is used as a sur-

rogate to represent the state. And the embedding of each node is used as a surrogate to
represent the action. The function Q̂(h(S), v) is depend on the collection of seven parame-
ters� = {ψi}7i=1 which are learned during the training phase and will be evaluated during
the evaluation phase. Figure 4 shows the architecture illustration of neural networks used
in this paper.
a. Training Phase
Algorithm 1 illustrates our proposed training phase. In each training iteration, our

method returns the neural network’s set of parameters � which successfully get Vc from
graph G. In line 5, we specify how to select a new node by balancing exploration and
exploitation. In this case, the exploration means selecting a random nodes with probabil-
ity ε. The exploitationmeans we aim to get themaximum expected cummulative rewards,
i.e. by selecting a node which maximizes the function Q̂(h(St), v;�). h(St) is the embed-
ding of state S at step t. The exploration probability ε is set to decrease from 1.0 to 0.05
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Fig. 4 Architecture illustration of the neural network used in our work. Green colored shape represents the
convolutional layer. Yellow colored shape represents ReLU activation function. Blue colored shape represents
the fully connected layer

Algorithm 1: n-step Fitted Q-Learning for Approximating theMinimumVertex Cover
Solution
Input: adjacency list of graph G
Output: neural network’s set parameters (weights) �

1 Initialize experience replay memoryM to capacity N
2 for episode e = 1, · · · ,E do
3 Initialize the state to empty S1 = {}
4 for step t = 1, · · · ,T do

5 vt =

⎧
⎪⎨

⎪⎩

random nodev ∈ S̄t , with probabilityε

arg max
v∈S̄t

Q̂(h(St), v;�), otherwise

6 Add vt to partial solution: St+1 = (St , vt)
7 if t ≥ n then
8 Add tuple (St−n, vt−n,Rt−n,t , St) toM

9 Sample random batch from B iid.∼ M

10 Update � by Stochastic Gradient Descent over loss function
(y − Q̂(h(St), vt ;�))2 for B

11 end
12 end
13 return �

linear to the iteration step. To efficiently train the neural network, we perform batch
processing as described in line 9.
The loss function which learned to minimize is as follows:

(
y − Q̂(h(St), vt ;�)

)2
(14)

being y = ∑n−1
i=0 r(St+i, vt+i) + λmax′

v Q̂
(
h(St+n), v′;�

)
. n is the number of step updates.

b. Evaluation Phase
Algorithm 2 illustrates the evaluation phase of our proposed method. To get the best-

trained neural network’s set of parameters (weights) �∗, we evaluate the training result
against a set of given graph GD available snapshots. We use this neural network set of
parameters in the testing simulation of the graph protection.
c. Testing Phase
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Algorithm 2:MVC Evaluation
Input: snapshots of graph GD, number of training iteration itert
Output: neural network set of best-trained parameters (weights) �∗

1 Initialize �∗ = 0 and |Vc| = 0
2 for training i = 1, · · · , itert do
3 Initialize a neural network with set of parameters/weights �i
4 Get Vc of each snapshot of GD using �i
5 if |Vc|i < |Vc| then
6 �∗ = �i

7 end
8 return �∗

Algorithm 3: ReProtect
Input: Gt current snapshot of graph GD at time t, and kt current budget at time t
Output: a set S of kt nodes

1 Initialize S to be empty, S = {}
2 Embed each node in Gt into d-dimensional feature vector using Eqs. (11) and (12)
3 Obtain the set of minimum vertex cover nodes V ∗

c (unordered) using the best-trained
neural network (with set of parameter �∗)

4 Reorder the set of minimum vertex cover nodes V ∗
c based on their degree values

within graph Gt
5 Get S from top kt nodes in V ∗

c
6 return S

Algorithm 3 shows the testing phase of multiple-turns graph protection strategy on
dynamic networks. We are given an input snapshot of graph Gt and budget kt . Each
node in Gt is embedded into d-dimensional feature vector. The size of d is equal to the
embedding size during training in Algorithm 1. The minimum vertex cover of Gt is then
constructed using the best-trained neural network’s set of parameters �∗ resulted from
Algorithm 2. Finally, we get a set S of top-kt degree-ordered MVC nodes to be protected
from the current temporal snapshot of graph Gt .
We also propose ReProtect-p method, a variant of ReProtect, which trained on the

perturbed version of each available snapshot of dynamic networks. The perturbation
is performed by removing edges probabilistically from the snapshot graph. Specifi-
cally, for each edge, we generate a random number. If the edge weight is smaller
than the generated random number, the edge will be removed. We introduce this
variant to provide more variety to the training data and avoid possible overfitting
issue.

