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Abstract
Electronic healthcare records contain large volumes of unstructured data in different
forms. Free text constitutes a large portion of such data, yet this source of richly
detailed information often remains under-used in practice because of a lack of suitable
methodologies to extract interpretable content in a timely manner. Here we apply
network-theoretical tools to the analysis of free text in Hospital Patient Incident reports
in the English National Health Service, to find clusters of reports in an unsupervised
manner and at different levels of resolution based directly on the free text descriptions
contained within them. To do so, we combine recently developed deep neural
network text-embedding methodologies based on paragraph vectors with multi-scale
Markov Stability community detection applied to a similarity graph of documents
obtained from sparsified text vector similarities. We showcase the approach with the
analysis of incident reports submitted in Imperial College Healthcare NHS Trust,
London. The multiscale community structure reveals levels of meaning with different
resolution in the topics of the dataset, as shown by relevant descriptive terms extracted
from the groups of records, as well as by comparing a posteriori against hand-coded
categories assigned by healthcare personnel. Our content communities exhibit good
correspondence with well-defined hand-coded categories, yet our results also provide
further medical detail in certain areas as well as revealing complementary descriptors
of incidents beyond the external classification. We also discuss how the method can be
used to monitor reports over time and across different healthcare providers, and to
detect emerging trends that fall outside of pre-existing categories.

Keywords: Text embedding, Topic clustering, Graph theory, Unsupervised
multi-resolution clustering, Markov Stability partition algorithm

Introduction
The vast amounts of data collected by healthcare providers in conjunction with modern
data analytics techniques present a unique opportunity to improve health service pro-
vision and the quality and safety of medical care for patient benefit (Colijn et al. 2017).
Much of the recent research in this area has been on personalised medicine and its aim
to deliver better diagnostics aided by the integration of diverse datasets providing com-
plementary information. Another large source of healthcare data is organisational. In the
United Kingdom, the National Health Service (NHS) has a long history of documenting
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extensively the different aspects of healthcare provision. The NHS is currently in the pro-
cess of increasing the availability of several databases, properly anonymised, with the aim
of leveraging advanced analytics to identify areas of improvement in NHS services.
One such database is the National Reporting and Learning System (NRLS), a cen-

tral repository of patient safety incident reports from the NHS in England and Wales.
Set up in 2003, the NRLS now contains more than 13 million detailed records. The
incidents are reported using a set of standardised categories and contain a wealth
of organisational and spatio-temporal information (structured data), as well as, cru-
cially, a substantial component of free text (unstructured data) where incidents are
described in the ‘voice’ of the person reporting. The incidents are wide ranging: from
patient accidents to lost forms or referrals; from delays in admission and discharge
to serious untoward incidents, such as retained foreign objects after operations. The
review and analysis of such data provides critical insight into the complex functioning
of different processes and procedures in healthcare towards service improvement for
safer carer.
Although statistical analyses are routinely performed on the structured component of

the data (dates, locations, assigned categories, etc), the free text remains largely unused
in systematic processes. Free text is usually read manually but this is time-consuming,
meaning that it is often ignored in practice, unless a detailed review of a case is under-
taken because of the severity of harm that resulted. There is a lack of methodologies that
can summarise content and provide content-based groupings across the large volume
of reports submitted nationally for organisational learning. Methods that could provide
automatic categorisation of incidents from the free text would sidestep problems such as
difficulties in assigning an incident category by virtue of a priori pre-defined lists in the
reporting system or human error, as well as offering a unique insight into the root cause
analysis of incidents that could improve the safety and quality of care and efficiency of
healthcare services.
Our goal in this work is to showcase an algorithmic methodology that detects content-

