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Abstract

A heterogeneous continuous time random walk is an analytical formalism for
studying and modeling diffusion processes in heterogeneous structures on
microscopic and macroscopic scales. In this paper we study both analytically and
numerically the effects of structural and temporal heterogeneities onto the diffusive
dynamics on different types of networks. For this purpose we investigate how the
distribution of the first passage time is affected by the global topological network
properties and heterogeneities in the distributions of the travel times. In particular,
we analyze transport properties of random networks and define network measures
based on the first-passage characteristics. The heterogeneous continuous time
random walk framework, presented in the paper, has potential applications in
biology, social and urban science, search of optimal transport properties, analysis of
the effects of heterogeneities or bursts in transportation networks.

Keywords: Continuous time random walk, Stochastic processes on graphs, Diffusion,
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Introduction
Dynamical properties of random walks on networks are related to many vital ques-

tions, such as optimality and effciency of road systems, internet search strategy, func-

tioning of metabolic networks (Barthelemy 2011; Montroll and Weiss 1965; Cohen

et al. 2000). Dynamics on various types of random networks (graphs) (Sood and

Redner 2005) have been extensively studied within the last decade and applied to de-

scribe epidemics and social processes (Brockmann et al. 2006). Many of large networks

encountered in our everyday life have the so-called small-world property meaning that

all nodes are closely connected (Agliari and Burioni 2009; Albert and Barabasi 2002;

Julaiti et al. 2013). Moreover, it has been found that topological, geometric, and hydro-

logical characteristics of a network system are directly linked to the characteristics of

random walks on this network (Havlin and ben-Avraham 2002; Redner 2001), such as

the first passage time (FPT), i.e. the time of the first arrival of the random walk to a

target node (Bollt and ben-Avraham 2005). The first passage time characteristics are

related to trapping problems, which play an important role in the control theory. Nu-

merous problems on dynamical processes on networks (Hwang et al. 2012) include

finding an appropriate placing of the trapping site in a network in order to obtain the

desired trapping efficiency, search strategies etc. (Lambiotte et al. 2015). For homoge-

neous networks these problems have been studied extensively (Hudghes 1995; Maier
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and Brockmann 2017), for example, using the underlying backward equation approach

(Bollt and ben-Avraham 2005). However, the analytical approaches, describing random

walks on feature-rich (when nodes or links are endowed with some attributes (Monti

and Boldi 2017)) heterogeneous networks, are lacking (Bollt and ben-Avraham 2005). It

has been demonstrated that in continuous domains the mean FPT can differ from the

most probable FPT (Godec and Metzler 2016; Grebenkov et al. 2018), in particular,

moments of FPT do not fully reflect the transport efficiency. Moreover, since

real-world networks are highly heterogeneous, reliable methods for analyzing transport

properties on them are required (Valdano et al. 2018). To our knowledge, the complete

description of the first passage quantities on various networks with structural or tem-

poral heterogeneities has not been achieved. There is a particular reason for studying

FPT properties on random networks. Some random networks have shown clear advan-

tages over other network topologies (such as complete graphs) in terms of transport

optimality and scaling efficiency, quantities which characterizes the change of the FPT

density with the increase of network size in thermodynamic limit (Bollt and

ben-Avraham 2005). Recently dynamics on random networks has been studied using

the spectral and mean-field theories (Grabow et al. 2012; Mieghem 2011), which are

not always applicable to heterogeneous networks.

In this article we consider Heterogeneous Continuous Time Random Walk

(HCTRW) model (Grebenkov and Tupikina 2018) on several types of networks. The

main motivation of the HCTRW model on networks is to study the influence of struc-

tural and temporal heterogeneities on diffusive dynamics. The HCTRW model is the

extension of the conventional CTRW framework with additional heterogeneities,

point-wise introduced to network sites or links (see “Model” subsection for more de-

tails). In the CTRW model, a random walker waits for random time between jumps

driven from the same waiting time distribution ψ(t) (Montroll and Weiss 1965). In the

HCTRW model we relax the assumption of homogeneity of waiting time distributions

between nodes: travel time distribution ψxx0 ðtÞ depends on both starting and ending

points x and x′. We investigate HCTRW on various graphs to see the interplay be-

tween dynamical random walk characteristics and structural properties of networks.

