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Abstract
This paper studies the driving forces behind the formation of ties within the major
communities in the Japanese nationwide network of production, which contains one
million firms and five million links between suppliers (“upstream" firms) and customers
(“downstream" firms). We apply the Infomap algorithm to reveal the hierarchical
structure of the production network. At the second level of the hierarchy, we find a
reasonable community resolution, where the community size distribution follows a
power law decay. Then, we estimate the tie formation within 100 communities of
different sizes. The studied model considers a large set of attributes, including both
endogenous attributes (network motifs, e.g., stars and triangles) and exogenous
attributes (economic variables, e.g., net sales and firm size). The estimation results show
that the considered model converges and presents a high goodness of fit (GoF) for all
communities. Moreover, it is found that the forces explaining the formation of links
between suppliers and customers differ among communities. Some attributes, such as
reciprocity, popularity, activity, location homophily, bank homophily and sales statistics,
are common drivers of internal link formation for most of the studied communities.
However, transitivity is rejected as a significant influencing factor for most
communities, reflecting an absence of a sense of trust and reliability between firms
with a common partner. Finally, we show that sector homophily does not serve as an
obvious mechanism of partnership at the community level in the production network.

Keywords: ERGM, Japanese production network, Tie-formation process, Infomap
algorithm, Network communities

Introduction
Recent economic phenomena, such as multiple unexpected global crises, have motivated
scientists to consider the economy as a complex system. Agents (households, banks,
firms, etc.) interact throughout economic networks, thereby determining and contribut-
ing to the emergence of macrofluctuations in the economy. The core of an economy is the
production network, in which firms exchange goods and services (intermediate goods)
and produce goods for consumption by final consumers (households or others). Such
networks were considered by Gabaix (2011) and Acemoglu et al. (2012), who showed
how idiosyncratic shocks at the microlevel lead to aggregated business cycle fluctuations.
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Beginning in the last decade (see, for example, (Axtell 2001)), many works on production
networks have emerged. Some works have looked at the topological characteristics of
production networks, while others have analyzed the dynamics of link formation between
“upstream" and “downstream" firms.
Several econophysics studies have characterized the topology of production networks,

such as the works of Axtell (2001) and Fujiwara and Aoyama (2010), who studied the
U.S. and Japanese production networks, respectively. The main findings in the literature
include disassortative mixing in addition to the scale-free nature of the degree distri-
bution and the Zipf distribution of the firm size. From another perspective, (Iino and
Iyetomi 2015) specified the topology of the supplier-customer network of Japan in terms
of its community structure. This analysis was extended by Chakraborty et al. (2018, 2019)
who showed that the topology of the Japanese production network is better fitted by a
walnut structure than by a bow-tie structure. This research was based on an analysis
of the hierarchical structure of the communities in the nationwide Japanese production
network.
Having identified the major empirical characteristics of production networks,

researchers have been faced with the challenge of understanding how these properties
emerge1. Addressing such research questions requires the estimation of link formation,
in which challenges arise due to the peer effect. These problems were enumerated by
Jackson et al. (2017); the major concerns are related to the identification problem2 and the
endogenous network problem3. Frank and Strauss (1986) proposed a flexible and pow-
erful class of models to deal with these problems: so-called exponential random graph
models (ERGMs).
ERGMs have the ability to incorporate multiple choice-based variables repre-

senting endogenous attributes (network-based variables) and exogenous attributes
(characteristic-based variables). Therefore, they can account for the interdependencies
arising from the peer effect problem. ERGMs have recently been applied to a wide
range of networks, such as brain networks (Simpson et al. 2011), disease networks (Rolls
et al. 2013), and a climate change hyperlink network (Haussler 2018). In the context of
production networks, most previous works have been limited to very small networks.
For example, Lomi and Pattison (2006) considered a network of 106 firms in the Italian
transportation sector, Lomi and Fonti (2012) studied a production network of 75 Ital-
ian companies involved in the production of machines for the manufacturing of ceramic
tiles and Molina-Morales et al. (2015) modeled a business network containing 36 Spanish
firms. All of these works demonstrated the effects of network-related attributes (such as
transitivity and mutuality) in explaining partnerships between suppliers and customers.
Krichene et al. (2018) were the first to study a large-scale production network, namely,
the Tokyo Stock Exchange production network (a production network composed of 3189
listed firms). They identified the roles of various endogenous and exogenous attributes in
the formation of ties between suppliers and customers.
In this paper, as a new contribution to this area, we propose a complementary study

building on previous works on the application of ERGMs to production networks. As
discussed previously, Chakraborty et al. (2018) extracted the hierarchical structure of
communities in the Japanese production network using the Infomap method introduced
by Rosvall and Bergstrom (2008). In this paper, we analyze the Japanese production net-
work at the community level. Most irreducible communities are found to belong to the
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second level of the hierarchy. This level provides a reasonable community resolution and
exhibits a power law decay in the community size distribution. The 100 largest commu-
nities, whose sizes vary between 100 and 2347 firms, are considered for the estimation of
the emergence mechanisms of their links by means of an ERGM.
Previous works have considered production networks based on industrial sectors to

