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Abstract

We deal with the problem of modeling and characterizing the community structure of
complex systems. First, we propose a mathematical model for directed temporal
networks based on the paradigm of activity driven networks. Many features of
real-world systems are encapsulated in our model, such as hierarchical and overlapping
community structures, heterogeneous attitude of nodes in behaving as sources or
drains for connections, and the existence of a backbone of links that model dyadic
relationships between nodes. Second, we develop a method for parameter
identification of temporal networks based on the analysis of the integrated network of
connections. Starting from any existing community detection algorithm, our method
enriches the obtained solution by providing an in-depth characterization of the very
nature of the role of nodes and communities in generating the temporal link structure.
The proposed modeling and characterization framework is validated on three synthetic
benchmarks and two real-world case studies.

Keywords: Activity driven network, Backbone, Community structure, Heterogeneity,
Parameter identification, Time-varying network

Introduction

Many seminal studies have revealed that communities are ubiquitous in networked sys-
tems of diverse nature. In fact, community structures have been identified in social,
financial, biological, and in many other networks (Girvan and Newman 2002; Newman
2006; Estrada 2011; Benson et al. 2016; Yang and Leskovec 2014). Such communities
typically have a complex structure: they present a hierarchical and overlapping organi-
zation (Ravasz et al. 2002; Palla et al. 2005; Lancichinetti et al. 2009; Pons and Latapy
2011) and their components have heterogeneous attitudes in the link formation process
(Palla et al. 2007), acting as sources, mainly generating connections, or as drains, on
the contrary. Further challenges have to be tackled toward a comprehensive analysis of
real-world systems. First, evidence suggests that the patterns of connections between
the components of a real-world networked system evolve in time (Volz and Meyers
2008; Holme and Saraméki 2012; Pastor-Satorras et al. 2015; Latapy et al. 2018). Second,
the nature of interactions in many biological and technological systems has an inher-
ent direction and is thus nonsymmetrical (Leicht and Newman 2008). Finally, there exist
connections that are generated by dyadic relationships between nodes, rather than by
© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and

reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.


http://crossmark.crossref.org/dialog/?doi=10.1007/s41109-019-0119-2&domain=pdf
mailto: alessandro.rizzo@polito.it
http://creativecommons.org/licenses/by/4.0/

Bongiorno et al. Applied Network Science (2019) 4:10 Page 2 of 25

properties of the single node. These connections give rise to a link structure, which is
often referred as the irreducible backbone of temporal interactions, or the structure of
strong ties (Onnela et al. 2007; Gemmetto et al. 2017). These factors often challenge the
applicability of existing temporal network models and community detection algorithms
(Lancichinetti et al. 2011; Fortunato and Hric 2016; Khan and Niazi 2017; Schaub et al.
2017; Zhang et al. 2018).

In this work, we propose a novel and extremely flexible model of temporal networks
that encompasses many complex features of real-world systems. We refer to this model
as routed activity driven networks (rADN). It extends the paradigm of activity driven
networks (ADNSs), which have emerged as a valuable framework to represent and study
time-varying networks of interactions (Perra et al. 2012). The main strength of ADNs
lays in their simplicity: the time-varying nature of the network is indeed encapsulated
in a single parameter vector, called activity, which quantify the propensity of each node
to generate transitory connections with the others. Such an activity parameter vector
can be easily inferred from empirical data (Perra et al. 2012; Karsai et al. 2014; Liu et
al. 2014; Rizzo et al. 2016). Since their original formulation in (Perra et al. 2012), many
features have been included into the ADN paradigm toward realistic modeling of com-
plex networks of interactions. These features include a continuous-time formulation of
the framework (Zino et al. 2016; 2017), the heterogeneous propensity of nodes to receive
connections (Pozzana et al. 2017; Alessandretti et al. 2017), memory mechanisms in the
link generation process (Karsai et al. 2014; Sun et al. 2015; Zino et al. 2018), the partition
of nodes into a simple community structure (Nadini et al. 2018b), and the presence of an
irreducible backbone of recurrent connections (Lei et al. 2016; Nadini et al. 2018a). The
simple formulation of ADNs and their extensions are amenable to analytical treatment,
allowing for the study of many phenomena on time-varying heterogeneous networks,
including epidemic outbreaks (Rizzo et al. 2014, 2016; Petri and Barrat 2018), diffusion
of innovation (Rizzo and Porfiri 2016), opinion dynamics (Li et al. 2017), and percolation
problems (Starnini and Pastor-Satorras 2014).

Our model incorporates the following features: i) the heterogeneity in the propensity to
form links with other network nodes; ii) the directionality of such links; iii) a hierarchical
and overlapping time-invariant community structure; iv) the heterogeneous involvement
of nodes within their communities, acting as sources or drains; and v) the presence of
an irreducible backbone. The model relies on a relatively compact parameter set able to
elicit the complexity of the system in an elegant and intelligible form, highlighting the
community structure and its role in the network formation process.

The main goal of this work is to provide a comprehensive and effective means to
describe a complex and heterogeneous system through a mesoscopic characterization at
the community level. We believe that such a characterization is of great interest for several
applications (e.g., epidemic containment, contrast of misinformation) for which, on the
one hand, macroscopic mean-field approaches fail in accounting for the inherent diver-
sity throughout the system, whereas the microscopic characterization at the node level
comprises an extremely large parameter set, hampering analytical tractability and mak-
ing time- and resource-consuming Monte Carlo simulations the only way to shed light on
the system properties. A preliminary version of this model was presented in (Bongiorno
et al. 2018). Here, we extend such a preliminary work by adding the irreducible backbone

of strong ties, a more flexible and comprehensive connection mechanism, and a more
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detailed analysis and assessment of the proposed model over synthetic benchmarks and
two real-world datasets.

The identification of the model parameters from temporal link formation data poses a
series of challenges, since the occurrence of a link cannot be unequivocally attributed the
mechanism that has generated it. Hence, differently from existing methods for commu-
nity detection that tend to explain link formation as a sole consequence of the community
structure, here we establish a probabilistic framework to quantify the belief in alternative
link formation processes, accounting for three co-existing mechanisms of connection: i)
communities, ii) community-free, and iii) backbone.

The proposed parameter identification and community detection strategies unfold over
three main steps, starting from the observation of the links generated during a given time-
window, where it is assumed that both the community structure and the backbone do not
change in time. Using an integrated version of the observed temporal network of contacts,
we apply an existing community detection method (Fortunato and Hric 2016; Khan and
Niazi 2017) to infer a reference community structure for our rADN-based model. Then,
we perform parameter identification of the rADN model solving a quadratic optimization
program with linear constraints (Boyd and Vandenberghe 2004). Such an identification
problem is naturally underdetermined, implying that a family of rADN models with the
same community structure but different parameters may equivalently reproduce the link
formation process. In fact, different parameter combinations lead to different probabilis-
tic explanations of the link formation, relying on different probabilistic blends of the three
mechanisms mentioned above. A free parameter vector, called community belief, is thus
defined to quantify the belief in the role of communities in the network formation: when
the components of the community belief approach one, we tend to assume that the con-
nection mechanism is mostly governed by communities, otherwise, when they approach
zero, the role of communities becomes negligible. Hence, a family of models may be
obtained by running an identification procedure for each value of the community belief.
Confidence intervals on the community belief can then be established, in order to obtain
a family of models that is practically compatible with the available data. Thanks to the
belief mechanism, the use of our method in conjunction with different preliminary com-
munity detection algorithms allows us to quantitatively compare different hypotheses on
the community structure and the link formation process.