Computational complexity analysis

Based on Algorithm 3, we present the analysis of computational complexity of our pro-
posed ReProtect method. The cost of step 1 to initialize empty set S is constant. The step



Wijayanto and Murata Applied Network Science            (2019) 4:18 Page 15 of 31

2 and 3 are to construct an approximated MVC set of graph Gt which has the complexity
of O(p · M) based on the analysis by Dai et al. (2016); Khalil et al. (2017). p is the con-
stant number of node testing steps, equals to the number of nodes divided by the number
step updates in Q-Learning. M is the number of edges. In n-step Q-Learning, we update
the value of each action based on the rewards of taking the sequence of n actions consec-
utively. n is called as the number of step updates. Suppose that the number of nodes in
graph Gt is 500 and the number of step updates is 5, then p is a constant number equals
to 100. One can see that p ranges from 1 to the number of nodes in graph Gt .
Getting the ordered MVC nodes in step 4 has an average O(N · logN) using QuickSort,

where N is the number of nodes in Gt . Therefore, the total computational complexity of
our ReProtect method isO(p ·M+N · logN). The difference of ReProtect and ReProtect-
p is only on training process. Similarly, we can infer that the computational complexity of
ReProtect-pmethod is also O(p · M + N · logN).

Evaluation
In this section, we provide experimental evaluations of our proposed methods. The goal
of this evaluation is to answer the following questions:
1. (Effectiveness) How effective are the proposed methods in restraining epidemic

spreading in both synthetic and real-world dynamic networks? We define the measure-
ment of effectiveness using the surviving ratio (θ ) of nodes in dynamic network GD at the
end of epidemics.
2. (Scalability)Are the proposedmethods scalable with respect to the changing of graph

size (in terms of the number of nodes) and different protection budget size (k)?
3. (Sensitivity Analysis) How is the effectiveness of our proposed methods in the

different values of epidemic parameters, such as the infection rate (β) and recovery
rate (δ)?

Dataset

We evaluate our proposed methods on various real-world dynamic network datasets,
which summarized in Table 3.

• Dutch College dataset is a directed network of friendship ratings among 32 university
freshmen (Van de Bunt et al. 1999). Each student was asked to rate the others at
seven different time points.

• Hospital dataset contains the temporal network of human contacts between patients
and health-care workers in a hospital ward in Lyon, France (Vanhems et al. 2013).
Data was collected in December 2010.

• Hypertext 2009 dataset is the network of contacts of the attendees of the ACM
Hypertext 2009 conference (Stehlé et al. 2011). In the network, a node represents a
conference visitor, and an edge represents a face-to-face contact.

• PrimarySchool dataset contains the temporal network of contacts between teachers
and children used in the study of BMC Infectious Diseases 2014 (Gemmetto et al.
2014; Stehlé et al. 2011).

• Highschool 2013 dataset contains the temporal network of contacts between
students in a high school in Marseilles, France (Mastrandrea et al. 2015). The data
was collected in December 2011 and November 2012.
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• Infectious dataset is the network of face-to-face people behavior during the Dublin
Science Gallery 2009 exhibition (Isella et al. 2011).

• Email dataset was obtained from the email communication between institution
members (the core) from a large European research institution (Paranjape et al.
2017). A directed edge (u, v, t) means that person u sent an e-mail to person v at time
t in the network.

Comparison methods

Recall that to the best of our knowledge, there is no previous work has been
proposed to handle the multiple-turns graph protection problem on dynamic
networks. Here, we investigate the performance comparison of the following
methods:

• None: simulates the condition without any protection.
• GreedyMVC: approximates the set of MVC nodes of the input graph by greedily

selects the uncovered edge with the maximum sum of degrees of its endpoints (Khalil
et al. 2017). Then protects k nodes from this unordered MVC set.

• Degree (Prakash et al. 2010): protects k highest degree nodes of the current snapshot
of the dynamic network. This method represents the concept of NLDS-Degree by
Prakash et al. (2010).

• Betweenness: protects k nodes with the highest betweenness centrality of the current
snapshot of the dynamic network.

• NetShield+ (Tong et al. 2010; Chen et al. 2016; Prakash et al. 2010): aims to protect a
set of k nodes considering the largest eigenvalue of adjacency matrix. This methods
represents the stronger variant of eigendecomposition-based methods by Chen et al.
(2016) and NLDS-EigenValue by Prakash et al. (2010).

• GraphShield (Wijayanto and Murata 2017): protects k nodes by taking into account
the role of graph connectivity and degree centrality.