The structure of the paper is the following. After presenting the HCTRW model in

“Model” subsection, we investigate the first passage time of HCTRW on regular and ir-

regular networks with structural and temporal heterogeneities in “Results” section. In

“Discussions” and “Conclusions” sections we discuss the results and summarize the

main findings.
Model

The Heterogeneous Continuous Time Random Walk is a model (Grebenkov and Tupi-

kina 2018), in which a random walker moves on a graph G in continuous time by

jumping from one node to another with certain probabilities, set by a transition prob-

abilities matrix Q (further we refer to it as simply “transition matrix”). The element

Qxx0 of the stochastic matrix Q is the probability of jumping from the node x to x′ via

link exx0 and the travel time needed to move from x to x′ is a random variable drawn

from the probability density ψxx0 ðtÞ. The transition probability and travel time distribu-

tion set the generalized transition matrix Q(t) with elements Qxx0 ðtÞ ¼ Qxx0ψxx0 ðtÞ. The
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heterogeneous travel times encode the structural and temporal heterogeneities, e.g. a

trap xh. The absorbing site xa of a network is a site, which has only the incoming but

no outgoing links.

The propagator of HCTRW, Px0x ðtÞ (i.e., the probability density for a random walker

started at x0 at time 0 to be at x at time t), was obtained in (Grebenkov and Tupikina 2018)

as

~Px0x sð Þ ¼ 1−Σx0 ~Qxx0 sð Þ
s

I−~Q sð Þ� �−1h i
x0x;

ð1Þ

where ~Px0x ðsÞ (resp., ~QðsÞ) is the Laplace transform of Px0x ðtÞ (resp., the generalized

transition matrix Q(t)). From Eq. (1) other important quantities of the process can be

derived. In particular, the probability density ρx0ðtÞ of the first passage time to a single

absorbing node xa can be obtained using the renewal approach

~px0 sð Þ ¼
~Px0xa sð Þ
~Pxaxa sð Þ : ð2Þ

When there are many absorbing nodes xa, Eq. (2) is not applicable but there are other

ways to compute the FPT density.

For each considered network (see below) we construct the transition matrix Q and

the generalized matrix Q(t), given the set of the travel time distributions ψxx0 ðtÞ for

each link exx0 . Then we perform the numerical computation of the inverse Laplace

transform of ~ρx0ðsÞ by Talbot algorithm (Talbot 1979) to get the FPT density ρx0ðtÞ in

time domain.

Results
We investigate the behavior of the FPT probability density on several types of networks.

In each of these networks, we select an absorbing node xa and calculate the probability

density ρx0ðtÞ of the FPT to this node from a prescribed starting point x0. In this article

we focus on the effects of heterogeneity by introducing a trap node xh, at which the

travel time distribution is different from the remaining nodes. Although the HCTRW

model allows for arbitrary travel time distributions, we restrict our analysis to the sim-

plest case of the exponential distribution. In this case ψxx0 ðtÞ ¼ e−t=τ=τ , where τ is the

mean travel time and ~ψxx0 ðsÞ ¼ 1=ðsτ þ 1Þ is the Laplace transform of ψxx0 ðtÞ. When a

random walk arrives at the trap node, it is kept there for much longer times than τ.

This mechanism could be realized by using the exponential distribution with a much

larger mean travel time. However, to highlight the effect of the trap node (heterogen-

eity) xh, we will consider the distribution with infinite mean travel time, typically of the

form ~ψxhx0 ðsÞ ¼ 1=ð1þ saτaÞ, with an exponent α between 0 and 1. We will investigate

how the presence of such a trap node and of eventual links avoiding this trap affect the

FPT density.

We start with the HCTRW on regular structures, such as one-dimensional lattice

chain and finite fractals (“HCTRW on regular graphs” subsection), then we study FPT

properties on random networks (“HCTRW on random networks” subsection). In

“Analytical insights onto the FPT density” subsection we give some analytical insights
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onto the FPT density on networks. Finally, we finish with a real-world network example

(“Applications to real-world networks” subsection).
HCTRW on regular graphs

We use the following setup of the HCTRW model on regular loopless graphs. After set-

ting up the trap xh and locating the absorbing node xa in a given graph we add an avoiding

link ex0hx0 0h ; e.g. in the case of the chain, the nodes x0h and x00h are around the trap node xh.

Then we compute FPT densities for the cases with and without the avoiding link.