We successfully validate our approach on three synthetic benchmarks that exhibit dif-
ferent features, all generated through the proposed rADN model. We then apply our
method to two different real-world case studies. The first is based on the Enron email
corpus (Cohen), where no information is available of the community structure. Here, we
propose our method as a tool to compare and assess the outputs of different community
detection algorithms. The second case study uses data about face-to-face interactions in
a primary school (SocioPatterns). Here, we use metadata on the partition of students in
classes to provide a ground truth on the community structure. In this case, our method is
used to improve the characterization of the community structure.

The rest of this paper is organized as follows. In “Model” section, we formalize the
rADN model. In “Estimation of the model parameters from empirical data” section,
we propose a method to estimate the parameters of a rADN from empirical data. In
“Validation on synthetic networks” section, we validate the proposed method on
three synthetic networks, exhibiting different features of real-word networks such as
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heterogeneity, the presence of a backbone, overlapping and hierarchical communities.
“Case studies” section is devoted to the analysis of the two case studies. Finally,
“Conclusion” section concludes the paper and outlines our future research.

Model

A rADN is a network composed by a set of # nodes V = {1,...,n} connected through
a time-varying link structure G(£) = (V,&(t)), where £(t) € V x V denotes the
time-varying link set. Links are generated according to a continuous-time mechanism,
following the formalism proposed in (Zino et al. 2016; 2017). The continuous-time
formulation allows for addressing some theoretical limitations posed by the original
discrete-time formulation of ADNs (Perra et al. 2012) and is not subject to the issues
related to the choice of the discrete time step (Ribeiro et al. 2013).

A positive (time-invariant) activity rate a; > 0 is assigned to each node i € V. The
activity rate quantifies the node’s propensity to generate transitory connections with other
nodes in the network, as detailed in the following. Activity rates are gathered in a n-
dimensional vector a. We define the routing matrix P €[ 0,1]"*", as a stochastic matrix
(i.e., an entry-wise nonnegative matrix such that all rows sum to one) with zero diagonal
entries. The entry P;; of the routing matrix measures the propensity of node i to generate
connections toward node j, as detailed in the following.

Hence, the triple (V, a, P) identifies a rADN. Connections are generated according to
a similar mechanism to the one of standard continuous-time ADNs (Zino et al. 2016),
except for a nonuniform choice of the connection wirings, which are governed by the
routing matrix P, whose construction will be detailed later in this section. The following
algorithm summarizes the evolution of a rADN:

1 att =0, the link set is set as empty (£(0) = ) and a Poisson clock (Bailey 1990)
with rate a; (each one independent of the others) is initialized for each node i € V;

2 ifat time t the clock associated with node i clicks, then node i activates and
randomly selects a node j € V to connect to with probability Py;

3 the directed link (i, /) is instantaneously added to the link set £(¢); and

4 link (i, /) is immediately removed from the link set, the Poisson clock associated
with node i is re-initialized, and the algorithm is resumed to item 2.

In their original formulation, links of continuous-time ADNs are ephemeral. Even
though this could seem an over simplification, many interactions in social and biological
systems have a negligible duration with respect to the time scale of the network evolution
and of the emerging phenomena of the system. Relevant examples are e-mails or messages
exchanged in social networks or physical interactions between individuals. The model
can be straightforwardly extended by including nonephemeral connections, by modifying
item 4 of the previous algorithm. For instance, one could remove link (i, j) after a certain
time-interval, which could be fixed or drawn at random from any distribution.

According to our mechanism, the occurrences of the directed link (i, j) are governed by
a (split) Poisson process (Ross 2009), whose rate is equal to

Ay = a;Py. (1)

The link activation rates A;; can be gathered into the activity rate matrix A € R!*", which
encapsulates the information both on the activity rate vector a, and on the routing matrix
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P. Therefore, a rADN is completely identified by the couple (V, A). Given A, the activity
rate vector ¢ and the routing matrix P can be retrieved as
a; = ZAL‘/', Pij = L, i,j eV. (2)
jev 2 nev Ain
Fixing a time-window of duration 7 > 0, we introduce the weighted integrated net-
work over the time-window, represented by the pair Gr = (V, W), where V is the node
set, which coincides with the node set of the time-varying network, and W e Z/™" is a
weighted adjacency matrix. Specifically, Wj; counts the number of occurrences of directed
links from node i to node j in the time-window of duration 7. In rADNSs, the entry W; of
the weighted adjacency matrix is a Poisson distributed random variable with parameter
AT (Ross 2009). Hence, the probability of observing w occurrences of the link (i, /) in the
integrated network Gr is equal to

oAt
P Wi = w] = i exp{—A;T}. (3)

Figure 1 illustrates an example of the construction of an integrated network from link
observations over a given time-window of duration 7" = 1. In this example, the weighted

adjacency matrix is equal to

022
wW=|101]. (4)
010

Routing matrix P

The routing matrix P is constructed to encapsulate the information on i) the organization
of nodes in nontrivial, hierarchical and overlapping communities; ii) the heterogeneous
involvement of nodes in their communities, characterized through the presence of
sources and drains; and iii) the existence of an irreducible backbone.

In order to distinguish the contribute of the community structure from that of the back-
bone to the link generation process, we define matrix P as a convex combination of two
nxn stochastic matrices C and R. The convex combination is weighted by a #-dimensional
nonnegative (entry-wise) vector A €[ 0, 1]”, as

Pj=1iCij+ (1 —A)Rj  ijeV, ®)
a %
.31 0.91
0.32
0.42
0.75

Fig. 1 Exemplification of the construction of an integrated network in a time-window of duration T = 1.In
(a), occurrences of links are plotted separately, along with their time-stamps (2 decimal digits). In (b), the
integrated network Gr is illustrated. Weights represent the number of occurrences of each link in the
time-window
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where matrix C, named community matrix, encodes the information on the role of the
community-based mechanism in the link generation process, while matrix R encodes the
role of the backbone in the process and is called backbone matrix. Toward a compact for-
malization of the model, the community-free mechanism is considered as a special case of
the community-based mechanism, through the inclusion into matrix C of the special a/l-
to-all community, as detailed in “Community matrix C” section. In the following, unless
specified differently, the term community-based will refer to both the community-based
and the community-free mechanisms, thus leaving aside only the backbone mechanism.
Specifically, entry C;; is the probability that node i connects to j as a consequence of the
community structure (including the all-to-all community), while entry R;; is the prob-
ability that such a connection is generated as a consequence of a dyadic relationship
(backbone) between i and j. The entry A; weights the two mechanisms by quantifying the
strength of the community-based mechanism in the process of link formation from node
i. In general, the entries of vector A are nonuniform, to capture the heterogeneous influ-
ence of the two mechanisms for different nodes. The limit case A; = 0 represents the
scenario in which the community structure has no influence on the link generation pro-
cess from node i and all its links are caused by the presence of the irreducible backbone,
while the case A; = 1 models the case in which node i wires its connections only driven
by the community structure.