based groups of records in a given dataset in an unsupervised manner, based only on
the free and unstructured textual description of the incidents. To do so, we combine
recently developed deep neural-network high-dimensional text-embedding algorithms
with network-theoretical methods. In particular, we apply multiscale Markov Stability
community detection to a sparsified geometric similarity graph of documents obtained
from text vector similarities. Our method departs from traditional natural language
processing tools, which have generally used bag-of-words (BoW) representation of doc-
uments and statistical methods based on Latent Dirichlet Allocation (LDA) to cluster
documents (Blei et al. 2003). More recent approaches have used deep neural network
based language models clustered with k-means, without a full multiscale graph analysis
(Hashimoto et al. 2016). There have been some previous applications of network theory
to text analysis. For example, Lanchichinetti and co-workers (Lancichinetti et al. 2015)
used a probabilistic graph construction analysed with the InfoMap algorithm (Rosvall
et al. 2009); however, their community detection was carried out at a single-scale and
the representation of text as BoW arrays lacks the power of neural network text embed-
dings. The application of multiscale community detection allows us to find groups of
records with consistent content at different levels of resolution; hence the content cate-
gories emerge from the textual data, rather than fitting with pre-designed classifications.
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The obtained results could thus help mitigate possible human error or effort in finding
the right category in complex category classification trees.
We showcase the methodology through the analysis of a dataset of patient incidents

reported to the NRLS. First, we use the 13 million records collected by the NRLS since
2004 to train our text embedding (although a much smaller corpus can be used). We then
analyse a subset of 3229 records reported from StMary’s Hospital, London (Imperial Col-
lege Healthcare NHS Trust) over three months in 2014 to extract clusters of incidents
at different levels of resolution in terms of content. Our method reveals multiple levels
of intrinsic structure in the topics of the dataset, as shown by the extraction of relevant
word descriptors from the grouped records and a high level of topic coherence. Origi-
nally, the records had been manually coded by the operator upon reporting with up to
170 features per case, including a two-level manual classification of the incidents. There-
fore, we also carried out an a posteriori comparison against the hand-coded categories
assigned by the reporter (healthcare personnel) at the time of the report submission. Our
results show good overall correspondence with the hand-coded categories across resolu-
tions and, specifically, at themedium level of granularity. Several of our clusters of content
correspond strongly to well-defined categories, yet our results also reveal complementary
categories of incidents not defined in the external classification. In addition, the tuning of
the granularity afforded by themethod can be used to provide a distinct level of resolution
in certain areas corresponding to specialised or particular sub-themes.

Multiscale graph partitioning for text analysis: description of the framework
Our framework combines text-embedding, geometric graph construction and multi-
resolution community detection to identify, rather than impose, content-based clusters
from free, unstructured text in an unsupervisedmanner. Figure 1 shows a summary of our
pipeline. First, we pre-process each document to transform text into consecutive word

Fig. 1 Pipeline for data analysis including the training of the text embedding model and the graph-based
unsupervised clustering of documents at different levels of resolution to find topic clusters only from the free
text descriptions of hospital incident reports from the NRLS database
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tokens, where words are in their most normalised forms, and some words are removed
if they have no distinctive meaning when used out of context (Bird et al. 2009; Porter
1980). We then train a paragraph vector model using the Doc2vec framework (Le and
Mikolov 2014) on the whole set (13 million) of preprocessed text records, although train-
ing on smaller sets (1 million) also produces good results (Table 1). This training step is
only done once. This Doc2Vec model is subsequently used to infer high-dimensional vec-
tor descriptions for the text of each of the 3229 documents in our target analysis set. We
then compute a matrix containing pairwise similarities between any pair of document
vectors, as inferred with Doc2vec. This matrix can be thought of as a full, weighted graph
with documents as nodes and edges weighted by their similarity. We sparsify this graph
to the union of a minimum spanning tree and a k-Nearest Neighbors (MST-kNN) graph,
a geometric construction that removes less important similarities but preserves global
connectivity for the graph and, hence, for the dataset. The derived MST-kNN graph is
analysed with Markov Stability (Delvenne et al. 2010; Lambiotte et al. 2014), a multi-
resolution dynamics-based graph partitioning method that identifies relevant subgraphs
(i.e., clusters of documents) at different levels of granularity. Markov Stability uses a dif-
fusive process on the graph to reveal the multiscale organisation at different resolutions
without the need for choosing a priori the number of clusters, scale or organisation. To
analyse a posteriori the different partitions across levels of resolution, we use both visual-
isations and quantitative scores. The visualisations include word clouds to summarise the
main content, graph layouts, as well as Sankey diagrams and contingency tables that cap-
ture the correspondences across levels of resolution and relationships to the hand-coded
classifications. The partitions are also evaluated quantitatively to score: (i) their intrin-
sic topic coherence (using pairwise mutual information (Newman et al. 2009; Newman
et al. 2010)), and (ii) their similarity to the operator hand-coded categories (using nor-
malised mutual information (Strehl and Ghosh 2003)). We now expand on the steps of
the computational framework.