First, we consider the HCTRW on a one-dimensional chain with one absorbing node

at xa = 1, one reflecting node xr = 100 and one trap node xh, which is located either to

the left or to the right from x0. The corresponding FPT densities (see Fig. 1) show the

same long-time behavior t−t − a, discussed in (Grebenkov and Tupikina 2018). This re-

sult can be understood from the fact that a random walk on a one-dimensional chain

with or without avoiding link will eventually get into a trap node even though an avoid-

ing link potentially is allowing for a random walker to overjump over the trap.

Second, we consider a generalized Vicsek fractal, Gvgf, as an example of regular loop-

less structures, which resembles the dendrimers construction (Blumen et al. 2004; Liu

et al. 2015). The fractal Gvgf is constructed iteratively in a deterministic way by going

from generation g to generation g + 1 with coordination number f. A Vicsek fractal

graph for f = 3 and g = 3 is shown in Fig. 2 (top). At the same time, it is known that the

spectral properties of graph Laplacians are reflected in dynamical properties of random

walks on them. In the case of the Vicsek fractal, the graph Laplacian obeys the simple

scaling, determined by the spectral dimension of the Vicsek fractal ds=
ln ð fþ1Þ
ln ð3 fþ3Þ ≈ 0:557.

We use the HCTRW setup, where all travel time distributions are ~ψxx0 ðsÞ ¼ 1=ð1þ sτÞ,
except for the trap node xh, at which ~ψxhx0 ðsÞ ¼ 1=ð1þ saτaÞ with α = 0.5. We compute

the FPT density on a Vicsek fractal for two positions of the trap: when the trap xh is
Fig. 1 The probability density ρx0 ðtÞ of the FPT to the absorbing node xa = 1 on a chain graph with N = 100

nodes with the reflecting node at x = 100. Travel time distributions are fixed to be ~ψxx0 ðsÞ ¼ 1=ðsτ þ 1Þ
with τ = 1 in all nodes x except the trap node xh located either at 25, or at 75, at which ~ψxhx0 ðsÞ ¼ 1
=ðsaτa þ 1Þ; a = 0.5. The starting point is located at x0 = 50. The additional link is placed around the
trap xh = 25



Fig. 2 (Top) Vicsek fractal GV 33 with N = 64 nodes. The starting node x0 is in the center (red circle), the
absorbing node xa is one of the dead-ends (black circle), the trap xh is located in one of two positions
indicated by empty circles. (Bottom) FPT densities on this Vicsek fractal with ~ψxx0 ðsÞ ¼ 1=ðsτ þ 1Þ; τ = 1 in
all nodes x except xh, at which ~ψxhx0 ðsÞ ¼ 1=ðsaτa þ 1Þ; a = 0.5. The trap xh is placed either on the shortest
path between x0 and xa (first location), or outside of this path (second location). We also consider the case
with an additional link avoiding the trap xh, which corresponds to the transition matrix with a
local perturbation
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placed on the shortest path between x0 and xa, or outside of this path, shown on Fig. 2

(top). As we observe from Fig. 2 (bottom) the short-time regime of the FPT density with

avoiding link differs from that without avoiding link, whereas these cases give the same

power-law scaling t−2ds−1−a in the long-time regime, where ds is the spectral dimension of

the Vicsek fractal.

HCTRW on random networks

Here we consider two classes of random networks: Scale-Free (SF) and Watts-Strogatz

(WS) model. We construct SF networks using the preferential attachment
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Barabasi-Albert model G(N,m,m0), where N is the number of nodes, m is the number

of initially placed nodes in a network and m0 is the number of nodes, a newly added

node is connected to (Albert and Barabasi 2002). The preferential attachment mechan-

ism drives the network degree distribution to obey a power law decay with the expo-

nent γ ≈ 3 (von der Hofstadt 2017). Both, SF networks with and without loops show the

small-world property.

The small-world Watts-Strogatz network model is denoted by G(k, β), where k is the

average network degree and β is the rewiring parameter (Watts and Strogatz 1998). WS

model is constructed from a regular ring lattice, a graph where each node is connected to

k neighbors, k = 2 on each side, where each link is then rewired with the probability β.

We numerically compute the FPT density on these random networks. We begin with

demonstrating the FPT densities on one random realization of SF network, while we

also checked that results are qualitatively the same when considering an ensemble of

random networks.