model the tie-formation process (see, for example, Lomi and Pattison (2006), Lomi and
Fonti (2012) and Molina-Morales et al. (2015)). Chakraborty et al. (2018, 2019) showed
that it is not sufficient to classify firms in the production network of Japan according to
either the sector or the geography. Alternatively, the community structure, which is speci-
fied by complex properties based on the sector, geography and other economic attributes,
constitutes the most suitable way to represent clusters of suppliers and customers. In this
manuscript, our contribution is to understand the forces behind the formation of ties
based on the community structure rather than on sectoral or geographical clusters as in
the previous literature. Our main finding is that some attributes, such as reciprocity, loca-
tion homophily and bank homophily, are common drivers of the formation of ties within
communities, whereas the effects of some other attributes, such as transitivity and sector
homophily, are heterogeneous among different communities.
This paper is organized as follows. First, we present the data and the properties of the

hierarchical community structure of the Japanese production network. Then, we briefly
introduce the ERGM and describe the considered statistical model. Subsequently, simu-
lations are reported, and the estimation results are discussed. Finally, our conclusions and
research perspectives are discussed.

The hierarchical structure of the Japanese production network
The Japanese production network data set is commercially available from Tokyo Shoko
Research (TSR), Inc., one of the leading credit research agencies in Japan. TSR collects
information about the 24major suppliers and clients of each firm through questionnaires.
However, the number of suppliers and customers of each firm is not limited to 24 because
large firms are designated by many other firms as suppliers or customers. The resulting
production network (consisting of 1,247,521 firms and 5,488,484 links) is an unweighted
network representing the flow of goods and services from suppliers to customers. The
data set contains, for each firm, precise information about its geographic location, its sec-
torwise classification, its sales figures, its number of employees and its major bank. Each
geographic location is specified as one of the 47 Japanese prefectures, and the indus-
trial sectors are hierarchically categorized into 20 divisions, 99 major groups, 529 minor
groups and 1455 industries (Japan Standard Industrial Classification, November 2007,
Revision 12). Prior to performing community detection, the datamust be treated. Accord-
ingly, following the exclusion of inactive and failed firms and the elimination of self-loops
and parallel edges, the weakly connected giant component consisting of 1,066,037 firms
and 4,974,802 edges is considered to be the final production network (see (Chakraborty
et al. 2018)).
In the following subsections, we briefly present the community detection method and

the results obtained, which are described in more detail in Chakraborty et al. (2018).
Then, we present a descriptive analysis of the 100 communities selected to estimate the
formation of ties using an ERGM. The considered 100 communities contain the largest
Japanese firms in terms of sales, and represent all Japanese listed companies.
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The community detection method

Themap equationmethod introduced by Rosvall and Bergstrom (2008), popularly known
as “Infomap", is one of the best-performing algorithms (Lancichinetti and Fortunato
2009) for detecting communities in a large-scale network. Operating within the frame-
work of information theory, it generates a map to describe the dynamics across the
links and nodes of the network. The links in the network represent information flows
between nodes. The Infomap method provides an efficient coarse-grained description of
the information flows in the network and thus reveals the communities in the network by
providing a compressed description of the flows. The algorithm uses a random walk as
a proxy for information flow in the network. With this method, a subset of nodes in the
network in which the random walker spends a relatively long time can be identified as a
well-connected community.
The objective of the map equation method is to find an efficient code for minimizing

the length of the description of a random walk to generate a partition C dividing n nodes
into c communities. The average single-step description length is defined as

L(C) = q�H(Q) +
c∑

i=1
pi�H

(
P i) .

The first term in the above equation represents the entropy of intercommunity move-
ment, and the second term represents the entropy of intracommunity movement. The
notation q� represents the intercommunity switching probability of the random walker
for any given step, and H(Q) is the entropy of the codewords for the communities. The
weight pi� is the fraction of intracommunity movement in community i, including the
probability of exiting from the community, and H

(
P i) is the entropy of intracommunity

movement, including the exit code for community i.
The map equation method described above gives a two-level partition of the net-

work, i.e. the original network and its related community structure. This two-level map
equation method has a resolution limit problem. In fact, it is well known that there is no
two-level community detection method which is resolution limit free when applied to a
multi-level modular network, see Kawamoto and Rosvall (2015). Furthermore, it has been
extended to a hierarchical map equation method (Rosvall and Bergstrom 2011), which
can decompose a network into communities, subcommunities, sub-subcommunities and
so on4.

The hierarchy of communities

We have employed the hierarchical map equation method to reveal the communities in
the Japanese production network at different levels; the results are given in Table 1. Most
of the irreducible communities are found at the second level, and we further observe
that the community size distribution at this level is best fitted with a power law decay
(Chakraborty et al. 2018). The partition we considered is based on the sizes of the detected
communities. The first level contains very large communities which can be decomposed
further. The third, fourth and fifth levels contains many small communities, i.e. several
communities contain one firm, and then they are non-significant. In addition, most of
the communities cannot be decomposed beyond the second level. Moreover, most of the
subcommunites and 94% of the firms belong to the 2nd level communities. Because the
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Table 1 The numbers of communities identified at different levels of the Japanese production
network using the Infomap method

Level c cr nc

1 209 106 830

2 65,303 60,603 998,267

3 18,271 17,834 61,748

4 1,544 1,539 5,168

5 10 10 24

Total 85,337 80,092 1,066,037

c denotes the total number of communities. The number of irreducible communities, which are communities that do not contain
any subcommunities, is denoted by cr . nc denotes the number of firms in irreducible communities

sizes of the communities at this level also reflect a reasonable partition resolution, we
investigate the network structure at the second level of the hierarchy using an ERGM.