Data description

The full dataset includes more than 13 million confidential reports of patient safety inci-
dents reported to the National Reporting and Learning System (NRLS) between 2004 and
2016 fromNHS trusts and hospitals in England andWales. Each record hasmore than 170
features, including organisational details (e.g., time, trust code and location), anonymised
patient information, medication and medical devices, among other details. The records
are manually classified by operators to a two-level system of categories of incident type.

Table 1 Benchmarking of text corpora used for Doc2Vec training

Hyper-parameters NRLS Wikipedia

Window Size Minimum Count Subsampling 1M 2M 13M+ 5M+

15 5 0.001 765 755 836 531

5 5 0.001 807 775 798 580

5 20 0.001 801 785 809 587

5 20 0.00001 - - 379 465

15 20 0.00001 - - 387 424

A Doc2Vec model was trained on three corpora of NRLS records of different sizes and a corpus of Wikipedia articles using a variety
of hyper-parameters. The scores represent the quality of the vectors inferred using the corresponding model, i.e., the number of
correct assignments out of 1500. Boldface identifies the best computational result
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In particular, the top level contains 15 categories including general groups such as ‘Patient
accident’, ‘Medication’, ‘Clinical assessment’, ‘Documentation’, ‘Admissions/Transfer’ or
‘Infrastructure’ alongside more specific groups such as ‘Aggressive behaviour’, ‘Patient
abuse’, ‘Self-harm’ or ‘Infection control’. In most records, there is also a detailed descrip-
tion of the incident in free text, although the quality of the text is highly variable. Our
analysis set for clustering is the group of 3229 records reported during the first quarter of
2014 at St. Mary’s Hospital in London (Imperial College Healthcare NHS Trust).

Text preprocessing

Text preprocessing is important to enhance the performance of text embedding. We
applied standard preprocessing techniques in natural language processing to the raw text
of all 13 million records in our corpus. We normalise words into a single form and remove
words that do not carry significant meaning. Specifically, we divide our documents into
iterative word tokens using the NLTK library (Bird et al. 2009) and remove punctuation
and digit-only tokens. We then apply word stemming using the Porter algorithm (Porter
1980; Willett 2006). If the Porter method cannot find a stemmed version for a token, we
apply the Snowball algorithm (Porter 2001). Finally, we remove any stop-words (repeat
words with low content) using NLTK’s stop-word list. Although some of the syntactic
information is reduced due to text preprocessing, this process preserves and consolidates
the semantic information of the vocabulary, which is of relevance to our study.

Text embedding

Computational methods for text analysis rely on a choice of a mathematical represen-
tation of the base units, such as character n-grams, words or documents of any length.
An important consideration for our methodology is an attempt to avoid the use of
labelled data at the core of many supervised or semi-supervised classification methods
(Agirre et al. 2016; Cer et al. 2017). In this work, we use a representation of text documents
in vector form following recent developments in the field.
Classically, bag-of-words (BoW) methods were used to obtain representations of the