First, we investigate the influence of a single trap placed in different communities of SF

networks. The network communities structure, where each community is a group of

nodes, which are interlinked with each other more than with other nodes, was extensively

studied in the last decades (Barthelemy 2011; Schaub et al. 2017). Here we answer a more

simple question: how a random walk can “see” the places of the trap in different areas of

random networks. We choose non-intersecting communities in SF network, which are

connected through the only edge to each other. Then we choose the absorbing node xa
on this edge, as shown in Fig. 3 (top) and consider two cases by placing a single trap in

two different communities with respect to the node xa: (a) trap is placed on a path (maybe

not the shortest) between x0 and xa, denoted as x0 < xh < xa, hence a random walk cannot

avoid getting into the trap xh; (b) trap is placed in another community in respect to x0
node, such that a random walk is able to reach xa without passing through xh. We also

randomly fix x0. Figure 3 illustrates these cases. The FPT densities for these two cases are

compared with the FPT density for the homogeneous case of CTRW model, when all

travel time distributions are exponential with the same parameter τ : ~ψxx0 ðsÞ ¼ 1=ð1þ sτÞ.
We find that a random walk in HCTRW from the case (b) gives the homogeneous

CTRW model, since the trap node xh cannot be reached by a random walk. At the

same time, placing a trap in the same community with x0 and xa (case (a)) changes

the long-time behavior of the FPT density in comparison to the homogeneous case

(Fig. 3 (bottom)). In contrast, for the case (b) the long-time behavior is the same

as for the homogeneous case. We note that communities structure in larger net-

works can be more complicated than in the scheme, Fig. 3 (top), and the HCTRW

framework with placing traps in different parts of a network can be used for ana-

lysis of communities and trapping efficiency.
FPT density on scale-free networks

From our numerical results for loopless networks (“HCTRW on regular graphs” sub-

section) we observe that the FPT densities can differ from each other in the short-time

regime. Here we numerically calculate the FPT density for the HCTRW separately in

two cases of SF networks: for SF with locally tree-like structure (m = 1 parameter of SF

model) and with loops (m > 1).



Fig. 3 (Top) Schematic network structure with two node communities connected through the link incident
to the absorbing node xa. (Bottom) FPT densities for HCTRW on SF network G(N; m; m0) for N = 100, m = 5,
m0 = 2 with two different positions of a single trap: xh is either placed on a path x0 < xh < xa (circles) or in
another community of a network with respect to the starting node x0, x0 < xa < xh (stars). Travel time
distributions are ~ψxx0 ðsÞ ¼ 1=ðsτ þ 1Þ; τ = 1, ~ψxhx0 ðsÞ ¼ 1=ðsaτa þ 1Þ; a = 0.1. x0 and xa are fixed
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First we test the influence of the global topological properties on the FPT density

and plot it for SF networks with fixed m0 and various m parameters and homoge-

neous exponential travel times. Figure 4 shows that the case m = 1 affects mostly

the short-time and intermediate-time regimes, while cases with m > 1 slightly differ

in the short-time regimes.

We fix all travel times to be independent identical exponentially distributed ~ψxx0 ðsÞ ¼ 1

=ðsτ þ 1Þ; τ = 1, except in xh, at which ~ψxhx0 ðsÞ ¼ 1=ðsaτa þ 1Þv, α ∈ (0, 1), v = 2, where an

auxiliary parameter v allows one to scatter more ρx0ðtÞ for different x0. The FPT densities



Fig. 4 FPT density for SF networks with parameters m0 = 11 and m = 1 (tree SF network), m ∈ [2,9]
(non-tree SF network) with N = 100 nodes. Travel time distribution for all the nodes is ~ψxx0 ðsÞ ¼ 1=ðsτ þ 1Þ;
τ = 1. The starting point x0 and absorbing point xa are randomly chosen in each SF network
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are computed for different starting points x0 and fixed xa on a SF network (Figs. 5 and 6).

Knowing that there are different shortest path distances between x0 and xa, we estimate

numerically the lengths of all possible shortest lengths ∣xo, xa∣ for fixed xa using Dijkstra’s

algorithm. We numerically explore the relation between the short-time regime of the FPT

density and the intrinsic network metrics, defined by the shortest paths between nodes.

For SF network with loops there exist several shortest paths between randomly taken

nodes. For example, in a SF network with m = 5; m0 = 6; N = 100, there are three

groups of the shortest paths between all pairs of nodes with three different lengths.

Correspondingly, we clearly observe three different early time behaviors for the FPT

density, while for large time the FPT densities behave similarly for different x0. This il-

lustrates the fact that the long-time behavior of the FPT density does not capture some

important information about the system.

