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Finland ' landscapes of the history of science are explored by using the knowledge cartographic,
network-based method of analysis to reveal the key items, landmarks, of the
landscapes. We show that Katz centrality and Katz centrality efficiency are robust and
reliable measures for finding landmarks. It is shown that landmarks are most often
persons but include also colligatory landmarks, which refer to broader sets of events or
ideas. By using Katz centrality we study how landmarks depend on periodisation of the
networks to see what kinds of changes occur by changing the time window on history.
The community structure of the networks is studied by using the Louvain method, to
reveal the strong thematic dependence of the communities. When landmarks are
studied in relation to community structure, it is found that colligatory landmarks gain
importance in relation to person-centred landmarks. Network-based cartography thus
reveals many features about landmarks, how communities emerge around them and
how they depend on periodisation, which traditional methods can only detect or
identify with difficulty. Such knowledge has direct impact on the design and planning
of education and courses which could better address the need to facilitate a deeper
understanding of the related nature of science history and history in general.

Keywords: Concept networks, Learning history of science, Thematic attributes, Katz
centrality, Community structure

Introduction

In science education, the history of science is seen to serve the understanding of science
as culture and its role in culture and society in general. Science history is then on a par
with a broader history, as a basis for understanding how our culture has evolved and how
different acts in the past are connected to those we encounter and see today (Gooday
et al. 2008; Russell 1981; Galili and Hazan 2001; Leite 2002; Hottecke and Silva 2011).
The basic skeletal scaffolding of such knowledge consists of chronologically ordered and
appropriately periodised facts of what happened, when and by whom. These simple facts
form the basic fabric on which more involved interpretations and deeper understandings
of their consequences are located. Such a picture is a kind of historic landscape, which is
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complex because of many intertwined but chronologically ordered connections contained
within it (van Boxtel and van Drie 2012; van Drie et al. 2009; van Drie and van Boxtel
2008).

The multiple historical events, multiple perspectives and their interleaving produce a
complex landscape of the history of science as an embedded part of broader history. In
learning, students thus need to produce a complex, network scaffolding of key concepts
that provide landmarks for navigating in that complex landscape. Many of these key con-
cepts are assumed to be colligatory concepts (van Boxtel and van Drie 2012), which refer
to sets of events or ideas having importance over extended periods or having overarch-
ing impacts over long temporal durations. A learner then encounters a situation, where
before a deeper understanding is possible to achieve, a vast number of details must be
known and acquired. This is a well-known challenge in learning history (van Boxtel and
van Drie 2012; van Drie et al. 2009; van Drie and van Boxtel 2008; Dawson 2009; 2004).
Only when students have acquired a rich enough knowledge base does it become possi-
ble to construct a big picture; a landscape of history and history of science being a part
of that.

The scaffolding and knowledge base associated with it that allows learners to place his-
torical knowledge in correct periods and contexts is called a “frame of reference” or “his-
torical overview knowledge” (van Boxtel and van Drie 2012). It has been suggested that
the students’ knowledge on which such scaffoldings are based should contain chronologi-
cally ordered key concepts, so that key concepts can act as landmarks for navigating in the
historical landscape. The most useful key concepts which act as landmarks are suppos-
edly related to phenomena of long duration or very important events or ideas. Examples
of such key concepts are, for example, the Scientific Revolution, the Industrial Revolution,
the Enlightenment and the Reformation. Such concepts colligate many facts of persons,
events, ideas or inventions and group them into meaningful sub-clusters, subordinated to
the key concepts. This motivates referring to these key concepts as colligatory concepts
(van Boxtel and van Drie 2012), which are the most important and luminous landmarks
in the historical landscape. In constructing the scaffoldings, students must pay atten-
tion to the chronology of events, to periodisation, and to their duration and extension
in time.

Research on how students construct their views of historical landscapes has shown
how difficult such a task is for students (van Boxtel and van Drie 2012; van Drie et al.
2009; van Drie and van Boxtel 2008; Dawson 2009; 2004). Very often students’ con-
structions of history landscapes differ from the landscapes which are targeted in teaching
and instruction: Persons as landmarks may be overemphasised (Leite 2002), important
landmarks may be missing, or periodisation is conceived incorrectly (van Boxtel and
van Drie 2012; van Drie et al. 2009; van Drie and van Boxtel 2008). We study here
the historical landscape of a group of ten university students (pre-service teachers), as
revealed through a set of preparatory tasks to explore chronologically the science his-
tory of the four centuries between 1570 and 1930 divided into six time periods and
how that history of science was embedded in the culture, society and politics of the
same era. The periodisation followed from using certain events of significance like the
initial and terminal dates. The landscapes are thus outcomes of the students’ personal
judgements on the relevance of given topics such as characters, ideas, inventions and
events during those centuries. The landscapes are also affected by how the students
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were able to recover those topics from various easily available sources, mostly from
Wikipedia.

We analyse the data produced by the preparatory task by using network cartography
of knowledge (more briefly, network cartography). The network cartography combines
different network metrics and explorative methods, such as community detection in char-
acterising the relevant and salient features of different nodes in the network (Guimera
and Amaral 2005; Stella and De Domenico 2018). Here, we apply the network car-
tographic methods in the sense they have been applied in the context of knowledge
discovery (Borner 2015; Borner and Scharnhorst 2009; Chen et al. 2009; Shi et al. 2015),
in knowledge acquisition (de Arruda et al. 2017; Costa 2006), and in learning (Koponen
and Nousiainen 2018; 2014; Siew 2018). Regarding learning, network cartography has
recently been used successfully in different areas of learning disciplinary knowledge: In
revealing key concepts in students’ knowledge in physics (Koponen and Nousiainen 2018;
2014), and as a predictor for success in quiz-type tasks in psychology (Siew 2018). Here, a
similar type of cartographic approach is used in the context of learning history of science.

The objective of the present study is to explore the structure of university students’
(pre-service teachers) knowledge landscapes of history of science and its landmarks. The
practical motivation of the study originates from attempts to find solutions for teaching
university students to understand the history of science as part of cultural and general
history. In order to do this, we need methods and means to explore students’ holistic
understanding of the “big picture of history’, in other words, the cartography of their his-
tory landscapes. For this purpose, complex network methods and knowledge cartography
turn out to be invaluable new tools. First, we construct network-like landscapes of his-
tory that emerge from the data; second, we perform a network-based cartography of the
landscape. The analysis focuses on:

e Revealing the structural properties of the network.

¢ Finding landmarks (i.e. the key concepts).

e Finding thematic communities emerging around landmarks.

e Revealing the effect of periodisation on landmarks and communities.

The study reported here provides information of how students in a group level conceive
that historic landscape, how the most important person, ideas and events are thematically
arranged within it, and what is the overall structure of that historic landscape at the group
level, as collated and collective knowledge. It should be noted that the objective here is
thus to find out the features and properties of students’ knowledge landscapes, not the
structure of the landscape as it may appear in the sources (e.g. in Wikipedia) the students

used.