documents in a corpus in terms of vectors of term frequencies weighted by inverse
document frequency (TF-iDF). While such methods provide a statistical description of
documents, they do not carry information about the order or proximity of words to each
other since they regard word tokens in an independent manner with no semantic or
syntactic relationships considered. Furthermore, BoW representations tend to be high-
dimensional and sparse, due to large sizes of word dictionaries and low frequencies of
many terms.
Recently, deep neural network languagemodels have successfully overcome certain lim-

itations of BoW methods by incorporating word neighbourhoods in the mathematical
description of each term. PV-DBOW (Paragraph Vector - Distributed Bag of Words),
also known as Doc2Vec (Le and Mikolov 2014), is such a model which represents any
length of word sequences (i.e. sentences, paragraphs, documents) as d-dimensional vec-
tors, where d is a user-defined parameter (typically d = 300). Training a Doc2Vec
model starts with a random d-dimensional vector assignment for each document in the
corpus. A stochastic gradient descent algorithm iterates over the corpus with the objec-
tive of predicting a randomly sampled set of words from each document by using only
the document’s d-dimensional vector (Le and Mikolov 2014). The objective function
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being optimised by PV-DBOW is similar to the skip-gram model in Refs. (Mikolov et al.
2013a, b). Doc2Vec has been shown (Dai et al. 2014) to capture both semantic and
syntactic characterisations of the input text outperforming BoW models, such as LDA
(Blei et al. 2003).
Here, we use the Gensim Python library (Rehurek and Sojka 2010) to train the PV-

DBOWmodel. The Doc2Vec training was repeated several times with a variety of training
hyper-parameters to optimise the output based on our own numerical experiments and
the general guidelines provided by Lau and Baldwin (2016). We trained Doc2Vec models
using text corpora of different sizes and content with different sets of hyper-parameters,
in order to characterise the usability and quality of models. Specifically, we checked the
effect of corpus size on model quality by training Doc2Vec models on the full 13 mil-
lion NRLS records and on subsets of 1 million and 2 million randomly sampled records.
(We note that our target subset of 3229 records has been excluded from these samples.)
Furthermore, we checked the importance of the specificity of the text corpus by obtain-
ing a Doc2Vec model from a generic, non-specific set of 5 million articles fromWikipedia
representing standard English usage across a variety of topics.

Benchmarking of the Doc2Vec training. We benchmarked the Doc2Vec models by
scoring how well the document vectors represent the semantic topic structure: (i) calcu-
lating centroids for the 15 externally hand-coded categories; (ii) selecting the 100 nearest
reports for each centroid; (iii) counting the number of incident reports (out of 1500) cor-
rectly assigned to their centroid. The results in Table 1 show that training on the highly
specific text in the NRLS records is an important ingredient in the successful vectorisa-
tion of the documents, as shown by the degraded performance for the Wikipedia model
across a variety of training hyper-parameters. Our results also show that reducing the
size of the corpus from 13 million to 1 million records did not affect the benchmark-
ing dramatically. This robustness of the results to the size of the training corpus was
confirmed further with the use of more detailed metrics, as discussed below in section
“Robustness of the results and comparison with other methods ’’.
Based on our benchmarking, we use henceforth (unless otherwise noted) the optimised

Doc2Vec model obtained from the 13+ million NRLS records with the following hyper-
parameters: {training method = dbow, number of dimensions for feature vectors size =
300, number of epochs = 10, window size = 15, minimum count = 5, number of negative
samples = 5, random down-sampling threshold for frequent words = 0.001 }. As an indi-
cation of computational cost, the training of the model on the 13 million records takes
approximately 11 h (run in parallel with 7 threads) on shared servers.