Next, we compare the FPT densities of SF tree and non-tree networks for different start-

ing positions x0 (Figs. 5 and 6). We observe that changing x0 in a SF tree (Fig. 5) generally

affects the whole FPT density, while changing x0 in a SF network with m > 1 (we show it for

m = 5) only affects the short-time regime. Generally, we observed that the short-time regime

is affected by the geometric network properties, such as the distance between x0 and xa.

This illustrates the fragility of the transport properties on tree-like structures. One of simple

explanations is that for the same number of nodes N a tree network has larger variety of

distances between nodes than in the case of a network with loops.
FPT density on Watts-Strogatz networks

Another example of a network with small-world property is the WS network model

(Watts and Strogatz 1998). The average shortest path length M in the WS model gives



Fig. 5 (Top) Example of a SF network with the fixed absorbing node xa marked by black circle. (Bottom) FPT
densities on SF network G(N; m; m0) N = 100, m = 1, m0 = 6 for different starting points x0 and a fixed
absorbing node xa such that: ∣x0 − xa∣ = 1 (black), ∣x0 − xa∣ = 2 (blue), ∣x0 − xa∣ = 3 (red) (FPT densities with

∣x0 − xa∣ > 3 are shown in grey). The travel time distribution is ~ψxx0 ðsÞ ¼ 1=ðsaτa þ 1Þ2; a = 1, τ = 1, except in a
fixed trap node at which α = 0.5
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an estimate of the small-world property. For β = 0 (k-circular graph) the average short-

est path length is N = 4 k (Barrat and Weigt 2000; Newman et al. 2000). While for β ≠ 0

the average shortest path length is smaller than N = 4 k. For β = 0.2; k = 8 we get M ≈ 4,

Fig. 7 (top). The FPT density for WS network with various initial positions x0 and fixed



Fig. 6 (Top) Example of a SF network with the fixed absorbing xa marked by black circle. (Bottom) FPT
densities on SF network G(N; m; m0) N = 100, m = 5, m0 = 6 for different starting points x0 and a fixed
absorbing node xa: ∣x0 − xa∣ = 1 (black), ∣x0 − xa∣ = 2 (blue), ∣x0 − xa∣ = 3 (red). The travel time

distribution is ~ψxx0 ðsÞ ¼ 1=ðsaτa þ 1Þ2; α = 1, τ = 1; except in a fixed trap node, at which α = 0.5
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xa are shown in Fig. 7 (bottom). Here we consider the WS network with the rewiring

probability β= 0.2, the average degree k = 8 and N = 100 nodes.

In the short-time regime we clearly see m distinct groups, where m is the num-

ber of different shortest paths lengths in a network. Another observation is absence

of a plateau in the intermediate regime (Fig. 7) for SF -networks with m = 5 for t

∈ [101; 103], see Fig. 6.
Analytical insights onto the FPT density

Here we discuss the analytical calculations for the short-time and long-time regimes of

the FPT density for a particular case of HCTRW model. Let us consider a path of a

random walk from x0 to an absorbing node xa on a network with transition matrix Q.



Fig. 7 (Top) Example of a WS network model with β= 0.2; k = 8; N = 100, with a fixed absorbing node xa,
marked by black circle. (Bottom) FPT densities for this network with homogeneous travel time distributions
~ψxx0 ðsÞ ¼ 1=ðsτ þ 1Þ; τ = 1; for different starting points x0 and a fixed absorbing node xa = 1. Different
colors correspond to different shortest paths length between x0 and xa: ∣x0 − xa∣ = 1 (black), ∣x0 − xa∣ = 2
(blue), ∣x0 − xa∣ = 3 (red), ∣x0 − xa∣ = 4 (green)
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If all travel time distributions are exponentials with the mean (t), then the probability

of making the path of length n is:

pn tð Þ ¼ tn−1

τnΓ nð Þ e
−t=τ: ð3Þ

In the short-time regime the function tn − 1 dominates, while in the long-time regime
the influence of the exponential e−t/τ is much more profound. The total probability

density of arriving at xa from x0 at time t is:

Px0xa tð Þ ¼
X∞

n¼1

Qnð Þx0xapn tð Þ ¼ e−t=τ

τ

X∞

n¼1

Qnð Þx0xa
t=τð Þn−1
n−1ð Þ! : ð4Þ

The calculations of the propagator for a tree-like network can be simplified using the

property that the nth matrix power in the infinite series becomes zero matrix for n≥d,
where d is the diameter of a network (Petit et al. 2018). Variations of the shortest path