Methods

Historical topics, even at the simplest level, are not isolated facts but a connected and
contiguous set of facts. The importance of notions and facts needs to be approached from
a more holistic perspective, by considering how given facts and notions (in what follows
referred to as elements of the network) are linked as part of the network, and how they
affect other elements in the network not directly connected to the given element. The
research problem is approached by using network cartographic methods (Borner 2015;
Borner and Scharnhorst 2009; Chen et al. 2009; Shi et al. 2015) based on degree and
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Katz centralities (Estrada 2012; Borgatti 2005; Katz 1953; Sharkey 2017; Wang et al. 2017)
and modularity optimisation (Newman and Girvan 2004; Newman 2004). These methods
provide complementary information on the skeletal structure of the network, how differ-
ent thematic traits are connected to different landmark nodes (high affinity nodes), and
how those distributions of centralities evolve as the network expands when the temporal
window on historic periods is changed.

Empirical sample

The context of this study is a physics history course for finnish pre-service physics teach-
ers (third and fourth year of studies), in a department of physics where they complete part
of their pre-service teacher studies. The aim of the course was to introduce physics history
to students as a part of more general science history and as a part of cultural and general
history. The course lasted seven weeks and consisted of weekly two three-hour contact
teaching sessions. The sample of data which is examined here comes from a preparatory
task for a weekly topic. In these pre-tasks, students were asked to identify persons, ideas,
inventions, and events of each topic they thought were of major interest or importance
for the era to be discussed in more detail during the week. The total sample consists of
six pre-tasks, focusing on six different historical periods, which were: i) 1572—-1704; ii)
1704-1789; iii) 1789-1848; iv) 1848-1900; v) 1900-1914; and vi) 1914—1928. The peri-
ods were selected so that their beginning and ending is some significant historical event:
1572, Tycho Brahe’s observation of supernova; 1704, Newton’s last significant contribu-
tion to Science (Opticks); 1789, the French Revolution; 1848, the Year of Revolution; 1900,
the origins of quantum physics; 1914, WWT; 1928, the end of old quantum physics. These
periods coincide roughly with the periods when mechanics, thermodynamics, electro-
magnetism and quantum physics were developed and matured. Moreover, the amount of
students’ knowledge contents they associate with each period are of comparable size, thus
producing networks which are equally extensive. This periodisation provides the chrono-
logical scaffolding on which different themes are then located for further discussion. In
the sample analysed here we have included preparatory tasks by only those 10 students
who provided all the required preparatory tasks, thus covering all the periods.

In the preparatory tasks, students were asked to find information and facts by using
easily available sources like textbooks (Holton and Brush 2001; Simonyi 2012) and intro-
ductions to physics history from Wikipedia. The tasks were thus simple, not very deep in
nature and on the level of very general knowledge. The goal was to collect background
knowledge for further discussions. Regarding Wikipedia, it should be noted that in the
science history and history of 1572-1928 many Wikipedia sources are rather extensive
and based on extensive use of primary sources. The availability of material thus suppos-
edly did not limit the scope and topics to any great extent. For example, the Wikipedia
sources on e.g. Galileo Galilei, Isaac Newton and the Scientific Revolution, which featured
as the students’ targets of interest for the period 1572-1704, is several hundred pages in
total. The students thus needed to make selections and decisions on what to retrieve and
what they decided was relevant.

In the preparatory tasks, the students were asked to report the connections (at least
48 connection by each student in each week) between historical characters (scientists,
philosophers, writers, artists, rulers etc.) and the ideas and inventions and historical
events they found relevant and important for the given era, in science history as well as in
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general history. They also reported why they considered these connections relevant. They
reported the resulting connections in the form of pair-wise connections, for example [
galilei <> heliocentricmodel |, [ newton <> gravity |. On the basis of these
ordered (but not directed) pairs we constructed a network where each key word is a node
in the network and the dyadic connection a link connecting the two nodes. The key words
where attributed both periodically and thematically, on basis how students represented
the appearance of key words in either in general history or science history. The resulting
network, which represents students’ knowledge, includes all the different keywords and
connections reported by the student group of 10 students, consists of N =1613 different
nodes (keywords) and the M =2306 different links between them. The number of links
when all the nodes and links in all the pre-tasks are collated varies from about 50 links for
the most extensively connected node to only one link for many of the nodes.

The data was curated recognising first from each dyad (as reported by students) the
key words, and second, forming a list of closely synonymous words in order to reduce the
irrelevant variations in the key words (the language was Finnish, which has many different
flexions for same words). Eventually, all key words, which were considered synonymous,
were merged to one key word. In total, about 700 synonymous words were found and
resulted to 1613 different key words, which were used as basis to construct the networks.

The network representing the students’ knowledge is explored by aggregating the six
different time periods in chronological order, gradually shifting the time window towards
modern times while keeping aggregated periods comparably extensive according to the
content of the knowledge the students have attached to them. Agglomerated periodisa-
tion with long enough periods was chosen because in the case of networks (denoted by
gi-gvi in what follows) representing individual, unaggregated periods i-vi, the emergence
of landmarks is nearly completely determined by periodisation and persons dominate the
periods. Therefore, the network analysis does not reveal interesting, deeper regularities
for gi-gyi. Furthermore, in order to be a big picture instead of a piecewise and piece-
meal collection of facts, there needs to be an aggregate of long enough periods of history,
where the significance of characters, events and ideas change. A periodisation which is
motivated by these demands and which provides robust enough networks for statistical
analysis consist of networks aggregating three consecutive time periods: G; (periods i-iii,
1572-1848), Gy (periods ii-iv, 1704—1900), Gy (periods iii-v, 1789-1914) and Gyy (peri-
ods iv-vi, 1848-1928). It is later shown that these networks are also heavy-tailed in the
same manner and thus, comparable to each other. For comparison, also network Gror
aggregating all six periods in 1572-1928 is also formed. Eventually, networks Gi-Gry
are treated as networks of thematically associative knowledge. Such an associative net-
work provides a broad picture of how the different factual components that the students
perceive to be of importance form the big picture of the given era.

Finding key nodes: the landmarks

We are interested in finding the nodes which are globally best connected. To detect such
nodes, we have chosen to use Katz centrality (Estrada 2012; Borgatti 2005; Katz 1953;
Sharkey 2017; Benzi et al. 2013), which is metric based on counting walks of different
lengths. Moreover, it contains a factor which allows to tune how walks of different lengths
are taken into account, i.e. how extensive portion of the network is explored. Katz central-
ity is therefore suitable for our purposes to explore the global connectivity of the network
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and which nodes are the most important ones in contributing to global connectivity. In
addition to Katz centrality, we also use Katz centrality efficiency (Katz efficiency in what
follows), which is defined through the effect of isolation of the node (Sharkey 2017; Wang
etal. 2017).

Katz centrality was originally introduced to measure the influence of actors in social
networks, where the influence of interest is the ability to communicate with other actors
in the network. Consequently, Katz centrality can be defined through a weighted sum of
walks of given length /, because the /th power A! of adjacency matrix A describing the
network provides the number of walks of length /. The adjacency matrix A has element
[A];j = 1 when nodes i and j are connected, otherwise [A];; = 0. Katz centrality can then
be expressed as a sum (Estrada 2012; Katz 1953; Sharkey 2017; Benzi et al. 2013)

AO Al AZ A3 0 Ai
1<k=[(ao+al+az+a3+...)|1>]k= KZ“[)H)L 1)

i=0

where |1) is the identity vector and the damping factor o decides how walks of different
lengths are weighted. To have a convergence of the sum, @ must be larger than the largest
eigenvalue amax of the adjacency matrix A. The damping factor o can be used to tune
the extension of the neighbourhood to be included in the calculation of Katz centrality
and thus, whether the local (¢ >> omax) or global (@ — a@max) environment of walks is
contributing to Katz centrality.