Graph construction

Once the Doc2Vec model is trained, we use it to infer a vector for each of the N = 3229
records in our analysis set. We then construct a normalised cosine similarity matrix
between the vectors by: computing the matrix of cosine similarities between all pairs of
records, Scos; transforming it into a distance matrix Dcos = 1 − Scos; applying element-
wise max norm to obtain D̂ = ‖Dcos‖max; and normalising the similarity matrix Ŝ = 1−D̂
which has elements in the interval [ 0, 1].
The similarity matrix can be thought of as the adjacency matrix of a fully connected

weighted graph. However, such a graph contains many edges with small weights reflecting
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weak similarities—in high-dimensional noisy datasets even the least similar nodes present
a substantial degree of similarity. Such weak similarities are in most cases redundant, as
they can be explained through stronger pairwise similarities present in the graph. These
weak, redundant edges obscure the graph structure, as shown by the diffuse, spherical
visualisation of the full graph layout in Fig. 2a.
To reveal the graph structure, we obtain a MST-kNN graph from the normalised sim-

ilarity matrix (Veenstra et al. 2017). This is a simple sparsification based on a geometric
heuristic that preserves the global connectivity of the graph while retaining details about
the local geometry of the dataset. TheMST-kNN algorithm starts by computing the mini-
mum spanning tree (MST) of the full matrix D̂, i.e., the tree with (N−1) edges connecting
all nodes in the graph with minimal sum of edge weights (distances). The MST is com-
puted using the Kruskal algorithm implemented in SciPy (Jones et al. 2001). To this MST,
we add edges connecting each node to its k nearest nodes (kNN) if they are not already
in the MST. Here k is a user-defined parameter. The binary adjacency matrix of the MST-
kNN graphs, EMST-kNN, is Hadamard-multiplied with Ŝ to give the adjacency matrix A of
the weighted, undirected sparsified graph. The MST-kNNmethod avoids a direct thresh-
olding of the weights in Ŝ, and obtains a graph description that preserves local geometric
information together with a global subgraph (the MST) that captures properties of the
full dataset.
The network layout visualisations in Fig. 2b–e give an intuitive picture of the effect of

the sparsification. The highly sparse graphs obtained when the number of neighbours k
is very small are not robust. As k is increased, the local similarities between documents
induce the formation of dense subgraphs (which appear closer in the graph visualisation
layout). When the number of neighbours becomes too large, the local structure becomes
diffuse and the subgraphs lose coherence, signalling the degradation of the local graph
structure. Figure 2 shows that the MST-kNN graph with k = 13 presents a reasonable
balance between local and global structure. Relatively sparse graphs that preserve impor-
tant edges and global connectivity of the dataset (guaranteed here by the MST) have
computational advantages when using community detection algorithms.
The MST-kNN construction has been reported to be robust to the selection of the

parameter k due to the guaranteed connectivity provided by the MST (Veenstra et al.
2017). In the following, we fix k = 13 for our analysis with the multi-scale graph

Fig. 2 Planar layouts using the ForceAtlas2 algorithm (Jacomy et al. 2014) of some of the similarity graphs
generated from the dataset of 3229 records. Each node represents a record and is coloured according to its
hand-coded, external category to aid visualisation of the structure. Note that the external categories are not
used to produce our content-driven multi-resolution clustering in Fig. 3. a Layout for the full, weighted
normalised similarity matrix Ŝ without MST-kNN applied. b–e show the layouts of the graphs generated from
the data with the MST-kNN algorithm with an increasing level of sparsity: k = 17, 13, 5, 1 respectively. The
structure of the graph is sharpened for intermediate values of k, and we choose k = 13 for our analysis here
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partitioning framework, but we have scanned values of k ∈ [1, 50] in the graph
construction from our data and have found that the construction is robust as long
as k is not too small (i.e., k > 13). The detailed comparisons are shown in section
“Robustness of the results and comparison with other methods ’’.
The MST-kNN construction has the advantage of its simplicity and robustness, and

the fact that it balances the local and global structure of the data. However, the area of
network inference and graph construction from data, and graph sparsification is very
active, and several alternative approaches exist based on different heuristics, e.g., Graph-
ical Lasso (Friedman et al. 2008), Planar Maximally Filtered Graph (Tumminello et al.
2005), spectral sparsification (Spielman and Srivastava 2011), or the Relaxed Minimum
Spanning Tree (RMST) (Beguerisse-Diaz et al. 2013). We have experimented with some
of those methods and obtained comparable results. A detailed comparison of sparsifica-
tion methods as well as the choice of distance in defining the similarity matrix Ŝ is left for
future work.