The mechanism governed by the convex combination in (5), illustrated in Fig. 2, has
an immediate probabilistic interpretation. When node i activates, connections are driven
by the community structure with probability A;, whereas they are driven by the back-
bone mechanism with probability 1 — A;. In the following, we will detail the construction
principles of matrices C and R.

Community matrix C

Here, matrix C is designed to model a time-invariant community structure. This simpli-
fying assumption is reflected in many real-world systems, where the pace of evolution of
the community structure is much slower than the link generation process, as in (Bao and

k| Air
a; —{ g —
— A L1 Au

| A

Fig. 2 Schematic of the mechanism governing a rADN model. Node i € V activates with rate g;. Then, with
probability A; it generates a connection due the community-based mechanism, i.e., following the
probabilities in the community matrix C. Otherwise, with probability T — A, the link is caused by the
backbone in matrix R. These mechanisms yield the corresponding link activation rates in matrix A
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Michailidis 2018). Different scenarios, where the community structure evolves in time,
can be found in Rossetti and Cazabet (2018).

Given a time-invariant set of k > 0 nontrivial communities, we label them with positive
integer numbers # € {1,...,k}. Trivial communities are the empty set, singletons, and
the whole node set V. To model the community-free mechanism, we add an all-to-all
trivial community that coincides with the whole system V), labeled by index 0. Hence,
the community set K = {0,...,k} comprises the trivial all-to-all community 0 and k
nontrivial communities. Considering the #th community, we denote by V;, € V the set of
nodes that belong to it, while nj, := |V} is its cardinality. On the other hand, considering
the generic node i € V, we denote by C; := {h : i € V}} the set of communities to which
node i belongs, and with ¢; := |C;| its cardinality.

We observe that the rADN paradigm allows each network node to belong to an arbitrary
number of communities. This encompasses and generalizes the paradigm of modular
ADNs (Nadini et al. 2018b), where each node belongs to exactly one nontrivial commu-
nity. The heterogeneous attitude of nodes in their different communities (Palla et al. 2007)
is modeled by defining a stochastic rectangular matrix Q €[0, 1]”***1, named commu-
nity strength matrix, such that Q;;, > Oifand onlyifi € V). The entry Qy, is the probability
that a link from node i that is caused by a community-based mechanism is wired within
the ith community. The entries of matrix Q can be thus interpreted as the importance
that each node gives to the each of the communities it belongs to. If Qj, is large, node i acts
as a source in community /1, generating many inter-community links. On the other hand,
if Q;y, is small, then node i will act as a drain, mostly receiving connections from other
members. In this perspective, matrix Q quantifies the strength of the active involvement
of nodes in each of their communities.

Formally, we define the community matrix C, entry-wise, as

0 ifi =
Gi=1% Qihﬁ otherwise. (6)
heC; h

Figure 3 illustrates the mechanisms that govern the formation of the community matrix
C. Specifically, when node i generates a connection following the community-based

. Cij
1 Yk
) Vil
| Cim
Fig.3 Schematic of the mechanism that governs the community matrix C. First, a community is selected,
according to the probabilities in the community strength matrix Q. Then, a node in the selected community
is chosen uniformly at random
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mechanism, first, it randomly selects a community # € K to which it belongs, accord-
ing to the probabilities in the ith row of matrix Q. Then, it connects to a node j chosen
uniformly at random among the 7;, — 1 nodes of the s#th community (excluding node i).

Backbone matrix R

Similar to the community structure, also the irreducible backbone is typi-
cally fixed in time or it evolves much slower than the link formation process
(Onnela et al. 2007; Gemmetto et al. 2017). Hence, here we hypothesize that this is
constant for time-windows of reasonable duration.

The backbone is thus modeled by a time-invariant graph Gg = (V, £r) and by a stochas-
tic matrix R €[ 0, 1]"*", such that R;; > 0 if and only if (i, /) € £g. The entry R;; measures
the strength of the dyadic relationship between node i and node j in a probabilistic frame-
work. In many real-world scenarios of social and biological systems, it is reasonable to
assume matrix R to be sparse, as observed from many empirical data sources (Newman
2003; Ballerini et al. 2008).

We remark that, in the limit case where node i is not influenced by the backbone mech-
anism, i.e., A; = 1, the entries of the ith row of the backbone matrix R have no influence on
the link formation mechanism. Without any loss in generality, in this case we set the cor-
responding rows of matrix R equal to the corresponding rows of a # x n identity matrix,
i.e., weset R; = 1and R;; = 0, for any j # i.

The set of parameters that characterize a rADN is summarized in Table 1. To recapitu-
late, taking into account the construction mechanism of matrix P, we detail the algorithm

that summarizes the evolution of a rADN as follows:

1 att =0, the link set is set as empty (£(0) = ¥J) and a Poisson clock (Bailey 1990)
with rate a; (each one independent of the others) is initialized for each node i € V;

2 if at time t the clock associated with node i clicks, then node i activates and
randomly chooses whether the connection is generated a) by the community-based
mechanism (with probability A;), or b) by the backbone (with probability 1 — 1;).

Then, depending on the previous choice, either ) or b) occurs, where

a) node i randomly selects a community # € K. Specifically, community h is
selected with probability Q;;,. Then, node j is chosen uniformly at random
among the nj; — 1 nodes of the hth community excluding node i; or

Table 1 Parameters that characterize a rADN model

n Number of nodes

k Number of (nontrivial) communities

K Set of communities

Vi Set of nodes in the hth community

np Number of nodes in the hth community

Ci Set of communities to which node i belongs

G Number of communities to which node i belongs

Activity rate vector
Routing matrix
Community weight vector
Community matrix
Backbone matrix

O ®» N > T a

Community strength matrix
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b) node i randomly selects a node j € V. Specifically, node j is selected with
probability Rj;;

3 the directed link (i, ) is instantaneously added to the link set £(¢); and
4 link (i, /) is immediately removed from the link set, the Poisson clock associated
with node i is re-initialized, and the algorithm is resumed to item 2.

We observe that our extended rADN modeling framework actually encompasses many
variants of standard ADNs proposed in the recent literature. Some relevant examples are
presented in the following.