Katz centrality, by performing the sum in Eq. (1), can also be written in the matrix
resolvent form (Sharkey 2017; Benzi et al. 2013)

el

where I is the identity matrix. In Eq. 2 the zeroth contribution A°/a® to the sum is
extracted. This has no substantial effect on the resulting Katz centralities and rankings
based on it. For better comparison between the different size of networks, Katz central-
ity can be normalised as K ;( = Ki/||K]|, because normalisation improves comparability
between networks of different size (Ghosh and Lerman 2011).

The resolvent form allows us to connect Katz centrality to similar types of central-
ity measures describing the communicability of network (Benzi et al. 2013). The matrix
resolvent form also emerges from a viewpoint where the centrality of a node is seen from
the dynamic control perspective, as a steady state solution to a linear dynamical system
(Sharkey 2017). Such a description yields immediately to another slightly different but
related interpretation, which sees the Katz centrality as a measure of influence, where an
actor is more influential when its neighbours are also influential (Borgatti 2005).

The Katz efficiency is defined through the effect of isolation of a given node in the
network and how this isolation effects the overall Katz centrality of the network. Such a
definition of (centrality) efficiency emphasises the role of a node for other nodes. The Katz
efficiency can be also motivated from the perspective of the control analysis of dynamic
systems and has been shown to be a robust measure of the influence of the node within
the network (Sharkey 2017). Katz efficiency can be defined in the normalised form as
(Sharkey 2017; Wang et al. 2017)
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2K k)
Zi Ki

where K (k) refers to the network where node k is isolated by removing all the links

E. =1 ®3)

connected to it. It must be noted that the same value of «, which is based on the largest
eigenvalue of the original network, must be used in calculating K;* (k).

Katz centrality and efficiency both measure the influence of nodes in related but com-
plementary ways. In the most unambiguous cases for undirected networks, ranking based
on Katz centrality and efficiency should provide nearly the same ranking of nodes. In what
follows, this is used as criteria to select the value of «. In the present case for networks G
— Gy, the best agreement between the ranking of nodes is obtained with & = 1.058 amax
which is thus about 6% larger than the largest eigenvalue of the adjacency matrix. In
practice, the ranking based on Katz centrality is identical to the ranking obtained on the
basis of Katz efficiency. The correlation of Katz centrality and efficiency is very high: For
networks Gy — Gyy, the Pearson correlation ranges from 0.94 to 0.96, while Kendall-zp
(Corder and Foreman 2014) are from 0.97 to 0.99. Therefore, in what follows, ranking
based only on Katz centrality is used.

In addition to Katz centrality, we calculate the standard degree centrality (number of
links attached to node), defined as

D=2 3 (Al + Ak @
i#k
where [ A]j is the element of adjacency matrix A.

Finally, we need to test the statistical significance of information contained in Katz cen-
trality and whether this information is redundant to degree centrality. This is done by
rewiring all connections in the networks, by using 100 different fixed degree sequency
models (Zweig 2016). The rewired model thus has the same node degrees, but all the links
are shuffled. All rewirings are performed with graph-tool software (Peixoto 2014). The
Z-scores are then calculated for the standardised Katz centralities for each node, defined
as (Estrada 2012; Kolaczyk 2009)

z=-9719 )
o0

where O is the observable value in the empirical sample. It should be noted that the
damping factor @ must now be based on the largest eigenvalue of the adjacency matrix
corresponding to the rewired fixed degree sequence model but by using the same value
of p as is used for the original network. The reliability and statistical significance requires
that the absolute values |Z| of Z-scores are high enough, usually the value |Z| = 2 is
taken as a limiting case. Assuming that the variables are normally distributed, Z-scores
|Z| = 2 and |Z| = 3.0 correspond to p-values 0.02 and 0.001, respectively. Here, we have
chosen to use |Z| = 2 as a cut-off for statistically significant deviations deserving special
attention. As will be seen, the nodes which have Katz centrality K > 0.05Kyax usually also
have Z > 2.

The high Z value means that Katz centrality of a given node is for these nodes not
determined nor predictable from the degree centrality (i.e. from the local connectivity).
As will be shown, rewiring a network with heavy-tailed degree distributions affects the
Katz centrality distribution, as is expected (Qu et al. 2015). Therefore, the nodes with high
values of Z are statistically significant ones because their global connectivity is determined
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by other (yet unknown) factors than local connectivity. Katz centrality, with the damping
factor o chosen to provide the smallest difference between Katz centrality and efficiency,
thus provide reliable and flexible measures for finding the key nodes (landmarks) in the
network and also for monitoring the changing importance of landmarks when the window
of periodisation is changed.

Finding thematic communities

Communities of interest here are parts of the network, which are groups of nodes
connected to each other more densely than to nodes, which belong to other densely con-
nected groups; i.e. connections within the group are dense while between the groups the
connections are sparse. To find such communities one can define modularity Q in the
form (Estrada 2012; Newman and Girvan 2004)

1 1
Q= %: ([A]ij —ZMDiDi> 3(cir¢j) ©

where [ A]; represents the link (edge) between nodes i and j, D; = is the degree of node
i (i.e the sum of the edges attached to node), M is the total number of edges, and ¢; is
the community to which node i is assigned. The term D;D;/(2M) describes the expected
number of edges between nodes i and j if the network is rewired. The §-function (i, v) is
1 if u = v and 0 otherwise and describes whether two nodes belongs to same community
or not. The modularity Q thus defined obtains values from -1 (fully non-modular) to 1
(fully modular), while the corresponding modularity for a random network is Q = 0.

The community structure of the networks can be found by optimisation of modular-
ity, by division of the nodes into groups so that the largest possible value of modularity
is achieved (Newman and Girvan 2004; Blondel et al. 2008; Fortunato 2010). To optimise
the modularity, we use here the Louvain method (Blondel et al. 2008), implemented as
Python-Igraph routine community-multilevel (Csardi and Nepusz 2006). The
communities thus resolved turn out to reveal a very clear thematic uniformity contained
in the networks representing the students’ history landscape; themes apparently act as a
consolidating property for community formation. Such communities are thus very con-
text related, thematic communities. Each thematic community, however, emerges around
a few landmarks.

Results

The complete network Grot that consists of all nodes and links corresponding to the
period 1572-1928 is shown in Fig. 1, revealing a clear modular structure. The themati-
sation is shown by different colours: History of science by red, general history by blue,
and if both themes occur, by green. The value of the Katz centrality (and Katz efficiency,
since they are correlated) of the nodes is shown by the size of the node. Landmarks (key
nodes) are recognised as nodes with exceptionally high Katz centrality (the large nodes
in Fig. 1). The overall appearance of the network immediately suggests that it is heavy-
tailed. To calculate Katz centrality the values of « was selected to be p X amax, Wwhere amax
is the largest eigenvalue, so that p provides the smallest difference between the values of
Katz centrality K and efficiency E. Parameter p was solved for each periodised subgraph
individually and was found to be from 1.042 to 1.124, depending on the size and connec-
tivity of the subgraph. For those graphs where three periods were aggregated, the p value
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Fig. 1 The network representing the history landscape of complete period 1572-1928. The overall structure
of the total network Grot representing students’ thematically associative knowledge of the history of science
as part of cultural and general history. Three thematic attributions are shown: history of science (red), general
history (blue), history of science and general history together (green). The size of each node represents the
relative Katz centrality

was 1.058. In that case, the correlation between K and E is optimal and both methods to
rank the importance of nodes provide nearly the same rankings. The fact that it is possible
to find a damping factor which yields nearly identical rankings based on Katz centrality
and efficiency ensures the robustness of Katz centrality as a measure of the node’s global
importance; the higher the ranking of a given node on basis of its Katz centrality the more
luminous it is in the global scale. Abbreviations and symbols used recurrently in the text
and figures are summarized in Table 1.