Properties of the considered communities

The second level of the hierarchy contains 65,303 communities. Approximately 1000 of
these communities have a size of more than 100 firms. Therefore, communities con-
sisting of fewer than 100 firms are not considered here because they are formed by
small firms in terms of sales and number of employee. From among the communities
of more than 100 firms, we selected the 100 most important communities in terms of
total sales to obtain the best representation of the Japanese production network. More-
over, the selected communities contain all the listed Japanese firms in the Tokyo Stock
Exchange which improve the economic representativeness of our sample. The selected
communities represent 16% of the total sales in the production network and contain all
listed firms. By referring to Gabaix (2011), the big firms in the economy explain the busi-
ness cycle fluctuation. Figure 1 shows the heterogeneity of the considered communities
in terms of size. On average, the community size is approximately 420.1 with a stan-
dard deviation of 441.8 (see Table 2 for details). We selected three statistics to describe
the communities shown in Table 2. The first statistic is the fraction of firms from the
same industrial sector, i.e., the number of pairs of firms from the same industrial sec-
tor divided by the community size. The second statistic is the fraction of firms with
the same geographic location, i.e., the number of pairs of firms in the same prefecture
divided by the community size. The third statistic is the fraction of firms with the same
major bank, i.e., the number of pairs of firms with the same major bank divided by the
community size.
The results in Table 2 suggest that these communities are characterized by different

levels of similarity in terms of their industrial sectors, geographic locations or banking
connections.

The exponential random graphmodel
An ERGM is a tie-based regression model that explains how links are formed
between nodes. For a network X = [ xij], an ERGM regresses the adjacency
matrix with a set of endogenous attributes za (network statistics) and exoge-
nous attributes ze (node characteristics). The canonical form of the ERGM is as
follows:
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Fig. 1 The size distribution of the studied communities. The size of a community is expressed as the total
number of firms of which it consists

Pr�(X = x) = 1
κ(�)

exp
(

∑

a
θa · za(x) +

∑

e
θe · ze(x)

)
, (1)

where x is a realization of X, � = (θa, θe) is a vector of parameters of endogenous
and exogenous attributes, and κ is a normalizing constant that ensures a proper dis-
tribution. Normalization is performed with respect to all possible network realizations,
as follows:

κ(�) ≡
∑

y∈X
exp

(
∑

a
θa · za(y) +

∑

e
θe · ze(y)

)
. (2)

It is technically impossible to explicitly determine Eq. 2 due to the large number
of possible network realizations, which increases exponentially with the number

Table 2 Summary of the properties of the considered communities

Mean Max Min std Total

Community size 420.1 2,347 100 441.8 42,011

Fraction from the same sector 73.6% 95.5% 27.2% 14.5% -

Fraction in the same location 89.7% 99.5% 62.3% 8.7% -

Fraction with the same bank 27.7% 84.5% 2.8% 24.3% -
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of nodes. For a directed network of n nodes, one would need to determine
all 4(

n
2) possible networks to calculate Eq. 2 and the true generation probabil-

ity of the network ties. Consequently, the use of Markov chain Monte Carlo
(MCMC) sampling techniques has been introduced in the literature (Snijders 2002).
Because of the high level of computational resources required for the Monte Carlo
simulation to estimate the parameters, we have implemented an ERGM estima-
tion method based on a fixed-density MCMC sampling approach (discussed in
Hunter et al. (2008)).
Accordingly, by estimating the parameters θa and θe, the normalization quantity κ(�) in

Eq. 2 can be approximated by the MCMC sampling approach, and the probability of link
formation Pr�(X = x) in Eq. 1 can be calculated. Appendix A presents the pseudo-code
of the implemented ERGM.

The ERGM algorithmwith fixed-density MCMC sampling

The idea is to estimate the parameters θa and θe such that the probability
Pr�(X = x) defined in Eq. 1 generates networks X that are consistent with the
observed network. We wish to solve the moment equation Eθ (z(X)) − z(xobs) = 0,
where z(X) represents the statistics of interest for a network X sampled with
the MCMC approach and z(xobs) represents the observed statistics for the real
network.
Our algorithm is based on the stochastic approximation method proposed by Snijders

(2002), which uses the Robbins-Monro algorithm for the maximum likelihood estima-
tion (MLE) of the ERGM. The algorithm is composed of three phases: initialization,
optimization and convergence (details are given in (Lusher et al. 2013)). The algorithm
can be summarized into two major steps that are repeated until convergence is reached
(Eθ (z(X)) − z(xobs) → 0):

1 Use � to generate a network X via MCMC sampling.
2 Update � to minimize the moment equation.

In the first step, it would be highly time consuming to approximate all possible
network realizations. Alternatively, in our code, we adopt the fixed-density MCMC
sampler discussed by Snijders (2002) and Hunter et al. (2008). The fixed-density
MCMC sampler randomly selects two dyads, namely, one null dyad (xij = 0)
and one non-null dyad (xij = 1). Then, with the Hastings probability, these dyads
are simultaneously toggled. Thus, the fixed-density MCMC sampler reduces the
number of possible networks considered by keeping the global number of edges
constant (L = Lobs).