Standard ADNs
Standard continuous-time ADNs (Zino et al. 2016) are obtained by setting »; = 1,i € V,
and IC = {0}. This choice yields P;; = 0, for any i € V, and

Qo 1

Pr=C= 1= w1

. deV,jeV i @)

Modular ADNs

Modular ADNs (Nadini et al. 2018b) can be derived as a particular case of rADN with
Ai = 1, Vi € V. Here, the set of communities K defines a partition of the node set where
each node belongs to one and only one community. The notation used in the original
incarnation defined in Nadini et al. (2018b) can be retrieved by setting Qo = 1 — i, Qi =
W, Y i € V. In this case, (6) reads P;; = 0,Vi € V, and, for anyj # i,

L eV, j eV

— ny

Pj=Cj= (8)
= itieV, )¢V

n—1

X
—

—

ADNs with attractiveness
Attractiveness has been added to ADNs to model the heterogeneous propensity of nodes
to receive connections (Pozzana et al. 2017; Alessandretti et al. 2017). Specifically, given
an attractivity vector b > 0 (entry-wise), the probability that a node generates a link to
nodej € V is proportional to ;. In the framework of rADNS, this feature can be modeled
by setting A; = 0, Vi € V), and all the entries of the backbone matrix R as
b
> b

keV~{i}

Rl‘/' = Vi,j eV. (9)

Estimation of the model parameters from empirical data

Here, we develop a technique to identify the model parameters. Specifically, we estimate
the activity rate vector a, the weight vector X, the community strength matrix Q, and the
backbone matrix R. The objective of the technique presented in this section is to devise
a procedure to deepen the characterization of communities, shading light on the diverse
role of their members and their role in the link formation process.

Parameter identification procedure

As stated in the introduction, we preliminary use an existing community detection algo-
rithm, feeding it with the temporal sequence of the link formation, and obtaining as
output i) the realization of an integrated version of the temporal network over a time-
window of duration T, whose information is gathered in the weighted adjacency matrix



Bongiorno et al. Applied Network Science (2019) 4:10 Page 10 of 25

W; and ii) the community set C and the sets V, 1 € K, obtained as the output of the
community detection algorithm. According to (Perra et al. 2012), the activity rate vector
can be estimated as

. Wi .

a; = Z 7U’ ieV. (10)

jev
The expected number of occurrences of the link (i,j), denoted by V_V,'j, is computed

following (3), and it is equal to

1 .
— F AT =Ry, (11)

Wi =aT ) 2iQ

n
heC; h

In order to estimate the other model parameters, i.e., the community weight vector 2,
the community strength matrix Q, and the backbone matrix R, we formulate the identi-
fication problem in terms of a constrained optimization program. We observe that the
identification problem is naturally underdetermined. In fact, the observed data consists
of a # X n matrix, while the set of parameters to be estimated comprises a # X # matrix,
an x (k + 1) matrix, and a n-dimensional vector. Hence, except for unlikely particu-
lar cases, the number of parameters to be estimated exceeds the number of equations
that can be written using the available data. To address this issue, we introduce a free
parameter vector y €[0,1]"%, named community belief, which measures our belief in the
prominence of the role of the community-based mechanism in the link formation process.
Tuning this parameter vector is the most delicate task in the application of our method. In
“Confidence interval for the community belief parameter” section, we put forward a sta-
tistical procedure to assess a confidence interval for such a parameter vector. In particular,
we identify the largest value for y that is compatible with the observed data, which yields
the characterization of the system with the highest belief in the community-based link
formation mechanism. Such a model is often preferred, as it leads to a characterization
at a mesoscopic level, whereby the system characteristics are captured with a good detail
and an intermediate granularity, which ensures a good description of the system behavior
without incurring in the issues related to a microscopic, node-based representation. How-
ever, in “Validation on synthetic networks” section we show that when the dataset has a
small size, smaller values of the parameter y within the prescribed confidence interval
may be more suitable to describe the system without overfitting the community structure.

The identification problem is formalized by writing a set of # disjoint minimization
problems, one for each node i € V. Specifically, for node i € V, we want to minimize the

function

n
S(€ia Qias Rias 1) = (1= 1) ) &+ i1 = ARy (12)
j=1
with respect to variable A; and the entries of the ith row of matrices ¢, Q and R, written
in compact form as €;e, Qje, and Rje, respectively. The minimization problem in (12) is
subject to several constraints: we require that the number of occurrences of the link (i, j),
i.e., Wy, is equal to its expected value Wi, computed according to (11), up to some natural
statistical fluctuation, modeled by the residual &;; we also require the matrices Q and
R to be stochastic, and the variable X; to be nonnegative and not greater than 1. These
constraints are gathered as follows:
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&iThZé AiQihﬁ +a;T(1 — ARj+ej=W; Vjiel{l,..., n}
€C;

> Qu=1,

heC;

n

> Rj=1, (13)
j=1

0<Qun=1 Vhe(,

0<R; =<1, Vie{l,...,n},
0<A; <1

We observe that the objective function in (12) consists of the sum of two terms: the first
summand is the sum of the squared residuals, whose minimization allows for obtaining a
model that is compatible with the observed data; the second summand is a cost related to
the contributions of the backbone-based mechanism. In the absence of the second term, a
trivial solution would be A; = O and R;; = V_Vi/ /a;, that is, the whole link formation process
is explained in terms of dyadic relationships between nodes. However, this is often not
consistent with the empirical observation of a sparse backbone in systems of different
nature (Ballerini et al. 2008; Newman 2003), and it fails to provide a description of the
system at a mesoscopic scale.

Although the constraints are nonlinear, the change of variable
Qin = 1iQu Rj = (1 — )Ry, (14)

allows us to write (12) as a quadratic programming problem (Boyd and Vandenberghe
2004) with linear constraints, which can be solved with a reasonable computational effort.
Specifically, the objective function reads

n
S <8i., Q’.j?i.,/\t> =0 —y) )Y ep+viky, (15)
j=1

subject to the following constraints:

&iT Z éihnh171 +&ITI~€U +8if = VVL] V] € {]-) . .,I’l},
heC;
~ n ~
hec; Nl j=1 (16)
0<Qu=1 YheC(,
0<R;<1, Viel{l,...,n).

The computational complexity of the parameter identification method proposed here
can be estimated as a function of the number # of nodes in V, the number m of nonzero
entries of the weighted adjacency matrix W, and the number k of communities. Specifi-
cally, we obtain that the computational complexity is equal to O (n2 + nm + nk). Since it
often holds k << 1, we conclude that, for sparse integrated networks the computational
complexity is O (nz), while for dense networks it is O (1’13)

Confidence interval for the community belief parameter

In this section, we develop a statistical method to identify a range of values for the com-
munity belief vector y, compatible with the natural statistical fluctuations. Since each
of the components of the vector y is derived through a distinct minimization problem,
here we focus on the generic ith component, independently of the others. In the previous
section, we observed that, for y; = 0, problem (15) admits the trivial solution in which the
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whole link formation process from node i is explained in terms of the backbone. Then,
when y; grows, the role of communities in the process of link generation gains more
importance. When y; is too large, however, the role of communities in the link formation
process might be overestimated and the models obtained for these values of the com-
munity belief parameter are not statistically compatible with the data observed. Here, we
put forward a technique to identify the largest value of the community belief y; such that
the parameters of the rADN model identified for that value of y; are compatible with the
available data.