Heavy tails
The distribution of values of degree centrality D and Katz centrality K for the total net-
work Grort is shown in Fig. 2. Heavy tails are also apparent for each six separate networks
gi — gvi corresponding to unaggregated periods i-vi, as well as for networks G; — Gyv for
aggregated periods (and furthermore, all different combinations of periods i-vi). Although
the degree distribution of networks do not strictly conform to the inverse power laws,
fitting them with inverse power law distribution of the form

Px) xx77, xe{D)} 7)

provides an appropriate measure to monitor the changes in the heavy-tail of the degree
distribution by using a single parameter y.

Table 1 Summary of symbols and abbreviations used recurrently in the text and figures

Symbol Abbreviation Symbol Abbreviation

A Adjacency matrix D Degree centrality
[A]; Element jj of matrix A K Katz centrality

o Damping factor E Katz efficiency

V4 Z-scores Q Modularity

N Number of nodes A Assortativity

M Number of links G Closeness centrality
y Inverse power Ce Local Clustering

o Width of lognormal distr. 0] Fragility
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Fig. 2 Distributions of degree and Katz centralities. The distribution of degree centralities is heavy tailed and
can be fitted with the inverse power law with power y (upper left). The power y depends on the number of
accumulated periods as shown in the upper right figure. The lower panel shows Katz centrality (left) fitted
with the lognormal distribution with the (logarithmic) width o. The dependence of y and o on the number
of aggregated periods is shown on the right. The Katz centrality corresponding average rewired network is
shown with crosses (green). Estimates of how y and o depends on the number of periods is shown in both
plots (red) in the right panel

The Katz centrality distributions, as shown by Fig. 2, are for present purposes better
fitted with the lognormal distribution of the form

(Inx — p)?

1
P - —
(%) x exp ( 752

), x € {K} (8)

where p is the (logarithmic) mean and o is the (logarithmic) width as a standard devi-
ation of the lognormal distribution. When lognormal distribution is used as a fit for
heavy-tailed distributions, an appropriate characteristic is the width o for monitoring
Katz centrality distributions in different networks.

The degree distribution, fitted with an inverse power law, and Katz centrality distribu-
tion, fitted with a lognormal, for network Gror are shown in Fig. 2. In fitting, the lowest
degrees (between 1-4) were excluded. In order to find the value of y we used the linear
regression approach implemented as SciPy function linregress (Jones et al. 2001)
since the logarithms of frequencies and degrees are directly proportional. To find the val-
ues of o of the lognormal fits, we fit the data in log-log scale by using the minimum
chi-square estimation in SciPy. In both cases, standard deviation of residuals are used to
estimate errors in fits. Note, however, that quantitatively detailed fitting is not attempted
and y and o are used only for purposes to demonstrate the heavy-tailedness of the degree
distributions.

The fitting coefficients y and o for six periods gi-g.i, for the aggregated periods G-
Grv and for the total period GroT are reported in Table 2. In general, the results can
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be summarised by noting that networks are heavy-tailed so that networks display the
presence of hubs with characteristic inverse power law fits for the degree distributions,
approximately corresponding to powers from 1 to 2. The Katz centrality distributions are
also heavy tailed with o approximately in range from 1.2 to 1.6. In practice, lognormal
distributions with such large values of o are by appearance very close to inverse power
law distributions. As Fig. 2 shows (at right) the powers y and values of ¢ are both con-
verging to certain fixed value respectively when at least three consecutive periods are
aggregated. Note, however, that the fits are shown only for purposes to characterise the
heavy tailed nature of distributions, without claiming any overarching conclusions based
on the specific form of the distributions.

For completeness, we report in Table 2 average values of closeness centrality Cc, local
clustering coefficient Cr, modularity Q and assortativity A (Estrada 2012). All these values
are quite similar in all the networks, with values in the ranges of 0.15 < C¢c < 0.24,
035 < Cr < 044, 0.66 < Q < 0.84 and —0.12 < A < —0.07. Interestingly, clustering
and modularity are relatively high for all networks. Otherwise the global values show little
if any systematicity and their changes from one network to another are too small to have
any greater interest.

The correlation between degree (D) and Katz (K) centrality is relatively low for Gi-Gyy,
the Pearson and Kendall-tg correlation coefficients between the values of D and K are
in the ranges of 0.69-0.76 (0.62 for Gtor) and 0.42-0.51 (0.53 for Gtort), respectively.
Consequently, some, but not all, of the nodes which have a high degree centrality D also
have a high Katz centrality K. Finding a relatively moderate correlation between the values
of D and K indicates that despite the apparent similar generic form of distributions, local
connectivity is not, after all, a very good predictor of global connectivity, which is the
primary property of interest here.

In order to justify the use of Katz centrality (and efficiency) as an appropriate measure
to recognise the key nodes, we compare the Katz centralities obtained for a rewired fixed
degree sequence model with the Katz centralities in the original networks. The rewired

Table 2 Characteristics of networks gy corresponding to distinct periods X =i, .. ., viand Gy of
aggregated periods X = |,...,IV
Netw.  Sizes Fitted parameters Correlations  Global invariants Fragility
N M % o R? T8 G G Q A ]
gi 239 356 1.0£03 123 4+£007 090 051 024 040 066 -009 004
Jii 311 392 15+04 117 +£007 074 045 018 043 080 -0.10 0.0
Jiii 326 424 1.5£0.2 113+£007 075 034 016 039 080 -009 018
Ty 158 190 09+£06 1.13£007 077 057 018 035 078 -012 0.7
9y 208 254 1.6+03 1.13 £0.07 77 0.51 016 038 079 -012 014
i 308 375 0.7 £03 116007 077 044 019 044 080 -0.11 0.20
G 826 1212 17402 1274005 071 051 018 037 078 -006 003
G 858 1149 20402 1264004 075 042 016 039 083 -008 003
G 796 1053 23102 1.26 £0.03 069 046 0.15 037 084 -008 007
Gy 757 992 1.6 £0.2 127 4+£005 076 048 017 039 083 -009 0.16

Gror 1613 2306  2.1+£0.1 1604004 062 053 016 036 083 -007 003

Power y is for fitted inverse power law distributions fitted to degree (D) centrality distributions. The (logarithmic) width o is for
lognormal distributions fitted to Katz (K) centrality distributions. The relative errors of fits are estimated from the standard
deviation of residuals. The correlations between values D and K are for Pearson (R?) and Kendall-zg ranking (zg) correlations. The
summarised global invariants are average values of Closeness centrality (C;), Local Clustering coefficient (C¢), Modularity (Q) and
Assortativity (A). For each network, the number of nodes N and links M are provided, as well as the fragility ®
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networks are very similar to the original networks and retain the heavy-tailed appearance
of Katz centrality distributions. For comparison, Katz centrality distribution averaged
over 100 different rewired networks corresponding to Gtor is shown in Fig. 2 along the
results for original network. As is expected for heavy-tailed distributions (Qu et al. 2015),
rewiring affects the centrality distribution, but it is very difficult to quantify the change
directly from the distributions. To quantify the magnitude of the differences we have cal-
culated the distribution of Z-scores for K and how they correlate with the values of K.
This is shown in Fig. 3 for network Gror.