• ApproxDegree: simulates the 2-approximation algorithm to get the MVC nodes
(Chakrabarti; Hartman and Weigt 2006). We add the degree-ordering nodes to this
method for protecting the top-k highest degree of MVC nodes.

• ReProtect and ReProtect-p: are our proposed methods.

Experimental setting

In the training phase, we use the embedding dimension size 64, batch size 64,
embedding iteration 5 as suggested in Structure2Vec1 (Dai et al. 2016). The setting
of n-step is set to 5 and learning rate as 0.0001 and number of training iteration
as 100,000. These three settings are commonly applied in n-step Q-Learning (Sut-
ton and Barto 1998). In the evaluation phase, we consider the number of evaluation
iteration as 100.
For a fair comparison, unless specified otherwise, all of the methods are simulated

under the same setting as follows: infection rate β = 0.8, recovery rate δ = 0.2, and
the initial number of attacked nodes (l) equals to the protection budget (k). We simu-
late l = k, lt = kt , and k1 = k2 = · · · = kt . Random attack evaluation is employed
in all experiments. The setting applies for evaluation in both SIS and SIR epidemic
model.
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All results presented in this section are the average of multiple simulations. Unless
specified otherwise, we take the average from 100 simulations for each result. The initial
condition is all nodes susceptible except the attacked ones, which are infected.
We let the epidemic spreading arrive at the stationary state before changing to the next

snapshot of the network for SIS model. While for SIR model, we count the ratio of sur-
viving nodes at the highest outbreak point, right before the final regime of epidemics as
suggested by Pastor-Satorras et al. (2015). For continuity, in SIR model, we restart the
epidemic spreading in the new snapshot after the final regime of epidemic spreading in
the previous snapshot. Gillespie algorithm (Kiss et al. 2017) is used to simulate the epi-
demic spreading on networks. Additionally, we follow the time discretization method of
dynamic network by Zhuang et al. (2013).
Finally, all of the experiments are performed on the same machine, Ubuntu 16.06 LTS

PC with an Intel(R) Core(TM) i9-7900X CPU @ 3.30GHz CPU and NVIDIA GTX 1080
Ti SLI GPU.

Evaluation of effectiveness on synthetic network

We evaluate the performance of all comparison methods on a synthetic network
generated using Dynamic Attributed Network with Community Structure Generator2

(DANCER) (Largeron et al. 2017). Due to the simplicity setting of graph protection prob-
lem, we only consider the temporal network structure of the generated network and
ignore their attribute and community assignment provided by DANCER. We generate a
dynamic network with 100 nodes and ten temporal snapshots3.
Table 4 shows the average result of 100 simulations under the constraint of protec-

tion budget k = 0.25N , being N is the number of nodes in the input graph. Both of
our proposed methods obtain a higher ratio of surviving nodes than other competitors.
ReProtect-p achieves the highest protection effectiveness.
If we vary the number of given budget k, both of our proposed methods outperform

the other baseline methods as shown in Fig. 5. When the given protection budget k is too
small, ReProtect and ReProtect-p exhibit competitive performances with other meth-
ods, but with an increasing k, they easily outperform other baseline methods, such as
Degree, GraphShield, and Betweenness. On the other hand, ReProtect can also outper-
form other competingmethods, even though it needs a bigger protection budget to obtain
the similar performance ofReProtect-p. An introduction ofmore data variety using graph
perturbation into training process helps our proposed method to get a better result, as in
ReProtect-p.

Evaluation of effectiveness on real-world networks

On real-world networks, we compare the performance of all comparison methods on
seven different datasets and two different epidemic models, i.e., SIS and SIR model.
Table 5 and 6 show the result of surviving nodes ratio on SIS and SIR epidemic model
respectively. The results are averaged from 100 simulations under the constraint of pro-
tection budget k = 0.15N , with N is the number of nodes in the input graph. Both
of our proposed methods consistently reach the highest ratio of surviving nodes. Addi-
tionally, in most cases, the proposed method with more training data variety using the
perturbed graph, namely ReProtect-p achieves a better result than the regular training as
in ReProtect. Tables 7 and 8 present the standard deviation of the surviving nodes ratio.
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(a)

(b)
Fig. 5 Effectiveness evaluation on synthetic network. Both of our proposed methods (green and orange
colored lines) outperform the other competitors. Higher is better. a SIS Epidemic Model. b SIR Epidemic Model