Fixing a value of the parameter y;, the minimization problem (15) can be solved by
means of a quadratic programming solver. We denote the corresponding solution as Q?,
RY) and A7), Using the parameters estimated with this solution, and the expression for
the probability of link formation in rADN in (3), we can determine the distribution of the
ith row of the weighted adjacency matrix W. We denote such a row as Wl.(yi) to stress
its dependence on the choice of the parameter y;. Specifically, each row entry W(y’ is a
Poisson random variable, mdependent of the others, with expected value

(i) () )\ pd)
W = i Znh_l (1= 27) R, (17)

Hence, the likelihood that the ith row of the observed weighted adjacency matrix W is
a realization of the random variable W7 is given by

o () e

L (V_V(J/t)|W> _ ,lj! ij W ’ 18)

which is the probability that the realization of the # independent Poisson distributed ran-
dom variables with expected values computed according to (17) coincide with the ith row
of the observed matrix W. Since the product of small probabilities is numerically unstable,
it is convenient to test the log-likelihood (Boyd and Vandenberghe 2004) instead of (18),
which is

— Wi v (Vi)
(W(Vl)) Y e_‘/v,'i

log £ (V_V(”i)|W> Z log (19)

Wi!

Unsurprisingly, the value y; that maximizes the log-likelihood function is y; = 0, which
yields the scenario where communities have no role in the link formation process and all
the connections are explained at the microscopic scale of the irreducible backbone. This
scenario is the result of data overfitting, which is a well known problem of the methods
based on maximum likelihood (Bishop 2006). Specifically, in this case dyadic relationships
are overfitted. We observe that this extreme scenario is not particularly interesting in our
framework. In fact, the interest in community-based modeling and community detec-
tion algorithms is to describe the system at the mesoscopic level, that is, at a level higher
than the individual, microscopic one. This implies that the information encapsulated by
a usually high number of microscopic parameters is compressed in a much smaller num-
ber of mesoscopic parameters, that is, those related to communities. For this reason, we
are interested in models that do include communities, that is, with y greater than zero.
In particular, we are interested in finding the model with the largest value of y; that pro-
duces an rADN model that is compatible with the available data observed in the weighted
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adjacency matrix W. To this aim, we perform a Likelihood Ratio (LR) test (Casella and
Berger 2002). The LR test determines whether the null hypothesis that the observed ith
row of the weighted adjacency matrix W, is obtained from a vector of independent Pois-
son variables with expected values \X’Q;yi) from (17), forj = 1,...,n, should be rejected.
Specifically, fixing a significance coverage o €[ 0, 1], the LR test rejects the null hypothesis
if the statistic

L»=2(bg£(WwHW)—kgﬁ(wﬂmuﬁ) (20)

is greater than a threshold g;_o, where g1, is the (1 — «)-quantile of a chi-squared
distribution with n — 1 degrees of freedom (Casella and Berger 2002). We remark that
the reduction of the degrees of freedom of the distribution from # to n — 1 is due to the
absence of self-loops.

It is worth noticing that the statistic D is a monotonic increasing function of y;. Hence,
fixing a significance coverage o €[0, 1], the LR test ultimately identifies a threshold y;,
equal to the value for which the statistic D is equal to the (1 —«)-quantile of a chi-squared
distribution with n — 1 degrees of freedom. All the values of y; > y; are rejected. Hence,
our procedure establishes a confidence interval for the parameter y; of the form y; €
[0, y:]. Unfortunately, the value y; that produces the significance coverage o cannot be
derived analytically. However, since the statistic D is monotone in y;, several numerical
methods can efficiently retrieve a good approximation of the threshold y; (Hammings
1973).

The technique described above identifies a range for the ith component y; of the com-
munity belief vector y that is compatible with the empirical data. Implementing this
procedure for all the nodes i € V, we obtain a confidence interval for the whole param-
eter vector y, which is the n-dimensional hyperrectangle y €[ 0, y1] x --- %[0, y,]. This
yields a set of mathematical models that are compatible with the observed data. The
parameter vector may be tuned within this hyperrectangle, depending on the user’s belief
in the community structure, on the amount of data available (as we will discuss in
“Validation on synthetic networks” section) and, possibly, on additional information avail-
able on the systems such as historical data, or measurements on similar systems. We refer
to the model obtained with y; = ¥, for all i € V), as the model with the largest belief in the
community structure, among those compatible with the observed data. The flow chart in
Fig. 4 summarizes the whole procedure of our parameter identification method, from the
data consisting of a sequence of temporal links, to the definition of an rADN model.

Validation on synthetic networks

In this section, we validate our procedure over three different benchmarks of temporal
networks. In the first benchmark, described in “Exclusive heterogeneous communities”
section, nodes are partitioned into six exclusive communities of different size, so that
each node belongs to exactly one community (and to the trivial, all-to-all one). A
time-invariant, irreducible backbone is also present. In the proposed benchmark, nodes
present a high level of heterogeneity, both in their global activity and in their involve-
ment in their community. The analysis of this benchmark suggests that our parameter
identification method is able to identify the model parameters in presence of heterogene-
ity in the network structure. In “Hierarchical communities” section, we propose a second
benchmark where communities present a hierarchical structure. The third benchmark,
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Temporal link sequence ]—» Gather data into W }
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Fig. 4 Flow chart of the parameter identification method. Data on the temporal connections are gathered
into the weighted adjacency matrix W of the integrated network. Then, a community detection algorithm is
used to preliminary detect a set of communities. The community detection algorithm may be enriched by
available metadata. A confidence interval for the community belief is then computed and the parameter y is
selected within this interval, on the basis the available data. Finally, fixed y, the model parameters are
identified through the solution of an optimization problem. A rADN model statistically compatible with the
available data is eventually derived. The output of such a model can be used to assess and improve the
performance of existing community detection algorithms or, on its own, to enrich the characterization of the
system and to generate data and predictions that are compatible with the available data

characterized by overlapping communities, is discussed in “Overlapping communities”
section. Also in these cases, we successfully perform the parameter identification by

means of the method proposed in this work.

Exclusive heterogeneous communities

We generate a network with an exclusive community structure, where each node belongs
to one and only one nontrivial community. We partition # = 100 nodes into kK = 6 non-
trivial communities with heterogeneous size, as shown in Table 2. Thus, the community
set IC and the sets Vy, i € KC are known.