The distribution of Z-values and the violin-plot show that interesting nodes are those
ones which have Katz centralities K > 0.05 (corresponding to log K =~ —3), the average
value of Z-scores exceeds a value Z = 2, which means that many nodes with K > 0.05
deviate significantly from what is expected on the basis of the rewired model (null-model)
(Kolaczyk 2009). Although these nodes are rare, as seen from histogram in Fig. 3 (at the
left), they are the most important nodes in the sense of global connectivity, and, further-
more, better connected than expected on basis of their local connectivity. The nodes with
K < 0.05 are not statistically significant in the sense that their Katz centrality is pre-
dictable on basis of local connectivity (i.e. degree of node). Therefore, most of the nodes
with high Katz centrality values can be considered as significant hubs in the networks
which represent students’ knowledge.

Because the Katz distributions are heavy-tailed, the highest-ranking nodes with a high
value of Katz centrality and Katz efficiency have rapidly decreasing values when ranking
decreases, thus justifying the choice to focus on nodes with high Katz centrality to find the
landmarks of students’ knowledge landscapes. This allows us to use the centrality values,
at least to a limited degree, to assess the relative global importance (i.e. luminosity within
the landscape) of landmarks (e.g. Newton has K = 0.417 while Galileo has K = 0.263,
making Newton almost two times globally more luminous). Of course, attaching ordinal
values to importance, through the values of K is only for the practical purposes of making
gross comparisons and should not be taken literally.

Katz centrality significance for network Gror

f

-5 -2 0 2 5 ,6'0 AP‘ :5.% 2,.’\ _@,6 '\9 ,\?’ ,0‘63
Z-score
log(K)

Fig. 3 Distribution of Katz centrality Z-scores and the corresponding violin-plot. The distribution of Z-scores
of Katz centralities has also heavy tails (left) and large values of Z are obtained dominantly for large values of
Katz centrality, as shown by the violin-plot (right). The lateral width of the violins corresponds to the
frequency of the distribution, with the mean given in the middle bar and outer bars corresponding to the
standard deviation. The Katz centralities are shown on a logarithmic scale so that log K & —3 corresponds to
K ~ 0.1Kmax. Note the broadening of the distribution at log K > —3
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Finally, before turning on more detailed discussions concerning landmarks as based
on Katz centrality, we need to examine the robustness of the networks in respect to one
student’s contribution on the group-level knowledge. In order to test robustness of the
analysis for group level data we formed ten modified networks for each corresponding
periods and aggregated periods by removing the contribution of each single student in
turn. For each of these modified networks, Katz centrality was calculated using the same
weight « as in calculating Katz centralities for the original network. The Pearson corre-
lation coefficients p between Katz centralities of modified and original networks were
calculated. On this basis we formed a measure of the fragility &, which is the difference of
maximum (max) and minimum (min) correlation coefficient divided by the average (avr)
value of correlation coefficients

o — Pmax — Pmin
pavr

The fragility is thus a measure of relative importance of a single student’s contribution to

)

the distributions. Small value of fragility ® < 0.10 means that Katz centralities are essen-
tially unchanged by removal of one student’s contribution on the group level knowledge.
The largest fragility of ® = 0.20 corresponds to a situation (period gyi) where one student
contributed about 10% of all links. The fragility values for each network are summarised
in Table 2 and those reveal that the data is more fragile in periods gj-gi (0.04 < ® < 0.20)
than in aggregated periods Gi-Gyv (0.03 < @ < 0.16). In general, fragility is quite modest
and thus the analysis can be considered as quite robust.

The landmarks

The landmarks are recognised as globally central key nodes that have high Katz central-
ity K (and, correspondingly, high Katz efficiency E). In what follows, the focus of the
study shifts to networks Gj-Gyy and to corresponding periodic windows. The network
representing students’ knowledge shown in Fig. 1 is studied as periodised networks
Gi-Gry. In each period, certain landmarks emerge as summarised in Table 3.

Table 3 Landmarks in periodic windows G;-Gyy

G (1572-1848) Gy (1704-1900) Gy (1789-1914) Gyy (1848-1928)

K D Landmark K D Landmark K D Landmark K D Landmark
42 46 Newton 36 37 Frenchrevol 36 30 Ffaraday 31 30 Einstein

26 29  Galileo 22 30 Faraday 23 12 Electromagn 29 49 WWI

20 21 Empirmeth 18 17 Napoleon| 21 9 Ampere 25 22 Quantmech
20 15 Scientfcrevol .17 31 Steamengine .19 14  Electrcurr 23 18 Planck

19 14 Heliocntr wy 17 23 Indstrrevol 19 6 Oersted 21 15 deBroglie
18 11 Kepler 17 16 Electric curr 18 10 Volta pile 19 17 Bohr

17 14 Telescope 16 20 Marx 18 17 Maxwell A7 11 Schrodinger
A7 14 Gravit. law 1410 Ampere 17 10 Galvanomtr 15 8 Bomn

15 21 Brahe 1417 Voltaire 15 26 Frenchrevol .15 O  Heisenberg
a5 13 Gravity 1410  Volta pile .13 23 Nobel prize 13 25 Nobel prize
14 15 Bacon 13 14 Volta 13 16 Planck 1216 Bohr model
13 15 Descartes 1323 Franklin 13 6 Ampere law 1210 vonlaue

13 10 Kepler laws 13 12 Electromagn .12 17 Napoleon| 12 7 Energy

12 9 Royal soc 1219 Lavoisier A1 17 Einstein 11 21 Finland indp
1110 Hooke 129 Metric syst A1 6 Henry 11 7  Wave-partd

For each window, the 15 highest ranking (based on Katz centrality K) landmarks are given, with D indicating their degree centrality
The colligatory concepts of history are shown in boldface and persons in italics
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The results of the analysis show that in the networks that represent the students’ land-

scapes of history, the landmarks appear to be nearly always persons; the overall picture is

thus quite person-centred. However, some of the landmarks are colligatory, referring to

set of ideas or events, for example the Enlightenment and the Scientific Revolution, or the

French Revolution and World War I (see Table 3). The colligatory landmarks, understood

as colligatory concepts of history, are shown in boldface and persons in italics (as also in

Table 4). Although not as common as landmarks related to persons, the colligatory land-

marks have nevertheless a significant role in the network. This role is also evident in how

Table 4 Communities and landmarks in periods G, - Gy

Gl (1572-1848)

GII (1704-1900)

GlIl (1789-1914)

GIV (1848-1928)

% Landmark % Landmark % Landmark % Landmark
Community Community Community Community

A (6.4) E4.2) I (44) M (3.5)