Multiscale graph partitioning

The area of community detection encompasses a variety of graph partitioning approaches
which aim to find ‘good’ partitions into subgraphs (or communities) according to differ-
ent cost functions, without imposing the number of communities a priori (Schaub et al.
2017). The notion of community thus depends on the choice of cost function. Commonly,
communities are taken to be subgraphs whose nodes are connected strongly within
the community with relatively weak inter-community edges. Such structural notion is
related to balanced cuts. Other cost functions are posed in terms of transitions inside
and outside of the communities, usually as one-step processes (Rosvall et al. 2009).
When transition paths of random walks of all lengths are considered, the concept of
community becomes intrinsically multi-scale, i.e., different partitions can be found to
be relevant at different time scales leading to a multi-level description dictated by the
transition dynamics (Delvenne et al. 2010; Schaub et al. 2012a; Lambiotte et al. 2014).
This leads to the framework of Markov Stability, a dynamics-based, multi-scale com-
munity detection methodology, which can be shown to recover seamlessly several well-
known heuristics as particular cases (Delvenne et al. 2010; Delvenne et al. 2013; Lambiotte
et al. 2008).
Here, we apply Markov Stability to find partitions of the similarity graph A at differ-

ent levels of resolution. The subgraphs detected correspond to clusters of documents
with similar content. Markov Stability (MS)1 is an unsupervised community detection
method that finds robust and stable partitions under the evolution of a continuous-
time diffusion process without a priori choice of the number or type of communities
or their organisation (Delvenne et al. 2010; Schaub et al. 2012a; Lambiotte et al. 2014;
Beguerisse-Díaz et al. 2014). In simple terms, it can be understood by analogy to a drop
of ink diffusing on the graph under a diffusive Markov process. The ink diffuses homo-
geneously unless the graph has some intrinsic structural organisation, in which case the
ink gets transiently contained, over particular time scales, within groups of nodes (i.e.,
subgraphs or communities). The existence of this transient containment signals the pres-
ence of a natural partition of the graph. As the process evolves, the ink diffuses out of
those initial communities but might get transiently contained in other, larger subgraphs.
By analysing this Markov dynamics over time, MS detects the structure of the graph
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across scales. The Markov time t thus acts as a resolution parameter that allows us
to extract robust partitions that persist over particular time scales, in an unsupervised
manner.
Given the adjacency matrix AN×N of the graph obtained as described previously, let

us define the diagonal matrix D = diag(d), where d = A1 is the degree vector. The
random walk Laplacian matrix is defined as LRW = IN − D−1A where IN is the identity
matrix of size N, and the transition matrix (or kernel) of the associated continuous-time
Markov process is P(t) = e−tLRW, t > 0 (Lambiotte et al. 2014). For each partition, a
binary membership matrix HN×C maps the N nodes into C clusters. We can then define
the C × C clustered autocovariance matrix:

R(t,H) = HT [�P(t) − ππT ]H (1)

where π is the steady-state distribution of the process and � = diag(π). The element
[R(t,H)]αβ quantifies the probability that a random walker starting from community α

will end in community β at time t, subtracting the probability that the same event occurs
by chance at stationarity.
We then define our cost function measuring the goodness of a partition over time t,

termed the Markov Stability of partition H :

r(t,H) = trace [R(t,H)] . (2)