The community strength matrix Q is randomly constructed, in order to model hetero-
geneity in the nodes’ attitude to generate inter-community links. Specifically, the entries
of the first column of Q, which represent the nodes’ involvement in the all-to-all commu-
nity, are selected from independent beta distributions with mean 0.25 and variance 0.02.
We remark that the selection of the entries from a beta distribution ensures Qo; €[0, 1],
for any i € V (Ross 2009). Matrix Q is fully determined by its first column. In fact, each
row of the matrix Q has only two nonzero entries (since each node belongs to a unique
nontrivial community) and the matrix is stochastic. Hence, the other nonzero entry of
the generic ith row is equal to 1 — Qjo. Matrix Q obtained according to this procedure is

illustrated in Fig. 5a.
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Table 2 Benchmark with exclusive community structures

# community Size np Members V,
1 50 ... 50}

2 20 {51,...,70}
3 10 (71,..., 81}
4 10 81,..., 90}
5 5 {91,..., 95}
6 5 {96, ..., 100}

The backbone matrix R is defined as follows. First, we construct the graph Ggr = (V, £r),
corresponding to the backbone, according to an Erd6s-Rényi random graph model (Erdés
and Rényi 1959) with parameter p = 4/99. Such a choice of the parameter p produces
a network with average degree equal to 4. Specifically, link (i,j) € Eg with probability p,
each link independently of the others. Then, the entries Ry, for (i,j) € &g, are assigned
uniformly at random, such that each row sums 1, while all the other entries of the row
are set to 0. In the extreme case in which node i € V has no outgoing links, then we set
the diagonal entry R;; = 1, all other entries equal to 0, and the corresponding A; = 1.
The other entries of the vector A (i.e., those corresponding to nodes i that have at least an
outgoing link in the backbone) are realizations of independent beta-distributed random
variables with mean 0.71 and variance 0.01. Finally, the activity potentials are selected as
realizations of independent and identically power-law distributed random variables with
exponent equal to — 2.5 and lower cut-off anmin, = 0.01. The resulting routing matrix P is
represented through a color-coded graph in Fig. 5b.

The system is then simulated for a time-window of duration 7" and the data corres-
ponding to the integrated network are stored in the weighted adjacency matrix W.

Initially, we test the capability of our technique to correctly identify the model parame-
ters when a sufficiently large amount of data is available. Then, we study the performance
of our method in a critical scenario in which the system is observed for a short time-
window and the data vector of temporal links is much smaller, in order to appreciate the
effectiveness of the approach even in this situation.

In our first analysis, we set T = 10° and we observe approximately
1,500,000 temporal connections during the time-window. We apply our parame-
ter identification technique by setting the community belief parameter y; equal

a9 0 P oo — 0.5
20 0.8 201 - ’ 0.4
< 40 0.6~ . 40{ 0.3 .-
=) [— S >
Zo0= B 045 2 60 SR (T
— ||
80 = = 0.2 80 ' ] 0.1
100 0.0 100 — —= U,
01 2 3 4 5 6 000 20 40 60 80 100 0.0
Community Node
Fig.5 Matrices characterizing the benchmark with exclusive communities. In (a), the community strength
matrix Q is represented, while (b) shows the resulting routing matrix P. The values of the entries of the
matrices are represented by the corresponding color intensity
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to the maximum value of the confidence interval identified through the pro-
cedure proposed in “Confidence interval for the community belief parameter”
section, i.e., y; = y;, Vi € V. This choice is the one that allows us to explain the largest part
of the link generation process in terms of communities, compatibly with the observed
data. Figure 6 illustrates the accuracy of our method in the estimation of matrix Q. We
observe that the nonzero entries of matrix Q are estimated with a high accuracy, and
without any bias related to the size of the communities and the heterogeneity in the
parameters. In fact, accuracy does not change over the different communities, associated
with different colors in Fig. 6, and it is high both for small and for large values of Q;; and
Rjj. Specifically, the mean square error of the estimated entries of matrix Q varies from
0.011 to 0.020 over the communities, with no statistically significant difference between
them, while for the entries of matrix R, it is equal to 0.012. In additional simulations, here
omitted for brevity, we have observed that increasing the number of communities k has
no significant effect on the performance of our parameter identification method.

In our second analysis, we reduce the size of the data vector, setting 7 = 10 and
T = 10% and generating approximately 150,000 and 15,000 temporal connections,
respectively. Figure 7 reveals that, when the system can be observed only for a short
time-window and few temporal links are observed, the choice of the largest value of the
community belief y; in its confidence interval may lead to an overestimation of the
contribution of the communities in the link generation process. We observe from
Fig. 7a-b that the entries of vector A, which weight the contribution of communi-
ties in the link generation mechanism, tend to be overestimated for small values
of T. In fact, the mean square error of the estimated entries of vector XA increases
from 0.020 for T = 10% to 0.055 and 0.185, for T = 10° and T = 10%
respectively. We believe that the overestimation of the community weights is a com-
mon phenomenon when the number of temporal links is small. To address this
issue, we suggest to reduce the value of the parameter y;, within the confidence
interval established in “Confidence interval for the community belief parameter”
section. Figure 8 shows that, also with few data available, an accurate estimation of the
vector A and a good estimation of the community strength matrix Q can be obtained
by selecting smaller values for the community belief parameter vector. In Fig. 8a we can
appreciate an excellent agreement between the estimated community weight vector and

1
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Fig. 6 Validation on the synthetic benchmark with exclusive communities. Estimation of the nonzero entries
of (@) the community matrix Q and (b) the backbone matrix R for the benchmark with exclusive communities,
from data sampled over a time-window of duration T = 10°. The parameters are setas y; = 7, Vi € V.
Different colors in (a) refer to the different communities
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Fig. 7 Dependence of the identification performance on the duration of the time-window T. Estimation of
the entries of the weights vector A for increasing duration of the time-window T, with y; = y;, Vi € V. For
small values of T, setting y; = y; seems to yield an overestimation of the contribution of communities in the
link generation mechanism

the actual one (mean square error equal to 0.003). In Fig. 8b we observe that, even though
the accuracy in the estimation of the matrix Q is reduced with respect to the case with
large T, there is still a satisfactory agreement between the estimated entries of the com-
munity strength matrix and the corresponding real quantities (mean square error equal
to 0.091). In our simulations, we select the value for the community belief parameter vec-
tor y by performing a bisection method in the range y; €[0, y;], to minimize the absolute
deviation between the estimated vector A and the original benchmark community weight
vector. This confirms our intuition that the best model estimation is within the confi-
dence interval we have assessed. In our example, we observe that, when the temporal link
set is reduced to the 1% of the original amount (i.e., 15,000 links), the optimal value for
gamma is found to be in average the 18% of the extreme value y. In real-world scenarios,
where the real values of A are unknown, the optimal selection of parameter y remains an

open problem, which will be tackled in our future research.

Hierarchical communities

Here, we assess our method on a second benchmark in which communities present a
hierarchical structure. Specifically, we define a two-level hierarchy: nodes are first parti-
tioned into two first-level communities, then, each of these communities is split into two
second-level communities. Each node thus belongs to a first-level community and to a
second-level one, besides the all-to-all community. Details are reported in Table 3.

S =
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Fig. 8 Identification performance for T small, reducing y;. Estimation of (a) the vector A and (b) the matrix Q

for T =10%, using the optimal value of y; €[0, 7], € V, selected using a bisection method. The optimal
value of y; is in average 18% of the extreme value ¥;
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Table 3 Benchmark with hierarchical community structures

# community Size np, Members Vy,
1 50 ..., 50}

2 50 {51,...,100}
3 25 ..., 25}

4 25 {26,...,50}
5 25 {51,..., 75}
6 25 {76, ...,100}

Matrix Q is generated similarly to the previous benchmark. The entries of its first
column are selected from a beta distribution with mean 0.25 and variance 0.02, each
one independent of the others. The other two nonzero terms of each row are real-
izations of uniformly distributed random variables, normalized to obtain a stochastic
matrix. Matrix Q obtained according to this procedure is illustrated, through color
coding, in Fig. 9a. Then, the backbone matrix R, the weight vector X, and the activ-
ity rate vector a are generated following the same procedure described in the previous
section.