6.5 Newton 52 Faraday 83 Faraday 7.1 Quant mech
4.1 Galileo 4.1 Electr curr 53 Electromagn 6.3 Planck

3.1 Empir meth 34 Ampere 47 Ampere 59 de Broglie

3.1 Scientfcrevol 3.2 Volta pile 44 Electr curr 56 Bohr

30 Heliocntr wv 32 Volta 43 Qersted 4.9 Schrodinger
2.8 Kepler 32 Franklin 42 Volta pile 45 Born

2.7 Telescope 3.1 Electromagn 338 Galvanomtr 43 Heisenberg
Community Community Community Community

B(1.1) F((3.3) J(1.7) N (2.3)

9.5 Frenchrevol 109 Frenchrevol 103 Maxwell 12.7 wWwi

83 Voltaire 48 Marx 6.4 Einstein 2.7 Arms race
36 Rousseau 43 Voltaire 5.7 von Laue 24 Versail trt
34 Marx 34 Rousseau 5.1 emg radiat 24 vHindenburg
3.1 Liberalism 32 Febr revol 49 S thrrelat 2.1 France

28 Encycloped 29 Vienna cng 4.5 Field 2.1 Tank

26 Humanrights 26 Encycloped 39 Maxwell egs 20 Assasint FrFr
Community Community Community Community

C(1.0) G(1.9 K(1.7) 0019

5.1 Faraday 9.2 Steam engn 8.8 Frenchrevol 167 Einstein

37 Electric curr 9.1 Industrrevol 7.1 Napoleon | 6.4 Energy

36 Ampere 6.3 Steam car 37 Gauss 47 G thrrelat
33 Volta pile 50 Watt 35 Finnish war 4.6 S thrrelat
32 Volta 36 Newcomen 35 Napolncwars 4.1 Photoel eff
30 Electromagn 35 Spinning J 3.1 Vienna cng 4.1 Mass-E eqv
29 Battery 34 Steam ship 26 Trafalgar bt 33 Fission
Community Community Community Community

D (0.9 H(0.9) L(1.2) P(1.7)

6.7 Steamengine 187 Napoleon | 10.8 Nobel price 8.0 Nobel prize
52 Industrrevol 10.2 Napolncwars 6.8 X-rays 74 von Laue

36 Steam car 79 Trafalgar bt 6.2 M. Curie 59 emg radiation
3.1 Watt 6.1 Finnish war 55 Roentgen 58 X-ray crystlgr
2.5 Steam ship 42 Alexander | 45 Becquerel 44 X-rays

25 Spinning J 40 Waterloo btl 4.0 P. Curie 33 M. Curie

23 Newcomen 33 Battles 36 Nernst 29 Roentgen

For each period, the four most extensive communities (in total 16, from A to P) are listed, with sum )" K of Katz centrality of all
nodes contained in it given in parenthesis. For each community A-P, the seven highest ranking landmarks are given, with %
indicating its contribution or relative Katz centrality within the community

The colligatory concepts of history are shown in boldface and persons in italics
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certain landmarks fade in or out when the periodic window changes. Such landmarks
apparently provide contiguity between different periods and act as bridges, connecting
themes and events.

A few landmarks are astonishingly luminary revealing a very strong impact on stu-
dents’ conception of history of science and history in general. For example, Newton has
a very central position in Gj, throughout 1572-1848, but gives eventually way to Fara-
day, who dominates Gy; and Gyj. Of colligatory luminaries, the French Revolution is the
most important from Gy to Gy;. Another question is if such a position is warranted or
rather an outcome of the way history is usually treated in various sources, textbooks and
popularisations. The role of landmarks in a ranking-based role as reported in Table 3, is
not, however, the complete picture. As is evident from Table 3, Newton has very high
Katz centrality, larger than the French Revolution, while in Gy; the French Revolution has
the largest Katz centrality and surpasses, for example, Faraday. On closer inspection, it
turns out that landmarks belong to different communities and within these communi-
ties they have roles not immediately derivable from Katz centrality alone. To explore the

community dependent role, we next turn to discuss the thematic communities.

Communities and landmarks

The network, as shown in Fig. 1, already reveals apparent modularity, and thus, commu-
nity structure is expected. To find out how communities emerge on a structural basis, we
have performed modularity optimisation. The Louvain method (Blondel et al. 2008) to
find communities reveals altogether 84 different communities in graphs Gy - Gy, in which
different communities in different graphs corresponding to different time periods share
common nodes. The community structure separated by colours and with most important
communities identified by alphabetic tags is shown in Fig. 4.

The community structure is summarised in more detail in Table 4, where the top seven
landmarks are listed for each of the four most important communities within each peri-
odisation. For the communities, the most important landmarks are those nodes that have
the highest values of centralities within their own community. In Table 4 the relative
importance of top landmarks is seen to be several times higher than most other landmarks
such as WW I or Napoleon I, which reflects the heavy-tailed distribution of the central-
ities of the landmarks, related to their global connectivity. On the other hand, in a few
communities the relative importance is quite similar for most of the top seven members,
as it is in community E and M.

The ranking of landmarks within thematic communities (Table 4) reveals a differ-
ent picture than that obtained by simple landmark ranking as shown in Table 3. Now,
within the communities, many colligatory concepts emerge as (colligatory) landmarks;
the overall picture of the history landscape is no longer so person-centred. Among
such colligatory landmarks we find landmarks related to cultural and societal changes
(i.e. the Scientific Revolution, the Industrial Revolution and Liberalism), to political
changes (e.g the Arms Race). In addition, several central historical events now become
visible as landmarks (e.g. the French Revolution, the February Revolution and WWTI).
In many cases, although communities are exclusive within a given period (i.e. there
is no overlap in landmarks), the same landmarks can appear in communities that
emerge in different periods. This, in fact, shows a temporal and thematic contiguity
between different periodical windows. In Table 4, for each of the periodical windows
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Fig. 4 Communities A-P in G-G. Communities A-P in G-Gyy are shown in different colours with the number
of communities #c given in the figure for each network. Note that the same colour in different networks does
not imply the same community in both networks

G1 - Gy the four most important communities (A-P) as discussed briefly in what
follows.

Community A of periodical window G; focuses on the Scientific Revolution. In it the
most luminous landmarks are Newton and Galileo Galilei. Two central ideas and inven-
tions are also included: the empirical method and the heliocentric model. This community
is the largest of all communities, and as such, rather self-contained in the sense that none
of the top five landmarks it contains appear in any other community.

Community B, which is the second largest in Gy, has the theme of general cultural and
political ideas, centralising on the French Revolution (and on the Enlightenment, although
it does not belong to the top five landmarks) and Liberalism. Therefore, in this community
Marx appears with Voltaire (and Rousseau). Landmarks which belong to this community
appear again in communities F of Gy and K of Gyjj.

Community C of Gy is about electricity. The person-type landmarks within it are Fara-
day, Ampeére and Volta, as one might expect. In this community, we also see the first signs
of scientific phenomena and technological inventions as landmarks: the electric current
and Volta’s pile. Community C is again encountered in a very similar guise in periodic
windows Gy and Gyjp but now, in both cases as a dominant community.

Community D of Gy is interesting because it is nearly entirely about technology: the
steam engine, the steam engine car, steam ships and the Technological Revolution. Appro-
priately, the person-type landmark of this community is James Watt. This community
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emerges again nearly intact as community G of Gy but then disappears from the top four
communities.