Assumptions about the statistical model

In the considered ERGM, we consider different endogenous or network-dependent
attributes and exogenous or economic attributes. Attributes are selected by investigating
the properties of the Japanese production network and by referring to the economic prop-
erties of production networks highlighted in the literature as Gulati and Gargiulo (1999),
Lomi and Pattison (2006) and Lomi and Fonti (2012). In total, we consider 8 endogenous
attributes and 7 exogenous attributes.
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The endogenous attributes

Endogenous attributes are social-based attributes related to the network structure (see
Snijders et al. (2006) and Robins et al. (2007) for details about network motifs). The
motifs considered in our statistical model are given in Eq. 3. The zr statistic repre-
sents reciprocal links. It is expected that the probability of the emergence of a tie from
supplier i to customer j will increase if j is already a supplier of i. This has been shown
for several economic networks; see, for example, Gulati and Gargiulo (1999), Lomi and
Pattison (2006) and Lomi and Fonti (2012). The Japanese production network is charac-
terized by hubs; see Fujiwara and Aoyama (2010). Thus, ties are more probable for firms
with higher in-degrees and out-degrees, i.e., so-called popular and active firms, respec-
tively. This phenomenon was described in Lomi and Fonti (2012) as the trustworthiness
of firms, i.e., other firms will have more confidence in more active and popular firms.
This structure is modeled by the k-out-star (activity) and k-in-star (popularity) motifs
(see zstars in Eq. 3).
In addition, in a production network, there may be a correlation between a

firm’s activity and its popularity. A supplier with a larger number of customers
(out-degree, or popularity) will require more intermediate goods and thus may
have a larger number of suppliers (in-degree, or activity). Thus, to capture the
popularity-activity correlation, the k-two-path motif is considered in our model
(see zpath in Eq. 3).
Transitivity is a common property of social networks. In a production network, transi-

tivity implies a higher level of trust between firms with a common partner; see Gulati and
Gargiulo (1999). Accordingly, in the current model, we include four statistics of transitiv-
ity (k-triangles) based on the directionality of the edges: cyclic closure (AT-C), popularity
closure (AT-D), path closure (AT-T) and activity closure (AT-U). All these statistics follow
the ztriangles form given in Eq. 3.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zr =
∑

i,j:xij=xji=1
xij

zstars =
N−1∑

k=2
(−1)k · Sk

λk−2

zpath = P1 − 2 · P2
λ

N−2∑

k=3

(−1
λ

)k−1
· Pk

ztriangles = 3 · T1 +
N−3∑

k=1
(−1)k · Tk+1

λk

(3)

In Eq. 3, Sk is the number of stars (either in- or out-stars) of order k, Pk is the number
of two-paths of order k, and Tk is the number of triangles (AT-C, AT-T, AT-U or AT-D)
of order k. The functional forms of these statistics were discussed in Snijders et al. (2006)
as an alternative to the Markov assumption for an ERGM to ensure convergence. Eco-
nomically, the use of these geometric forms decreases the impact of higher-order motifs
on the partnering decisions of firms. With regard to k-stars (zstars), we suppose that
firms cannot have complete information about the numbers of suppliers and customers
of all other firms. Thus, even if one supplier has 100 clients, a new potential client is
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mainly influenced by a set of only a few clients. The same supposition holds for transitiv-
ity (k-triangles). For the k-two-path motif, we suppose that the correlation between the
in-degree and out-degree has a certain saturation. In fact, when a firm establishes a con-
tract with a new customer, it will not necessarily also look for a new supplier. Instead,
the most probable case is that the firm will base its trade expansion strategy on its
inventory.
Figure 4 in Appendix B presents a graphical illustration of the endogenous attributes

considered in our model.

The exogenous attributes

As discussed previously, the process of tie formation between suppliers and customers
is very complex and can depend on attributes other than the network motifs. The
financial situation of the firm, the prices of the intermediate goods, and the reli-
ability of the potential partner are some of the multiple economic attributes that
can encourage two firms to become partners. Due to data limitations, some assump-
tions are required to select the most significant attributes for the Japanese production
network.
Table 1 shows the similarities within the production network communities in

terms of industrial sectors, geographic locations and major banks. At the commu-
nity level, the formation of links between suppliers and customers can be stim-
ulated by the homophily of these attributes; for example, the probability of link
emergence between firms from the same community increases if they also have a
common major bank. Thus, the sector homophily, geographic homophily and bank
homophily are all considered in our model as follows: homophily = ∑

i,j xijI(yi = yj),
where I(yi = yj) is an indicator function for the similarity between two attributes
yi and yj. For sector homophily, the industrial level is considered, and for geo-
graphic homophily, the prefecture in which the head office of the firm is located is
considered.
Moreover, firms are expected to choose partners based on wealth and size. The wealth

of a firm is approximated as its total sales, while its size is represented by its num-
ber of employees, which is more stable over time (we note that large firms may realize
poor profits or sales). These statistics are considered in terms of heterophily (sales het-
erophily and size heterophily) to see whether firms of similar wealth or size are more
likely to be connected. The heterophily statistics are calculated as

∑
i,j xij|yi − yj|. In addi-

tion, the activity and popularity attributes, introduced as endogenous attributes, can
exert complementary sales sender/receiver effects. These statistics reflect the potential
of a firm to gain more clients (sender effect) or more suppliers (receiver effect) as its
sales increase. The sales sender/receiver effects are expressed as

∑
i,j xijyi and

∑
i,j xijyj,

respectively.