The system is simulated for a time-window of duration 7 = 10°, obtaining approx-
imately 1,500,000 temporal connections, the weighted adjacency matrix W of the inte-
grated network is generated, and our technique is used to estimate the parameters. The
results of our analysis, illustrated in Fig. 7b-c, suggest that our method is also able to
deal with hierarchical community structures. We observe that we are able to identify the
model parameters with a high accuracy and without any bias due to the different levels in
the hierarchical community structure. In fact, in Fig. 9c, we observe that there is no sig-
nificant difference in the accuracy of the estimation of the entries corresponding to the
first-level communities (i.e., 1 and 2) and the second-level ones (i.e., 3—6). Specifically,
the mean square error of the estimated entries of matrix Q varies over the communities
from 0.015 to 0.025 (in average, it is equal to 0.021 for the first-level communities and
0.017 for the second-level ones, with no statistically significant difference between the
two quantities). Finally, we observe that, also in this case where hierarchical communities
are present, the problem of a reduced size of the data vector can be addressed by reducing
the tradeoff parameter vector y, in order to avoid data overfitting. Results are omitted for

brevity.
a b
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Fig. 9 Validation on a synthetic network with hierarchical communities. In (a), matrix Q is illustrated (color

intensity is proportional to the value of the entry). Estimations of the vector A and of the matrix Q are shown

in (b) and (), respectively. Different colors in (c) indicate different communities
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Overlapping communities
Finally, we consider a benchmark in which communities have an overlapping structure.
The n = 100 nodes are divided into 7 communities, as detailed in Table 4.

The community structure presents several overlaps, notably between communities
2,3,4, and 7. The community strength matrix Q (illustrated in Fig. 10a), the backbone
matrix R, as well as the two vectors A and a are defined following the procedure presented
in the previous benchmarks. Then, the system is simulated for a time-window of duration
T = 10°%, generating approximately 1,500,000 temporal connections, and our technique is
used to identify the parameters from the weighted adjacency matrix W of the integrated
network obtained from our simulations. Also in this scenario, as illustrated in Fig. 10b
and ¢, our method is able to identify the model parameters with high accuracy and is free
of any bias due to the presence of overlaps between the communities. In fact, in Fig. 10b
we observe that the accuracy in the estimation of the entries of the community weight
vector X are not influenced on whether a node belongs to an overlapping community or
not: the average mean square error for the nodes in overlapping communities is equal to
0.019, while for nodes not in overlapping communities is equal to 0.015, with no statisti-
cally significant difference between the two quantities. Similarly, also the outcome of the
estimation of the community strength matrix Q is not influenced by the presence of over-
laps between the communities, as can be observed in Fig. 10c, by comparing nodes that
belong to different communities. In fact, the mean square error of the estimated entries of
matrix Q varies over the communities from 0.013 to 0.023 (in average, it is equal to 0.015
for the communities with no overlaps and 0.017 for the overlapping ones, with no statis-
tically significant difference between the two quantities). Also in this case, the tradeoff
parameter vector y can be set to a smaller value than the extreme y to avoid overestima-
tion of A when little data is available, similarly to what discussed in the case of exclusive
communities.

Case studies

Enron email corpus

We use our method to enrich the results of community detection for a real-world case
study: the Enron email corpus (Cohen). This is a dataset of more than 500,000 emails
sent by the 158 employees of Enron company from 1979-12-31 to 2002-06-21, when the
company failed. In order to deal with a uniform dataset, in which the community structure
and the irreducible backbone can be assumed to be constant, we restrict the dataset to the
portion of mails sent after 1998-11-13. We also remove self-sent emails and nodes that do
not send or receive any email. After such a data cleaning procedure, we obtain a dataset

Table 4 Benchmark with overlapping community structures

# community Size np Members V,
1 50 {1,...,50}

2 25 {46,..., 70}
3 15 {71,...,85}
4 10 {81,...,90}
5 5 {o1,..., 95}
6 5 {96,...,100}
7 45 {41,...,85}




Bongiorno et al. Applied Network Science

(2019) 4:10

Node

)

01 2 3 4
Community

100 -
56 7

0.4

0.2

0.4

0.6
A [real]

0.8

1.0

0.2

0.4 0.6 0.8 1.0
Qi [real]

Fig. 10 Validation on a synthetic network with overlapping communities. In (a), matrix Q is illustrated (color
intensity is proportional to the value of the entry). Estimations of the vector A and of the matrix Q are shown
in (b) and (), respectively. Different colors in (c) indicate different communities

with n = 143 employees and 108,786 emails, which identify a temporal network where
each employee is a node and each email determines a link from the sender to the receiver.

We then use a community detection algorithm on the integrated network to identify the
community structure. We observe that the application of different algorithms for com-
munity detection may lead to the identification of different community structures. As
stated in the introduction, our method can be used to establish a criterion to discrim-
inate among the outcome of different community detection algorithms. In fact, for any
community structure obtained by means of a different community detection algorithm,
we can identify the model parameters using our method, and then compare the average
entry of the community weight vector A over the nodes, namely

< A >i= %Zki.

ey

(21)

This quantity measures the fraction of links that can be statistically explained by means
of a community-based mechanism. Therefore, the community structure that is able to
produce the highest value of < A > is the one that is able to explain the largest part of the
link formation process.

In our case study, we apply three different algorithms to detect the communities from
the integrated network: Infomap (Rosvall and Bergstrom 2008), Louvain (Blondel et al.
2008), and OSLOM (Lancichinetti et al. 2011). Since the community detection algorithms
are based on randomized techniques, we perform 100 runs of each algorithm. For each
of these 300 outputs, we perform our parameter identification method. The community
belief vector y is chosen within its confidence interval by using a bisection method to
maximize the value of < A >. Then, for each of the three community detection algo-
rithms, we select the run that yields the largest value of < A >. The estimated matrices
Q for the three different algorithms are illustrated and compared in Fig. 11. We observe
that the three outputs are significantly dissimilar, since a different number of communi-
ties is originally detected. Specifically, we observe that the largest community identified
by Louvain is split into two or more small communities by the other algorithms. Despite
these differences, we can identify some common patterns. For instance, there is a first
group of 17 nodes that belong to a “strong” community, where members have high ten-
dency of generating inter-community links. This feature of the system emerges from all
of the three outputs, as can be observed by comparing the different panels of Fig. 11.