∣x0 − xa∣ between the starting point x0 and the fixed absorbing node xa affects ðQnÞx0xa .
The long-time behavior in finite graphs, regardless of a network topology, has generic

exponential tail (Bollt and ben-Avraham 2005). However, this result is valid for the

long-term behavior on structures without traps. Let us consider a HCTRW model with

induced structural or temporal perturbations, in which all nodes have a finite-moment

distribution ψ (t) except one node xh with a heavy-tail distribution ψxhðtÞ. Then the spec-

tral properties of the generalized transition matrix Q(t) are affected by structural (Q→

Qpert) and distributional (ψ (t) for xh→ψxhðtÞ ) perturbations (Grebenkov and Tupikina

2018). In the case of distributional perturbations the graph is kept fixed with the same

transition matrix Q but the travel time distributions ψxx0 ðtÞ are edge dependent and the

generalized transition matrix Q(t) changes. In the case of structural perturbations, adding

or removing links affects the matrix Q itself, as the result, the stationary distribution

changes. Both structural and distributional perturbations can be analyzed from the per-

spectives of temporal networks. In particular, one can consider the behavior of a random

walk in the HCTRW model as a simple random walk moving on continuously changing

temporal network. In this temporal networks links are available in a certain time intervals,

distributed according to some probability distribution exx0 ðtÞ for an edge exx0 . Here we

refer to the frameworks presented in (Ahmad et al. 2018; Lambiotte et al. 2013; Valdano

et al. 2018), where continuously evolving networks were presented.

Applications to real-world networks

Let us give an illustrative example of the HCTRW applications. If a train station with a

small number of connections was shut down due to technical problems, it would not sig-

nificantly increase the number of additional trips that passengers would have to take to ar-

rive at their final destinations. However, if a random perturbation affects a station with

many connections or a connecting point between several clusters of stations, the average

path length can increase dramatically. In real transportation systems the road occupancy is

varying over time, as such, the time of occupancy between two places x and x′ can be mod-

eled by a random variable distributed with ψxx0 ðtÞ. Then the perturbation in the transporta-

tion liquidity (bursts) at some node can be modeled in the HCTRW as the trap xh with

heavy-tail travel times. Links avoiding a trap in HCTRW model correspond to additional



Fig. 8 (Top) The London metro map with destination Piccadilly station xa highlighted in black. (Bottom)
FPT densities for the London metro with travel time distributions ~ψxx0 ðsÞ ¼ 1=ðsτ þ 1Þ; τ = 1 except at a
trap node xh at which ~ψxhx0 ðsÞ ¼ 1=ðsατα þ 1Þ; α = 0.5. For each starting stations x0 the FPT density is
colored according to the distance from x0 to xa: ∣x0 − xa∣ = 1 (black), ∣x0 − xa∣ = 2 (blue), ∣x0 − xa∣ = 3
(red) (FPT densities with ∣x0 − xa∣ > 3 are shown in grey)
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transport connections in the real-world network, e.g. connection with buses etc. We con-

sider a spreading entity (infection, rumour, flux of passengers, etc.), which can be modelled

by a random walk behavior, although in the case of epidemics spreading the spreading

quantity is not necessarily conserved. We choose to analyze the London metro (Wolfram

mathematica database 2016), which shares some common features with other metro sys-

tems in the world, such as the average node degree of around 2.5 inside the core of metro

network (Roth et al. 2012). The London metro on Fig. 8 (top) has N = 299 stations (now-

adays it has around 353 stations and nearly 400 edges). The core of the London metro net-

work, neglecting the radial stations outside the circle, exhibits the small-world property. We

introduce a trap (perturbation) to the London metro to see how this affects the transporta-

tion properties on the whole network. In Fig. 8 we plot the FPT densities starting from dif-

ferent stations of the London metro and finishing at Piccadilly circus metro station.

Comparing Fig. 8 (bottom) with the FPT density for SF and WS networks (Figs. 5, 6 and 7)
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helps to get us new insights. First, the whole metro network of London is separated into

several groups of nodes according to the destination, in each group the short-time regimes

of ρx0ðtÞ are similar. Second, the long time regime is independent from the starting point

(Fig. 8).
Discussions
The properties of random walks on various complex networks have been studied extensively

(Klafter and Sokolov 2011; Krapivsky et al. 2013; Steinbock et al. 2017). But quite often the

asymptotic analysis and the averaged characteristics of diffusive transport and random walk

dynamics, such as mean return time and mean first-passage time, are calculated (Bollt and

ben-Avraham 2005; Maier and Brockmann 2017). In this manuscript we focused on studying

the probability distribution of the first-passage time for random walk on complex networks

with structural and temporal heterogeneities, corresponding to traps in the HCTRW model.