ERGM simulations and estimated results
Simulations of the ERGM were carried out in parallel for all communities using the K
computer5. For each community i, 100 simulations were performed to test the robustness
and significance of the estimated parameters �̂i. Based on the obtained estimates, for each
community i, 100 networks were sampled to validate our model in terms of the goodness
of fit (GoF) ratio proposed by Hunter et al. (2008).
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Only the results for the three largest communities are presented in Table 3 for model
validation because of the impossibility of displaying the GoFs for all 100 communi-
ties. High GoF values were also achieved for all other communities with the proposed
statistical model.

Mechanisms of tie formation within the communities of the Japanese production network

The estimation results are presented in Figs. 2 and 3 and Table 4. The results are
heterogeneous among communities, indicating the existence of different tie-formation
mechanisms in the supply chain network of Japan at the community level. Figures 2 and
3 show the probability density functions of the estimated endogenous and exogenous
parameters, respectively, across the 100 considered communities in the Japanese produc-
tion network. Table 4 summarizes these results by means of seven columns presenting
the average, maximum and minimum values and standard deviations of the parameters
and the percentages of nonsignificant, significant positive, and significant negative effects.
We note that the average values shown in column two of Table 4 are not considered to

Table 3 GoF analysis: Comparison between real and simulated networks

Attributes Community 1 Community 2 Community 3

Real Sim. Real Sim. Real Sim.

Endogenous attributes:

Reciprocity 156.0 136.5 89.0 81.2 74.0 63.4
- (1.89) - (1.19) - (1.96)

Popularity (k-in-stars) 2068.0 1895.3 2053.0 1978.3 1968.6 1934.1
- (1.89) - (1.88) - (0.61)

Activity (k-out-stars) 359.0 343.6 527.0 497.3 414.0 381.6
- (1.54) - (1.60) - (1.63)

k-two-paths 5000.8 4708.7 608.3 591.9 5773.1 5606.3
- (1.64) - (0.53) - (1.94)

Cyclic closure (AT-C) 228.2 241.1 89.9 85.2 104.1 119.6
- (-0.64) - (0.37) - (-1.11)

Path closure (AT-T) 4772.6 4467.5 518.4 506.7 5669.0 5486.7
- (1.71) - (0.42) - (1.97)

Activity closure (AT-U) 4818.3 4547.7 473.5 487.1 5584.6 5473.8
- (1.69) - (-0.51) - (1.18)

Popularity closure (AT-D) 600.6 737.4 286.2 354.6 579.1 673.7
- (-1.93) - (-1.81) - (-1.17)

Exogenous attributes:

Sector homophily 600.0 651.8 1,073.0 1119.7 322.0 295.8
- (-1.17) - (-1.30) - (1.19)

Location homophily 849.0 787.2 703.0 688.7 2218.0 2096.7
- (1.67) - (0.30) - (1.46)

Bank homophily 60.0 53.1 39.0 35.0 84.0 82.2
- (1.68) - (1.40) - (0.41)

Size heterophily 7.76 · 108 7.99 · 108 7.28 · 106 8.19 · 106 4.25 · 107 4.69 · 107
- (-0.10) - (-0.26) - (-0.90)

Sales heterophily 2.73 · 1011 2.65 · 1011 1.48 · 1011 1.43 · 1011 4.41 · 1012 4.29 · 1012
- (1.10) - (1.78) - (1.46)

Sales receiver effect 7.56 · 109 8.65 · 109 2.00 · 109 2.56 · 109 4.91 · 1010 5.30 · 1010
- (-1.59) - (-1.30) - (-0.83)

Sales sender effect 2.74 · 1011 2.64 · 1011 1.48 · 1011 1.44 · 1011 4.41 · 1012 4.33 · 1012
- (1.37) - (1.44) - (0.98)

The networks represented here are the three largest communities considered from the second level of the hierarchical structure
of the Japanese production network. The sizes of communities 1, 2 and 3 are 2,347, 2,249 and 2,173, respectively. The values given
in parentheses represent the GoF ratio calculated as described by Hunter et al. (2008)
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Fig. 2 The probability density functions of the estimated parameters � for the endogenous attributes.
Estimates were obtained for the 100 considered communities at the second level of the hierarchical structure
of the Japanese production network. These graphs are used to illustrate the distribution of the results,
thereby highlighting the negative, positive and nonsignificant values of �. However, these graphs are not
used to compare the values of � between communities since they have different sizes

be estimates for the global production network; they are given only for illustration. The
significance was estimated using the Wald test, for which a Wald ratio of ≥ 2 indicates
a significant parameter (see Lusher et al. (2013)). The significance tests were applied
independently for each community.