Communities E, F and G of Gyj are very similar to communities C, B and D, respec-
tively, contained in Gj. This means that when the periodic window is changed from
1572-1848 to 1704-1900, the community focused on the Scientific Revolution drops
out and communities related to the French Revolution, electricity and (steam) technol-
ogy attain the dominant role. Thus, we find in Gy only one genuinely new Community
H, which is about general history, related to the Napoleonic wars (and the Continental
Blockade, although it does not appear among the top five landmarks).

Communities I and K of Gyjj are again similar to the communities already encountered
in Gy and Gy;. Community I, which is similar to C and E, is again topmost, like E in Gy,
while K has shifted to a lower rank, comparable to its rank in G;. Community J of Gyyj is
divided into the topics of electromagnetism (Maxwell and electromagnetic radiation) and
the Special Theory of Relativity (Einstein and the Special Theory of Relativity), which can
be both tied to the concept of the electromagnetic field.

When the time window shifts towards more modern times, to 1928, Einstein, the Spe-
cial and General Theory of Relativity and other achievements of Einstein (energy as part
of energy-mass equivalence) as well as photoelectric effect form a new community O.
In Gy and Gyy, X-rays and radioactivity appear as community L (in Gyj) and commu-
nity P (in Gyv), both interestingly containing an institution: the Nobel prize. Community
M of Gyy covers the time window 1848-1928, where quantum mechanics appears and
takes the dominant position. This community, however, is very person centred. In Gry,
the second important community N is centred entirely on WW L

The communities above show very clear and strong thematisation. They also reveal a
landscape, in which the Scientific Revolution is a massive and solitary part of the land-
scape, the era of the Enlightenment to Liberalism is a patchwork interleaved with the
Industrial Revolution and the science of electricity covering the years 1704 up to final
years of 19th century and infused with a substantial portion of general history. The indi-
viduals who seem to arise as the most luminous landmarks are Newton, Galileo Galilei
and Faraday. The (thematic) communities show continuity in relation to periodisation and
the periodic windows. For example, community C, which is already present in Gj, gains
importance in Gy and Gy, where it is the highest ranking community. Similarly, commu-
nity B of Gy retains it rank in Gy, and community F is still present in Gy but as a lower
rank community. There is thus fading in and fading out of communities when the period-
ical window changes and approaches modern times. Such fading in and out is important
in maintaining the contiguity within sets of contiguous historical items and events.

The fading in out of thematic communities is also evident when landmarks contained
in the thematic communities are examined. As communities emerge around landmarks,
the fading in and out of landmarks provides complementary information for tracking
the importance of certain themes when periods and periodised windows on history are
changed. Figure 5 shows how the Katz centrality of certain landmarks change when they
are examined either in original periods g;-g,; and then in periodised windows Gi-Gyy. It is
now seen how, for example, luminous landmarks like Newton, Faraday and Maxwell fade
out as more modern times approach, but also how they are astonishingly persistent land-
marks, i.e. clearly important in how students scaffold their knowledge. When, on the other
hand, the fading in and out of such landmarks as Faraday, Einstein and the steam engine is
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Fading in and out of landmarks
0.4 1 X 0.4
% X
0.3 1 0.3 — Newton
Steam engine
X 0.2 1 X 024 —— Faraday
—— Einstein
0.14 0.1 —— Maxwell
0.01 0.0
[¢] Gii Giii Oiv Qv Ovi G| G|| G|\| G|\/
Original periods Periodic time windows

Fig. 5 Fading in and out of landmarks in periods g;-g,; and periodic windows G|-Gyy. Katz centralities of five
different landmarks from different periods are shown with crosses and estimates of the fading in and out
with curves

examined through periodisation, it becomes immediately clear how important such land-
marks are in connecting periods and in providing contiguity. This role of landmarks is
important for properly understanding the temporal duration of events.

The historic landscape and its landmarks as they appear through thematic communi-
ties and different periodic windows seem appropriate enough scaffolding for discussions
where the meaning of landmarks is elaborated and inspected from different perspectives.
The role of such landscape, first and foremost, is to provide a common scaffolding and
common themes for discussions on how to deepen our understanding of the connections
between the history of science and general history, and persons, ideas, inventions and
events which are part of them both.

Changes in thematic attributions of communities also provide interesting clues to how
students scaffold their knowledge of history. In the original task, the students expressed
in their evaluation whether an item they provided as a dyadic, thematically associated
connection, belongs to the history of science or general history. It is thus straightforward
to tag the items (nodes) in three exclusive groups: history of science (red), general history
(blue) or both (green). Based on the total Katz centrality of nodes in each group, we have
formed the thematic loading of community as relative fractions of total Katz centralities.
Now, when the network is divided into communities based on the optimisation of mod-
ularity, we can track how different communities are formed around landmarks and how
the three different thematic loads are visible in different communities. This, indirectly,
provides information about how the students conceive the thematic attributions and their
role in the big picture, in the historic landscape in its totality. The thematic loading of
communities reveals the role of landmarks changes within the community when the peri-
odic window changes and gradually approaches modern times. The changes in thematic
loadings are shown in more detail in Fig. 6, which displays how landmarks within different
communities with different thematic loadings are related to each other. In that figure, a
landmark in a given community is shown as having the same thematic loading as its com-
munity has, and the connection between landmarks represent the connectivity of their
communities.

Figure 6 shows how the landmarks corresponding to different communities fade in and
out in when periodisation moves towards more modern times, and how the thematisa-
tion loads of the landmarks change. The thematic loads of general history and history
of science are more balanced for earlier periods of G; and Gy than for the later period
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Grv, where the history of science becomes more separated from general history. The con-
nections between different thematic communities are also much denser in Gy and Gy in
comparison to Gry. Both findings show that clear segregation or separation of science his-
tory from general history (and cultural history as part of it) takes place. This, of course,
might reflect the objective historical evolution and professionalisation of science, but per-
haps even more how modern history of science is represented in textbooks and those
sources students have used. Nevertheless, the results show unambiguously that such a
separation is present in students’ conception of the history of science and general history.
This behaviour gives clues to how students acquire, select and integrate knowledge when
they have to deal with complex and information-rich situations.

Discussion and conclusions

We have here examined how the students’ initial ideas of how different characters in
the history of science, scientific ideas, inventions, and events in general history are con-
nected and how that knowledge forms a kind of history landscape. The data used as the

Page 19 of 24
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starting point consist simply of connected pairs of these items. Despite the apparent sim-
plicity, such pairwise associations are unexpectedly revealing when they are examined
as a connected set of (thematic) associations; the separate pairwise associations form a
tightly connected network. This connected network forms a kind of thematic associative
network of history on which the students are able locate the events; i.e. the knowledge
landscape of history. The advantages of such scaffolding for learning history has been
repeatedly pointed out, thus warranting an attempt to find out how such scaffolding may
appear and what it looks like.

The present study is an exercise in the cartography of students’ knowledge, based on the
utilisation of graph visualisation and certain centrality measures to locate the most essen-
tial elements of the history landscape. The property of interest in regard to the landscape,
is the global connectivity of knowledge items within the scaffolding. When the scaffold-
ing is represented as a network, such global connectivity can be quantified by counting
all the paths (or walks), where a node is connected to other nodes in the network. For
this Katz centrality provides a suitable measure. By using Katz centrality, we can find the
key nodes, i.e. landmarks, of the history landscape. The key findings of the analysis, to be
discussed in more detail in what follows, are:

e Degree and Katz centrality distributions are heavy-tailed.
e Landmarks are usually persons but colligatory landmarks also appear.
e Thematic communities emerge around landmarks and are historically relevant.

e Landmarks fade in and out meaningfully when the periodical window changes.