We identifed three regimes of the FPT density (Fig. 9): short-time, intermediate time and

long-time regimes. The scheme also demonstrates how the FPT density is affected by differ-

ent types of perturbations. In particular, local structural perturbations (such as an inclusion

of links avoiding xh) mainly affect the short-time regime of the FPT density. The global

structural perturbations are the accumulated local perturbations of the network structure,

e.g. the perturbations, which cannot be described by adding or removing links between

already incident nodes. These perturbations seem to effect the most the intermediate regime

of FPT density. Finally, the distributional perturbations (when the travel times ψxx0 ðtÞ are

link-dependent) are mainly affecting the long-time regimes of the FPT density. One can also

consider the interplay of different types of perturbations but this goes beyond the scope of

this paper. We start with the least studied short-time regime. We emphasize that the com-

parison of the first-passage times for different types of networks is qualitative. We draw the
Fig. 9 The schematic representation of the short-time, intermediate-time and long-time regimes of the FPT
density on various networks
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separate conclusions for each type of network, from which we highlight common

observations.
The short-time regime of the first-passage time is generally affected by the geometric net-

work properties, such as the distance between x0 and xa, which can be calculated, as the min-

imal power of the adjacency matrix of a network with nonzero element Ax0xa : ðAL�1Þx0xa = 0;

ðALÞx0xa ≠ 0: As we saw from the numerical computations of ρx0ðtÞ (“HCTRW on regular

graphs” subsection), a local perturbation induced by an avoiding link strongly affects the

short-time regime (Fig. 2 (bottom)). In other words, local changes of a network

structure affect the distribution of the shortest paths, which in turn affects the left

tail of the FPT density (Figs. 5 and 6). In the same vein, the FPT properties are

strongly affected by the metrics of a graph and not just by the node degrees; on

the other hand, node importance and general transport properties of networks do

not depend exclusively on node degrees (Kitsak et al. 2010). At the same time, the

non-linear network measure distribution is related to dynamical properties in a ra-

ther complex way and should be analyzed separately.
The intermediate-time regime of the FPT density mainly depends on the global topo-

logical features of a network (i.e. small-world property, loopless structure). For some net-

works the intermediate regime is less pronounced than for others (compare Figs. 5 and 6).

For instance, for WS model (Fig. 7), the intermediate regime between the most probable

first-passage time, tmp, and beginning of a decrease of the FPT density is not so well pro-

nounced. For networks without traps changing the shortest path between x0 and xa shifts

the maximum of the FPT. This resembles the properties of diffusion in continuous domains

(Godec and Metzler 2016), where tmp is proportional to the squared distance between the

starting point and the target. Another important characteristics of the intermediate

regime is the presence of a plateau, like the intermediate regime at t ∈ [101; 103]

for SF networks with m = 5; m0 = 6 (Fig. 6), which is a general feature present also

for FPT in continuous domains (Grebenkov et al. 2018).
Finally, the long-time regime is largely influenced by temporal heterogeneities, i.e. the trap

node xh with a heavy tail distribution of travel time ψxhx0 (t). In particular, it was identified

that for simple random walks, the MFPT (mean first-passage time) captures some

long-time properties of the dynamics. However, MFPT neglects some important informa-

tion about the process, significantly overestimating the scales of the most-probable

first-passage time (Godec and Metzler 2016; Grebenkov et al. 2018). At the same time it is

known that for dynamics of a particle diffusing in a continuous domain the MFPT is of

order L2 / D, where L is the domain size, D is the diffusion coefficient (Grebenkov et al.