The effects of endogenous attributes

Based on Table 4, some endogenous attributes have the same effect on all communities.
In particular, reciprocity has a significant positive effect on 80% of our sample (in 15%,
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Fig. 3 The probability density functions of the estimated parameters θ for the exogenous attributes.
Estimates were obtained for the 100 considered communities at the second level of the hierarchical structure
of the Japanese production network. These graphs are used to illustrate the distribution of the results,
thereby highlighting the negative, positive and nonsignificant values of �. However, these graphs are not
used to compare the values of � between communities since they have different sizes

reciprocity has no effect on the emergence of new relations between suppliers and cus-
tomers). Thus, in 80% of the communities, there is a high chance of the emergence of a
link from a supplier to a customer if the reverse relation exists. A few communities (5%)
show a negative effect of reciprocity on the appearance of new links between firms. These
five communities are characterized by an absence of reciprocal links; three of them have
2 reciprocal links, one has 0 reciprocal links, and one has 4 reciprocal links. Thus, the
observed negative effect can be interpreted as an absence of mutual partnerships.
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The popularity (k-in-stars) is the attribute with the most significant endogenous effect
considered in our sample, with a significant positive effect on the emergence of new links
in 92% of the communities. Thus, popular firms (firms with high in-degrees) are likely to
become even more popular, i.e., suppliers have higher confidence in popular customers.
Similarly, the activity (k-out-stars) has a significant negative effect in 86% of the commu-
nities. This finding indicates the existence of an upper bound on the number of customers
that a supplier can have. This bound may be related to the production capacity of the sup-
plier in terms of intermediate goods, i.e., a supplier cannot have an unlimited number of
customers.
On the other hand, k-triangles are only weakly present. In fact, transitive coopera-

tion is not common in the considered communities of the Japanese production network.
Popularity closure (AT-D), cyclic closure (AT-C), activity closure (AT-U) and path closure
(AT-T) all show nonsignificant or significant negative effects in 94%, 90%, 63% and 60%
of the communities, respectively. Thus, aside from a few special cases, transitive coop-
eration is not a property of the studied communities. Production competition between
firms may reduce their trust level and thus their inclination toward business cooperation.
Similarly, Fujiwara and Aoyama (2010) showed an absence of significant clustering in the
Japanese production network by comparing the real clustering to the level of clustering
that would be generated by chance.
The k-two-path statistic is nonsignificant for 60% of the considered communities. In

some communities (28%), there is a positive correlation between in-degree and out-
degree. Accordingly, more popular (active) firms are more likely to be more active
(popular). Thus, we can expect the formation of communities with hubs that simulta-
neously have many suppliers and many customers. In other communities (12%), there
is a negative correlation between in-degree and out-degree. Economically, such a sce-
nario could be explained as a community consisting of firms producing raw capital goods
(firms at the top of the upstream channel) and firms producing goods for final con-
sumption (firms at the bottom of the downstream channel, selling to the household
market).

The effects of exogenous attributes

Location homophily is the most important exogenous factor in explaining the emergence
of links at the community level. Table 4 shows that 91% of the considered commu-
nities exhibit a significant positive location homophily. Thus, the factor of distance is
very important to strategic partnership decisions among Japanese firms. Moreover, bank
homophily is the second most important factor. In 80% of the considered communi-
ties, the existence of a common major bank increases the probability that two firms will
be connected. Surprisingly, sector homophily has only a limited influence on the emer-
gence of links at the community level. In 41% of cases, a common industrial sector has
no significant effect on the existence of partnerships between suppliers and customers,
whereas 42% of the communities show significant sector-based selection in the formation
of partnerships between Japanese firms. However, 17% of the communities show sector
heterophily. This sector heterophily could be related to two possible scenarios: commu-
nities with highly diversified activities (firms need heterogeneous intermediate goods for
production) or communities with sector homophily saturation (there is an upper bound
on the formation of new links with firms from the same sector).
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Although the firm size (number of employees) has a clearly nonsignificant effect on
tie emergence, the sales volume may explain, in some cases, the formation of connec-
tions between suppliers and customers. In 79% of the considered communities, there is
a significant positive sales heterophily, which implies that firms with lower production
activity are more likely to be connected to firms with higher production activity. The sales
receiver effect has a significant positive presence in 78% of the communities, in line with
our finding concerning the popularity effect (k-in-stars). Thus, firms with higher produc-
tion activity are more likely to receive intermediate goods from multiple suppliers. By
contrast, the sales sender effect has a significant negative presence in 48% of the commu-
nities, in line with the previously discussed upper bound on the number of customers that
a supplier can have, as indicated by the results for the activity statistic (k-out-stars).