To evaluate the performance comparison in different protection budget k, we vary the
given k as shown in Figs. 6 and 7. Both of our proposed methods are able to outperform
other competitors align with the increase given budget in all datasets, while constantly
maintain competitive performance in a very small size of k. The consistency of better
performance shown by our methods in many different numbers of available protection
budget indicates the reliability as protection strategies.
We consider that the reinforcement learning is more suitable for graph protection

on dynamic networks due to at least two major reasons. First, reinforcement learn-
ing approach using convolutional neural network as function approximator gives us a
potential benefit to learn from previously solved MVC of network snapshot. By learning
the given temporal structure of observed networks, this provides an incentive to predict
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(a) (b)

(c) (d)

(e) (f)
Fig. 6 Effectiveness evaluation on SIS epidemic model. Both of our proposed methods (green and orange
colored lines) outperform the other competitors. Higher is better. a Hospital. b Hypertext 2009. c
PrimarySchool. d Highschool 2013. e Infectious. f Email Figure

future protection from previously learned actions in the same dynamic networks. The
benefit of learning could not be obtained by traditional MVC approximation algorithms.
Second, the nature of convolutional neural networks (CNN) provide us not only scalability
in handling the large size networks which may contain up to billion nodes, but also eas-
ily parallelizable in multiple CPUs and GPUs. Here, we leverage our approach on top of
recent advances in deep learning technology. Traditional MVC approximation algorithms
are not specifically designed for this computationally expensive task.

Evaluation of effectiveness on the aggregate networks

According to the observations of Braha and Bar-Yam (2006; 2009), the snapshots static
networks are quite different from the aggregate network itself. The aggregate network is
the network obtained by ignoring time and aggregating all of the temporal edges in the
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(a) (b)

(c) (d)

(e) (f)
Fig. 7 Effectiveness evaluation on SIR epidemic model. Both of our proposed methods (green and orange
colored lines) outperform the other competitors. Higher is better. a Hospital. b Hypertext 2009. c
PrimarySchool. d Highschool 2013. e Infectious. f Email Figure

dynamic network (Braha and Bar-Yam 2006; 2009). An interesting question arises, how
does the multiple-turns time-based protection strategies analyzed in our proposed meth-
ods compare with the protection strategies when implemented on the aggregate network?
In this subsection, we report the effectiveness evaluation on the aggregate networks of
the same synthetic and real-world datasets.
Tables 9 and 10 show the result of surviving nodes ratio (θ ) on SIS and SIR epidemic

model respectively. The results are averaged from 100 simulations under the constraint
of protection budget k = 0.15N , with N is the number of nodes in the input graph.
Tables 11 and 12 present the standard deviation of the surviving nodes ratio. Com-
pared with the results in Tables 5 and 6, we found that the multiple-turns time-based
strategies are beneficial and more effective than the aggregate-based strategies. The
aggregate-based strategies are the protection strategies applied on the aggregate networks
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under the assumption that the time-aggregated networks are accessible and known a pri-
ori. We observe that the time-aggregation of all edges make the network denser thus
require more nodes to be protected. The average degree of nodes in each snapshot of
the network compared with that of in the aggregated network is shown in Table 3. In
the aggregated network, the average degree of nodes is higher than in each network
snapshot.

Evaluation of scalability

Let us recall our second evaluation goal, which aims to measure how scalable is the pro-
posed method with respect to the changing of graph size and different k budget size. In
this subsection, we report the result of scalability evaluation by investigating the computa-
tional running time of our proposed methods. Different values of k were used to evaluate
the scalability in different scale of protection set.
To perform simulation by changing the number of nodes, we generate synthetic

dynamic networks using Dynamic Attributed Network with Community Structure Gen-
erator (DANCER) (Largeron et al. 2017). We only consider the temporal network
structure of the generated network and ignore their attribute and community assignment
provided by DANCER. We generate dynamic networks with 10 temporal snapshots and
the number of nodes is changed from N = {100; 200; 300; 500; 1000; 1500; 2000}. The
budget size is changed from {10; 20; 30; 40; 50}.
From Fig. 8, it can be inferred that our methods scale almost linearly with respect to the

number of nodes. Hence, the proposed methods are scalable with respect to the changing

(g) (h)

(i) (j)
Fig. 8 Scalability evaluation of the proposed methods. g ReProtect on SIS Model. h ReProtect on SIR Model.
i ReProtect-p on SIS Model. j ReProtect-p on SIR Model
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of graph size, which means they are applicable for large size networks. Running our meth-
ods on graph with 2000 nodes takes less than 9 seconds. Further paralelization of neural
network design can also be applied to speed up the running time.