A partition H that maximises r(t,H) is comprised of communities that preserve the
flow within themselves over time t, since in that case the diagonal elements of R(t,H) will
be large and the off-diagonal elements will be small. For details, see Delvenne et al. (2010),
Schaub et al. (2012a), Lambiotte et al. (2014) and Bacik et al. (2016).
MS searches for partitions at each Markov time that maximise r(t,H). Although

the maximisation of (2) is an NP-hard problem (hence with no guarantees for global
optimality), there are efficient optimisation methods that work well in practice. Our
implementation here uses the Louvain Algorithm (Blondel et al. 2008; Lambiotte et al.
2008) which is efficient and known to give good results when applied to benchmarks.
To obtain robust partitions, we run the Louvain algorithm 500 times with different ini-
tialisations at each Markov time and pick the best 50 with the highest Markov Stability
value r(t,H). We then compute the variation of information (Meilă 2007) of this ensemble
of solutions VI(t), as a measure of the reproducibility of the result under the optimisa-
tion. In addition, the relevant partitions are required to be persistent across time, as given
by low values of the variation of information between optimised partitions across time
VI(t, t′). Robust partitions are thus indicated by Markov times where VI(t) shows a dip
and VI(t, t′) has an extended plateau, indicating consistent results from different Louvain
runs and validity over extended scales (Bacik et al. 2016; Lambiotte et al. 2014).

Visualisation and interpretation of the results

Graph layouts: We use the ForceAtlas2 (Jacomy et al. 2014) layout to represent the
graph of 3229 NRLS Patient Incident reports. This layout follows a force-directed iter-
ative method to find node positions that balance attractive and repulsive forces. Hence
similar nodes tend to be grouped together on the planar layout. We colour the nodes
by either hand-coded categories (Fig. 2) or multiscale MS communities (Fig. 3). Spatially
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Fig. 3 The top plot presents the results of the Markov Stability algorithm across Markov times, showing the
number of clusters of the optimised partition (red), the variation of information VI(t) for the ensemble of
optimised solutions at each time (blue) and the variation of Information VI(t, t′) between the optimised
partitions across Markov time (background colourmap). Relevant partitions are indicated by dips of VI(t) and
extended plateaux of VI(t, t′). We choose five levels with different resolutions (from 44 communities to 3) in
our analysis. The Sankey diagram below illustrates how the communities of documents (indicated by
numbers and colours) map across Markov time scales. The community structure across scales present a
strong quasi-hierarchical character—a result of the analysis and the properties of the data, since it is not
imposed a priori. The different partitions for the five chosen levels are shown on a graph layout for the
document similarity graph created with the MST-kNN algorithm with k = 13. The colours correspond to the
communities found by MS indicating content clusters

consistent colourings on this layout imply good clusters of documents in terms of the
similarity graph.

Tracking membership through Sankey diagrams: Sankey diagrams allow us to visu-
alise the relationship of node memberships across different partitions and with respect
to the hand-coded categories. In particular, two-layer Sankey diagrams (e.g., Fig. 4)
reflect the correspondence between MS clusters and the hand-coded external cate-
gories, whereas the multilayer Sankey diagram in Fig. 3 represents the results of the
multi-resolution MS community detection across scales.

Normalised contingency tables: In addition to Sankey diagrams between our MS clus-
ters and the hand-coded categories, we also provide a complementary visualisation as
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Fig. 4 Summary of the 44-community found with the MS algorithm in an unsupervised manner directly from
the text of the incident reports, as seen in Fig. 3. To interpret the 44 content communities, we have
compared them a posteriori to the 15 external, hand-coded categories (indicated by names and colours). This
comparison is presented in two equivalent ways: through a Sankey diagram showing the correspondence
between categories and communities (left); and through a normalised contingency table based on z-scores
(right). The communities have been assigned a content label based on their word clouds presented in
Figure Additional file 1 in the SI

heatmaps of normalised contingency (z-score) tables, e.g., Fig. 4. This allows us to com-
pare the relative association of content clusters to the external categories at different
resolution levels. A quantification of this correspondence is provided by the NMI score
introduced in Eq. (5).