Analysis of several special cases

We focus on the three largest communities at the second level of the hierarchical struc-
ture of the Japanese production network. Figure 5 in Appendix C shows the sectoral and
geographical properties of these communities. The estimation results are given in Table 5,
which shows that reciprocity, popularity, activity, location homophily, bank homophily
and sales statistics are the common attributes thatmotivate the emergence of partnerships
between suppliers and customers at the community level.
By contrast, the effect of transitivity depends on the properties of the community. In

Table 5, community 2 shows a significant positive cyclic closure effect, which reflects
an economy based on the exchange of general goods. However, community 3 shows a
significant negative cyclic closure effect, and community 1 displays a nonsignificant effect.
Communities 1 and 3 are also characterized by a significant positive effect of activity
closure (AT-U), which means that two suppliers of the same firm, who might be assumed

Table 5 Estimation results for the three largest communities considered from the second level of
the hierarchical structure of the Japanese production network

Attributes Community 1 Community 2 Community 3

Endogenous attributes: �MLE sig. �MLE sig. �MLE sig.

Reciprocity 2.50 + 3.52 + 3.31 +
Popularity (k-in-stars) 8.25 + 6.23 + 7.80 +
Activity (k-out-stars) -1.71 + -1.69 + -1.45 +
k-two-paths 0.07 + 0.08 − 0.07 +
Cyclic closure (AT-C) -0.06 − 0.39 + -0.19 +
Path closure (AT-T) 0.07 + 0.07 − 0.08 +
Activity closure (AT-U) 0.05 + -0.17 + 0.05 +
Popularity closure (AT-D) -0.55 + -0.87 + -0.47 +
Exogenous attributes: �MLE sig. �MLE sig. �MLE sig.

Sector homophily -0.42 + -0.33 + 0.41 +
Location homophily 0.65 + 1.27 + 0.37 +
Bank homophily 1.88 + 3.26 + 1.92 +
Size heterophily 1.73.10−09 − − 4.18.10−08 − − 1.56.10−07 +
Sales heterophily 2.58.10−08 + 5.27.10−08 + 1.56.10−09 +
Sales receiver effect 2.81.10−08 + 5.61.10−08 + 1.76.10−09 +
Sales sender effect − 6.23.10−09 + − 1.86.10−08 + − 5.76.10−10 +
The sizes of communities 1, 2 and 3 are 2,347, 2,249 and 2,173, respectively. A parameter is considered significant for a Wald ratio
of ≥2. Significance is rejected for a Wald ratio of <2. The entry in the significance column (sig.) is ′+′ if the parameter is
significant and ′−′ otherwise
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to be competitors, are more likely to be partners. The economy in such a community may
be regarded as a cooperative economy. By contrast, community 2 presents a significant
negative estimate of the activity closure effect (-0.17), which implies that the firms are in
competition and that suppliers of the same firm cannot be partners.
Community 3 shows a significant positive sector homophily (0.41), indicating that firms

from the same sector are more likely to be connected. However, in communities 1 and 3, a
significant negative sector homophily is observed. As seen from Table 3, community 1 has
600 links between firms from the same sector, community 2 has 1073 links between firms
from the same sector, and community 3 has 322 links between firms from the same sector.
These statistics represent densities of sector homophily of 10%, 25% and 5%, respectively,
in each community. Thus, we cannot conclude that sector heterophily exists in communi-
ties 1 and 2. However, link saturationmay be present, as explained in the previous section,
which would decrease the probability of the emergence of new links between suppliers
and customers from the same industrial sector. By contrast, in some other communities
with a negative sector homophily, we find a low density of links between firms from the
same industrial sector (fewer than 0.5%). In these cases, we can confirm the presence of
sector heterophily.

Discussion and concluding remarks
This paper has presented a comparative analysis among communities in the Japanese
nationwide production network. The communities show heterogeneous rules driving the
formation of their internal ties. It has been shown that reciprocity, popularity, activity,
location homophily, bank homophily and sales statistics constitute the common forces
driving the formation of internal links within most of the studied communities. By
contrast, transitivity is rejected as a motivation for connections between suppliers and
customers in most communities. Accordingly, the phenomena of trustworthiness and
reliability related to common partners that have been found in other studies of production
networks, such as those of Gulati and Gargiulo (1999), Lomi and Pattison (2006), Lomi
and Fonti (2012) and Krichene et al. (2018), cannot be confirmed at the community level.
Moreover, it was expected that sector homophily would be one of the main driving forces
of tie formation at the community level, as shown for the TSE production network by
Krichene et al. (2018). However, through the ERGM estimation at the community level, it
has been shown that sector homophily is not always a significant factor for tie formation
in communities of the Japanese production network.
The tie-formation process based on the geographic location and sales confirms the well-

known gravity model, as is discussed in the ERGM application by (Koskinen and Lomi
2013). However, we have shown that more complex features can explain the emergence
of partnerships between suppliers and customers. In addition, the introduction of the
network topology into the model captures the social-based effects not reflected by the
economic attributes; this is shown by the mutual partnerships and by the high number of
partners connected to hub companies.
Our presented results help policymakers to understand the organization between sup-