An interesting finding of the analysis is that networks, which represent students’ knowl-
edge landscapes, have clear hubs, seen as as heavy-tailed distributions of degree and Katz
centrality. The heavy-tail of degree distributions, when fitted with the inverse power law,
reveals exponents in the range of 1 to 2, value 1 corresponding to the usual Zipf law,
which is ubiquitous in word frequency ranking distributions and many linguistic networks
(Thompson and Kello 2014; Kemp and Tenenbaum 2008; Morais et al. 2013). Powers
from 1.5 to 2 are encountered in information and knowledge networks like Wikipedia and
in semantic networks resulting from acquiring knowledge (terms) from large knowledge
networks (Thompson and Kello 2014; Masucci et al. 2011). The heavy-tailed structure
of students’ knowledge, as it emerges at the group level, may then reflect the structure
of Wikipedia; students’ knowledge landscapes has a heavy-tailed distribution of degree
centrality of nodes (i.e. luminous nodes), because Wikipedia's pages have a heavy-tailed
degree centrality distribution (Masucci et al. 2011). Similarly, the community struc-
ture of the students’ knowledge landscape may also reflect the thematic organisation of
Wikipedia, through affecting the students’ landscapes owing to heuristic knowledge for-
aging strategy (Thompson and Kello 2014). However, it is important to note that students
do not forage for knowledge from Wikipedia in a random way, but for the purpose of
finding knowledge which is relevant to their task. Students make decisions about the rel-
evance of their choices; the retention process is not random but involves consideration.
This means that the outcome which students decide to express as pairwise connections,
and which eventually forms the network we have analysed here, is an outcome of two
independent processes, namely foraging for knowledge and making decisions about the
relevance of that knowledge. Another reason, however, is connected to the fact that
group-level knowledge is studied here; knowledge of individual students is aggregated or
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collated. In such situations, it is very common that although an individual student’s knowl-
edge network does not show a heavy-tailed structure, the collated knowledge network is
heavy tailed (Kemp and Tenenbaum 2008; Morais et al. 2013).

The landmarks (nodes that have high Katz centrality) of students’ knowledge landscapes
of history of science are nearly always persons, mainly scientists. The overall picture is
thus quite person-centred. This is perhaps a reflection of the biography-dominated his-
tory perspective that textbooks tend to offer (Leite 2002). Such a result suggests that
students’ history conception is dominated by persons who are seen to be superior to most
other scientists of the same era. The popularity and fame of certain heroic characters in
history is certainly one reason for the emergence of the heavy tails of centralities in the
network structure. One reason for strong person centred views may well be the way in
which textbooks and popularisations of science tend to present the role of “great scien-
tists” as heroic characters advancing science (Leite 2002), possibly reinforced also by the
picture of scientist in popular culture. Another reason for the centrality of persons might
well be related to how students make pairwise associations. The dominance of persons in
pairwise associations can be also seen as a sign of ease in using persons as cues to make
associative connections. In word association studies focusing on connections between
cue-words and target-words, it has been found that self-beliefs about ease of memori-
sation affect the ability to memorise the connections (Witherby and Tauber 2017). A
plausible assumption is that persons’ names are easier to retrieve from the memory than
colligatory concepts (like the Enlightenment) that refer to colligatory, connected set of
events. This connection is only a tentative here, though it is empirically testable.

Thematic communities and landmarks within them provide a more detailed picture of
the landmarks. The dominance of luminary persons as landmarks is diminished when we
consider the history landscape as periodised and a thematised structure, by dividing it into
periodic windows with different temporal durations and by finding communities within
these periodic windows. The community structure arises from the fact that networks are
not homogeneous but are thematically structured, consisting of clusters where connec-
tions between nodes within the clusters are denser than between nodes that belong to
other clusters. The communities have very high thematic coherence. Basically, modules
that are related to physics, technology and general history can be found. The emergence
of thematically meaningful and coherent communities is interesting, because no such
thematic ordering was part of the task; thematic ordering must arise from some inter-
nal, content-related but not explicitly visible or pre-fixed thematic family resemblance
between knowledge items that belong to the communities. The obvious assumption is that
this reflects the fact that the material students have used (mostly Wikipedia) is organised
according to thematic organising principles, as a network of hypertext. This structure,
then, guides students like an invisible hand to related knowledge items, so that most of
the thematic organisation is preserved and meaningful scaffolding emerges. The thematic
structure and thematic attributions thus play a crucial role in the organisation of stu-
dents’ knowledge and close attention to this should be paid in attempts to cartograph
students’ knowledge. Landmarks within the thematic communities, as they appear in stu-
dents’ knowledge landscape at the group level, also show historically meaningful fading in
and out when the window of periodisation is changed. Some thematic communities and
their landmarks (such as the French Revolution, the Industrial Revolution and Faraday)
show more persistence to changes in periodisation and thus reveal their importance in
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providing temporal continuity for students’ knowledge landscapes. Such landmarks and
thematic communities can be recognised as particularly central to students’ knowledge.

Finally, the results of the study have clear implications for the teaching of history of sci-
ence. The bias towards persons as landmarks contains a risk that the whole endeavour
of science is attributed to a few exceptionally talented and intelligent persons; a concep-
tion which easily leads overestimation of the role of famous scientists (Leite 2002). On
the other hand, when thematic communities are in focus, landmarks (and colligatory con-
cepts) include also the Scientific Revolution, the Enlightenment, the French Revolution
and the Industrial Revolution. Together with person landmarks the outcome is, after all,
a satisfactory knowledge landscape, which acts as adequate if not yet optimal scaffold-
ing for further discussions and elaborations. Some thematic groups and landmarks are,
however, clearly underrepresented and missing. One underrepresented group is scien-
tific institutions, like the Royal Society and the Academy of France, which are noted but
not among the landmarks. Another underrepresented landmark is Darwinism and Evo-
lution, which only have a small role in the group-level landscape. One would also expect
to find, for example, Explorations to the Pacific and the Arctic among the landmarks.
All these underrepresented landmarks would be desirable from the viewpoint of mod-
ern views about how “big picture” of history should be built not only around persons
but also around events of longer duration and of more complex nature (van Boxtel and
van Drie 2012; van Drie et al. 2009; van Drie and van Boxtel 2008). Clearly, in regard to
instructional strategies, a step to be taken is to guide students’ attention to areas which are
underrepresented in their knowledge landscapes, and to make them aware of the unwar-
ranted and strong bias there is towards a biographical and person-centred conception of
history. To provide a balanced picture the teaching of science history should therefore
develop approaches and scaffoldings where in addition to important persons, important
events, ideas and institutions also gain better visibility (van Boxtel and van Drie 2012; van
Drie et al. 2009; van Drie and van Boxtel 2008).

In summary, we propose a network-based approach to the analysis of students’ repre-
sentations of their conceptions of the interlinked nature of science history and general
history, as well as cultural history. Many features which remain undetected, or are iden-
tified only with difficulty by traditional methods, become accessible using networks to
represent how different facts are related, which of them are the most essential elements in
the networks, and to see what kinds of changes occur when we change the time window
on history. Such knowledge has a direct impact on the design and planning of education
and courses which could better address the need to facilitate a deeper understanding of
the related nature of science history and history in general.
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