When comparing the output of the different community detection algorithms used
in this case study, we observe that, interestingly, Infomap produces a very stable result:

Page 20 of 25
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Fig. 11 Results of our parameter identification method on the Enron email corpus case study. Matrix Q is
estimated, starting from the community structure detected by using (a) Infomap, (b) Louvain, and () OSLOM

in fact, in each of the runs it always retrieves the same community partition. Louvain,
instead, identifies 6 different outcomes in the 100 runs, whereas OSLOM produces a
different outcome in each run. In Fig. 12a, we plot the overlapping normalized mutual
information (ONMI) evaluated between each pair of partitions produced by the same
method (McDaid et al. 2011). This figure supports our claim that the output of OSLOM
is strongly unstable, since each run produces a different outcome. In fact, the correla-
tion between two different outputs can be small, as seen in the box-plot. Instead, the six
different outputs of Louvain algorithm are strongly correlated. In Fig. 12b, the distribu-
tion of the value of < A > in different runs of the algorithm is illustrated. We observe
that Infomap outperforms the other two algorithms, while OSLOM and Louvain seem to
have a similar performance. Finally, in Fig. 12c we plot the ONMI of an OSLOM partition
with the Infomap partition as a function of the quantity < A >. From this figure, we can
observe a significant positive correlation between the two quantities, which supports our
intuition that < A > might be used as a performance index of the community detection

algorithm.

Primary school

We apply our algorithm to a second real-world case study: the SocioPattern primary
school dataset (SocioPatterns). This dataset consists of a temporal network of face-to-
face interactions between students and teachers in a French primary school, recorded via
proximity sensors. The dataset comprises 77,602 interactions (sampled with a time reso-
lution of 20 s) between n = 242 individuals over a time-window of duration T = 2 days.

) P
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> g
Infomap Louvain  OSLOM ) Infomap Louvain  OSLOM

Fig. 12 Comparison between different community detection algorithms for the Enron email corpus case
study. In (a), we show the box-plots of the distribution of the ONMI for each pair of outputs over 100 runs of
the three community detection algorithms. The output of OSLOM seem to be highly unstable, confirming
our preliminary observations. In (b), we plot the distribution of (1) for the three algorithms. Infomap has the
largest value of such a quantity. In (), for each one of the 100 different outcomes of the OSLOM algorithm,
we compare (1) with the ONMI with the (unique) output of Infomap. The positive correlation that seems to
be present supports our suggestion of using (A) to evaluate the outcome of a community detection
algorithm. In fact, the outputs that are closer to the stable community structure identified by Infomap have a
higher value of (i)
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In this dataset, individuals are naturally partitioned: 232 of them are students, divided into
10 classes, and 10 are teachers (Stehlé et al. 2011; Gemmetto et al. 2014). These metadata
provide a ground truth for the community structure. The main limitation of this dataset
is that the direction of the interactions is not known, since it cannot be registered by
the proximity sensors. In order to apply our method, in the absence of exact information
on the link direction, we assume it to be homogeneously distributed. Hence, we perform
a Monte Carlo parameter identification over 100 runs in which we randomize over the
direction of each link in the dataset. Specifically, for each undirected link {i,j}, we inter-
pret it as a directed link from i to j with probability 1/2, and as a directed link from j to ,
otherwise, each one independent of the others. Since classes provide an evidence on the
ground truth of the community structure and the number of interactions in the dataset is
sufficiently large, we set the largest value of belief parameter within its confidence inter-
val, i.e., y; = y;, for all i € V. Then, we evaluate the average vector 2 and the average
matrices Q and R over the multiple realizations.

The results illustrated in Fig. 13 show that our model is able to capture the community
structure of the system, supporting the hypothesis that comes from the natural partition
of students into their classes. In fact, the distribution of 4 illustrated in Fig. 13a shows that
the class-based community structure is able to describe a large part of the observed links
for most of the nodes. This can also be observed by the large involvement of members in
their communities, illustrated in Fig. 13b. Notably, the teachers, corresponding to the last
row of Fig. 13b, make an exception: they have small values of Q within their community
(last column), while they have a large involvement in the all-to-all community. This seems
to reflect the reality, since a teacher often interacts more with students (of several classes)
than with other teachers. It is worth noticing that this is an information that a traditional
community detection algorithm can hardly reveal. In addition, a more detailed structure
of dyadic relationships, both within and outside the classes, is revealed in the backbone
matrix R represented in Fig. 13c. From its structure, one can infer the presence of strong
relationships between students, mostly classmates. From these interactions one can infer
the presence of subcommunities within each class and use this information to reconstruct
a hierarchical community structure. It also worth noticing that, for last-years students
(the last rows before teachers), the dyadic relationships in the backbone are not limited to
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Fig. 13 Monte Carlo parameter identification (over 100 random link orientations) for the primary school case
study. In (@), we show the distribution of the estimated parameter X, which quantifies the role of
communities in the network formation process. In average, half of the links are generated following the
community structure. In (b), we plot the estimated community strength matrix Q.From the output, we
observe that all the students have a large involvement in their classes, whereas teachers are more active in
the all-to-all community than in the teacher community. In (c), we plot the estimated irreducible backbone of
the network R. We observe that the network is sparse, and most of the nonzero terms are within the classes.
These dyadic relationships may represent, e.g., students who sit next to each others
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the classmates, but also inter-classes nonzero entries are present. This is consistent with
other analyses performed on the same dataset, which show that last-years students are
more active in generating out-of-class relationships (Stehlé et al. 2011; Gemmetto et al.
2014).

Conclusion

In this paper, we deal with the problem of modeling and characterizing the complex
network structure of real-world systems. First, we present a mathematical model for tem-
poral networks that generalizes the ADN paradigm, by including link directionality, the
presence of a heterogeneous, hierarchical, and overlapping community structure, and the
existence of an irreducible backbone of connections. Then, based on this model, we pro-
pose a technique to estimate the model parameters from empirical data and assess the
effect of communities and the irreducible backbone on the link generation process into
an intelligible form, providing a mesoscopic description of the system at the communities
level. The proposed technique is based on the introduction of a free parameter that can
be calibrated within a confidence interval. This parameter models our belief in the role of
communities in the link formation mechanism. We validate our method on three differ-
ent synthetic networks and on a real-world case study, with satisfactory results. We also
apply our method to two different real-world case studies. In the first one, the ground
truth about the community structure is unknown and our method is used to establish a
criterion to assess the performance of different community detection algorithms. In the
second scenario, a ground truth about the community structure is instead provided by
the partition of students and teachers in classes. In this case, we are able to i) retrieve the
actual partition in classes and ii) reveal the different role of students and teachers in their
classes.

The presented method is characterized by a reasonable computational effort. This prop-
erty, together with the possibility of analytical treatment exhibited by ADN, is essential
to tackle real-world problems. For example, the possibility to detect the role of nodes and
communities in interactions between individuals allows for the design of accurate tar-
geted immunization strategies for the case of disease spreading (Masuda 2009; Salathe
and Jones 2010; Gong et al. 2013), or for the detection of closed communities that drive
the spread of misinformation and fake news, named echo chambers (Del Vicario et al.
2016). For these reasons, we believe that the possibility of unveiling the architecture of a
complex system, through the characterization of its community structure, may play a fun-
damental role in the development of effective techniques to address real-world problems,
with potential invaluable benefits to the society.
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