2018; Singer et al. 2006). In the continuous case the most probable FPT is shown to strongly

depend on the starting position and is almost independent of the target properties (Greben-

kov et al. 2018). How the dynamical properties are changing when a distributional perturb-

ation at xh is introduced? The influence of the trap xh on the long-time regime is illustrated

on Fig. 3, where placing xh in different communities of a network changes the right tail of

the FPT density. Note that a trap does not affect a geometric length of a path between x0
and xa, but may affect the shortest-in-time path between nodes. Hence even if there are sev-

eral paths between nodes there is a non-zero probability for a random walk to reach xh at

long times, which then may affect the right tail of the distribution (Fig. 1). To complete our

discussions on this point, we recall that the properties in the long-time regime of random

walks on networks without heterogeneities have been proven to depend on the dimension
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of a random walk (O'Shaugnessy and Procaccia 1985). Moreover, in the case of the compact

random walk exploration, e.g. HCTRW on Vicsek fractals with spectral dimension ds < 2

(Fig. 2), the asymptotic properties of the FPT density do not depend on a degree of a target

node and have the power law decay t−2ds−1−a.
Conclusions
In this article we considered the HCTRW framework for the analysis of the

feature-rich networks, in particular, we studied effects of heterogeneity on random walk

dynamics in several types of networks. We explored FPT densities on regular and ir-

regular structures, such as regular fractals, random Scale-Free and Watts-Strogatz net-

work models. The comparison of regular versus irregular structures allowed us to

refine some properties of the FPT densities on complex networks. Notably, we analyzed

effects of structural and distributional heterogeneities using the first-passage time as

one of the key indicators of how fast information diffuses in a given system (Maier and

Brockmann 2017; Redner 2001). Heterogeneities are encoded in the generalized transi-

tion matrix Q(t) (Grebenkov and Tupikina 2018), which affects its spectral properties

and as the result the dynamical properties of processes on such networks. The influ-

ence of the structural and distributional perturbations of network structure on FPT

density is summarized in Fig. 9. The local and global structural perturbations mainly in-

fluence the short-time and intermediate-time regimes. The distributional perturbations

generally affect the long-time regime. We find that not only the topology of a network

but also temporal discrepancy encoded in the distributional heterogeneities ψxx0 ðtÞ can

significantly alter the behavior of random walk on a network.

In particular, we found that the short-time regime depends on the distribution of dis-

tances between starting and absorbing nodes in a network. The existence of loops gen-

erally influences the dynamical properties of random walks on these graphs

(Dorogovtsev and Mendes 2002). For the HCTRW model the changes of global net-

work structure infuence the intermediate-time regime of the FPT density, e.g. SF net-

work with or without cycles has different intermediate regime duration (“Results”

section). In general, analysis of the short-time and intermediate-time regimes allows us

to characterize transport properties of networks even when the first moment of the dis-

tribution is infinite (Hernandez-Garcia and Caceres 1990).

To summarize, the FPT density provides us with alternative characteristics of net-

work topology in addition to known static measures, such as degree or closeness net-

work measures (Barthelemy 2011). The average number of distinct sites, visited by

HCTRW and other observables derived from the FPT densities can be a quantity with

the practical relevance for characterization of spreading processes.

The presented analysis and HCTRW framework dynamics can be further explored on

real-world networks. The CTRW framework was used to analyze human travel laws in

the continuous domains (Brockmann et al. 2006) and the HCTRW model is a compel-

ling extension of such analysis. We applied the HCTRW model on a network graph of

the London metro. The next step would be to compare the results from HCTRW simu-

lations (Fig. 8), with the original data of traveling passengers on real-world networks

(Open Data Stanford platform n.d.). Another possible application of the HCTRW

framework is to dissect complex networks topologies via introducing the structural and
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temporal heterogeneities in the HCTRW model. Since the heterogeneities can be intro-

duced to the particular nodes, this can help to verify the importance of the node to the

transport. After almost a decade of scientific research, there is no definitive method of

characterization of communities structures in networks, in particularly, for feature-rich

networks (Barthelemy 2011; Schaub et al. 2017). Therefore the frameworks to study

heterogeneous network models, such as the HCTRW framework, can add the valuable

contribution in the future research of network science.

Transportation networks and the information transmission systems are the network

examples, to which the HCTRW framework can be further applied, taking into account

their nontrivial stochastic nature (Barthelemy 2011; Larson 2017). Moreover, the

HCTRW framework can be used in order to navigate in the network using detection of

the relevant search strategies, e.g. placing heterogeneities in different parts of network.

Using the first-passage time observables one can further design network measures in

order to characterize transport efficiency and spreading. The straight-forward way to

characterize the transport and search efficiency is to use the concept of survivability as

a measure of reachability of some quantity in a network, which we plan to explore in

the future. We expect the framework presented in this paper to broaden the scopes of

exploration of the feature-rich networks.
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