pliers and customers in the production network of Japan. In fact, the way of how firms
are organized reflects the origins of the economic dependencies between firms as it was
discussed in Krichene et al. (2017), which is in the origin of multiple systemic economic
risks.
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Although this work contributes to research on production networks, some limitations
must be discussed to pave the way for future work. First of all, the results may depend on
the community detection technique applied, i.e., the community structure may change
depending on the applied algorithm, which may affect the results of ERGM estimation.
However, our choice of the Infomap algorithm was based on previous discussions such as
those presented by (Rosvall and Bergstrom 2008), who showed that Infomap is suitable for
networks with flows between nodes (flows of goods and services, in the case of production
networks), and by (Lancichinetti and Fortunato 2009), who considered Infomap to be one
of the best-performing algorithms on large-scale networks.
Another limitation of this work concerns the neglect of intercommunity links. Indeed,

the entire production network of Japan contains more than one million firms. An ERGM
cannot be used for the estimation of such an enormous network due to major limitations
of computational feasibility. In addition, a network of such size can result in serious prob-
lems of degeneracy. Stivala et al. (2016) used the snowball sampling technique to estimate
a large-scale network with an ERGM. This technique consists of sampling multiple sub-
networks of moderate size, estimating their ERGMs and then performing estimation for
the whole network via meta-analysis. Stivala et al. (2016) successfully applied this algo-
rithm to a randomnetwork of 40,000 nodes. However, this technique is not suitable for the
estimation of a real network such as the Japanese nationwide production network because
of the scale-free topology of this network (see Fujiwara and Aoyama (2010)) and the mul-
tiple hubs it contains, which would cause the sampling results to be biased. Accordingly,
focusing on the community level is an efficient way to begin to investigate the driving
forces behind the formation of supplier-customer relationships. Future research will fol-
low the recent work of Byshkin et al. (2018), who are working on speeding up MCMC
sampling (see Byshkin et al. (2016)). In their recent work, these authors used an ERGM to
perform estimation for a large-scale network of 104,103 nodes.

Endnotes
1Although our interest is focused on production networks, these topics have also been

studied in the context of other networks, such as brain networks, WWW networks, and
biological networks.

2 In an interactive influence system, what behaviors should be specified in the estima-
tion model?

3The presence of a link between two agents could be due to unobservable behaviors.
4 The hierarchical map equation method from http://www.mapequation.org/ is used in

this study to reveal the hierarchical communities in the large-scale Japanese production
network.

5 The K computer is the first 10-petaflop supercomputer; it was developed by RIKEN
and Fujitsu under a Japanese national project. The system includes 82,944 compute nodes
connected by Tofu high-speed interconnects. For more details, see (Yamamoto et al.
2014).

6 https://github.com/hazem2410/SEPNET

Appendix A: Pseudo-code for the ERGM algorithm
The C++ code is publicly available on Github6. It can be used for any production network
following our defined statistical model. Other attributes can be added by the user in order
to estimate another statistical model.

http://www.mapequation.org/
https://github.com/hazem2410/SEPNET
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Algorithm 1 The fixed-density Markov chain Monte Carlo sampler: This algorithm
allows sampling of networks based on the parameters �s. It is called in the following
algorithm
1: θa, θe updated by the stochastic approximation Algorithm 2
2: || for i = 1 : Mmax do
3: → while(False) do
4: ⇒ Select one null dyad: xij = 0
5: ⇒ Calculate the change probability of adding a link between i, j : xij = 1:

P+ = exp
(
θa.z+a + θe.z+e

)

6: ⇒ #Comment: z+a , z+e are the change statistics
7: ⇒ #Comment: e.g., if za is the total number of edges; z+a = +1
8: ⇒ With the probability P+, accept the change, then: True
9: → repeat until (True)

10: → while(False) do
11: ⇒ Select one non-null dyad: xij = 1
12: ⇒ Calculate the change probability deleting a link between i and j : xij = 0:

P− = exp
(
θa.z−a + θe.z−e

)

13: ⇒ #Comment: z−a , z−e are the change statistics
14: ⇒ #Comment: e.g., if ze is the total sector homophily and i and j belong to the

same sector, z−e = −1
15: ⇒ With the probability P−, accept the change, then: True
16: → repeat until (True)
17: || End for

Algorithm 2 The stochastic approximation algorithm: This algorithm updates the value
of the parameters �s until the convergence
1: Initialize θ0 = (θa; θe) = (0; 0)
2: || for i = 1 : M0 do
3: → GenerateM0 networks from Algorithm 1
4: || End for
5: Zobs is the vector of real network statistics
6: #Comment: Total number of edges, total number of triangles, etc.
7: E is the vector of the average of theM0 simulated network statistics
8: D is the covariance matrix of theM0 simulated network statistics
9: || for i = 1 : Mmax do

10: → Generate one network from Algorithm 1 with the values of θt−1
11: → Update θt = θt−1 − a × D−1

0 × (Z − Zobs)

12: → #Comment: Z is the vector of simulated network statistics
13: || repeat until convergence or End For #Comment: If “End For" is reached without

convergence, the algorithm is considered as non-converging, and further specifica-
tion of the statistical model are required (add or discard endogenous and exogenous
attributes).
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Appendix B: The endogenous network statistics

Fig. 4 Illustrations of the different considered network statistics. More detailed explanations can be found in
Lusher et al. (2013)
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Appendix C: Characterizations of the three largest communities

a b

c d

e f

Fig. 5 Characterizations of the three largest communities based on their sectors of activity and their
geographic locations: community 1 (top), community 2 (middle) and community 3 (bottom)
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