Evaluation of sensitivity to epidemic parameters

In SIS and SIR model, epidemic parameters consist of the infection rate (β)
and the recovery rate (δ). To analyze the sensitivity of our proposed methods,
the effectiveness comparison with different epidemic parameters are shown in this
subsection.
Prakash et al. (2011) demonstrated using empirical simulations that the ratio of infec-

tion rate over recovery rate
(

β
δ

)
takes the role as constant dependent of epidemic

threshold in various epidemic model including SIS and SIR. Epidemic threshold is an
intrinsic property of a network. When the strength of the virus is greater than the epi-
demic threshold, then the epidemic would breakout (Prakash et al. 2011). The ratio of
β
δ
is commonly called as the epidemic propagation rate (Wijayanto and Murata 2018b;

Prakash et al. 2011).
We perfom simulations to confirm the effectiveness of our proposed methods using the

same network dataset in Effectiveness on Synthetic Network subsection under three
scenarios:
(1) Comparison of survival ratio θ when the epidemic propagation rate

(
β
δ

)
changes

(2) Comparison of survival ratio θ when the infection rate (β) changes
(3) Comparison of survival ratio θ when the recovery rate (δ) changes
For a fair analysis and comparison, simulations are performed under a fixed protection

budget(k).

Comparison of survival ratio θ when the epidemic propagation rate
(

β
δ

)
changes

We change the ratio of β
δ

from
{ 0.9
0.1 ;

0.8
0.2 ;

0.7
0.3 ;

0.6
0.4 ;

0.5
0.5 ;

0.4
0.6 ;

0.3
0.7 ;

0.2
0.8 ;

0.1
0.9

}
. Figure 9 shows

the comparison of survival ratio θ of all methods in SIS and SIR epidemic model.
The results are averaged from 100 simulations under the fixed protection budget
k = 0.25N , with N is the number of nodes of the input network. In all of
these conditions, both of our proposed methods obtain higher survival ratio θ than
other competitors.

(a) (b)
Fig. 9 Evaluation of sensitivity to the epidemic propagation rate (the ratio of β

δ
). Higher is better. a SIS Model.

b SIR Model
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Comparison of survival ratio θ when the infection rate (β) changes

We change the infection rate (β) from {0.9; 0.8; 0.7; 0.6; 0.5; 0.4; 0.3; 0.2; 0.1} with fixed
recovery rate (δ). Figure 10 shows the comparison of survival ratio θ of all methods. The
results are presented from the average of 100 simulations with a fixed protection budget
k = 0.25N , where N is the number of nodes of the input network. Both of our proposed
methods could achieve highest survival ratio θ regardless the value of infection rate and
epidemic models.

Comparison of survival ratio θ when the recovery rate (δ) changes

We investigate the comparison of survival ratio θ by changing the recovery rate (δ)
from {0.9; 0.8; 0.7; 0.6; 0.5; 0.4; 0.3; 0.2; 0.1} with fixed infection rate (β) and the protec-
tion budget k = 0.25N . N is the number of nodes of the input network. As shown in
Fig. 11, in SIS and SIR epidemic model, both of ReProtect and ReProtect-p methods
obtain higher survival ratio θ than other competitors. The results are averaged from 100
simulations.

Conclusion
In this paper, we addressed the multiple-turns graph protection problem to restrain
epidemic spreading on dynamic networks. The protection budget is divided into
several turns and selects protected nodes based on the presently observed tempo-
ral snapshot of dynamic networks. By proving the role of minimum vertex cover
(MVC) as the protection threshold of the network, we choose to protect the highest
degree of MVC nodes at the size of each allocated protection budget. We intro-
duce methods utilizing the n-step fitted Q-Learning to efficiently learn the MVC
construction from the input graph under reinforcement learning approach. Graph
embedding technique is incorporated as a feature-based representation of the input
network states. We demonstrate the effectiveness and scalability of our methods,
namely ReProtect and ReProtect-p. Extensive evaluations on synthetic and real-world
network datasets show that our proposed methods outperform other baseline meth-
ods while maintaining the scalability. Further investigation of two different epidemic
model simulation, i.e., SIS and SIR model, also confirm the effectiveness and scalability
of our methods.

(a) (b)
Fig. 10 Evaluation of sensitivity to the infection rate (β). Higher is better. a SIS Model. b SIR Model
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(a) (b)
Fig. 11 Evaluation of sensitivity to the recovery rate (δ). Higher is better. a SIS Model. b SIR Model

The strategy of handling graph protection problem against non-trivial targeted attacks
in dynamic networks is left for our future work. Extending ourmethods into amulti-agent
policy gradient reinforcement learning to achieve better training efficiency will also be
our next consideration.
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