Word clouds of increased intelligibility through lemmatisation: Ourmethod clusters
text documents according to their intrinsic content. This can be understood as a type of
topic detection. To understand the content of the clusters, we use Word Clouds as basic,
yet intuitive, tools that summarise information from a group of documents. Word clouds
allow us to evaluate the results and extract insights when comparing a posteriori with
hand-coded categories. They can also provide an aid for monitoring results when used by
practitioners.
The stemming methods described in the “Text preprocessing” section truncate words

severely. Such truncation enhances the power of the language processing computational
methods, as it reduces the redundancy in the word corpus. Yet when presenting the
results back to a human observer, it is desirable to report the content of the clusters with
words that are readily comprehensible. To generate comprehensible word clouds in our
a posteriori analyses, we use a text processing method similar to the one described in
(Schubert et al. 2017). Specifically, we use the part of speech (POS) tagging module from
NLTK to leave out sentence parts except the adjectives, nouns, and verbs.We also remove
less meaningful common verbs such as ‘be’, ‘have’, and ‘do’ and their variations. The resid-
ual words are then lemmatised and represented with their lemmas in order to normalise
variations of the same word. Once the text is processed in this manner, we use the Python
library wordcloud2 to create word clouds with 2 or 3-gram frequency list of common
word groups. The results present distinct, understandable word topics.
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Quantitative benchmarking of topic clusters

Although our dataset has attached a hand-coded classification by a human operator, we
do not use it in our analysis and we do not consider it as a ‘ground truth’. Indeed, one of our
aims is to explore the relevance of the fixed external classes as compared to the content-
driven groupings obtained in an unsupervised manner. Hence we provide a double route
to quantify the quality of the clusters by computing two complementary measures: an
intrinsic measure of topic coherence and a measure of similarity to the external hand-
coded categories, defined as follows.

Topic coherence of text: As an intrinsic measure of consistency of word associa-
tion without any reference to an external ‘ground truth’, we use the pointwise mutual
information (PMI) (Newman et al. 2009; Newman et al. 2010). The PMI is an information-
theoretical score that captures the probability of being used together in the same group
of documents. The PMI score for a pair of words (w1,w2) is:

PMI(w1,w2) = log
P(w1w2)

P(w1)P(w2)
(3)

where the probabilities of the words P(w1), P(w2), and of their co-occurrence P(w1w2) are
obtained from the corpus. To obtain the aggregate ̂PMI for the graph partition C = {ci}
we compute the PMI for each cluster, as the median PMI between its 10 most common
words (changing the number of words gives similar results), and we obtain the weighted
average of the PMI cluster scores:

̂PMI(C) =
∑

ci∈C

ni
N

median
wk ,w�∈Si

k<�

PMI(wk ,w�), (4)

where ci denotes the clusters in partition C, each with size ni; N = ∑

ci∈C ni is the total
number of nodes; and Si denotes the set of top 10 words for cluster ci.
We use this ̂PMI score to evaluate partitions without requiring a labelled ground truth.

The PMI score has been shown to perform well (Newman et al. 2009, 2010) when com-
pared to human interpretation of topics on different corpora (Newman et al. 2011; Fang et
al. 2016), and is designed to evaluate topical coherence for groups of documents, in con-
trast to other tools aimed at short forms of text. See Agirre et al. (2016), Cer et al. (2017),
Rychalska et al. (2016), and Tian et al. (2017) for other examples.

Similarity between the obtained partitions and the hand-coded categories: To com-
pare against the external classification a posteriori, we use the normalised mutual
information (NMI), a well-used information-theoretical score that quantifies the similar-
ity between clusterings considering both the correct and incorrect assignments in terms
of the information (or predictability) between the clusterings. The NMI between two
partitions C and D of the same graph is:

NMI(C,D) = I(C,D)√
H(C)H(D)

=
∑

c∈C
∑

d∈D
p(c, d) log

p(c, d)

p(c)p(d)√
H(C)H(D)

(5)

where I(C,D) is the Mutual Information and H(C) andH(D) are the entropies of the two
partitions.
The NMI is bounded (0 ≤ NMI ≤ 1) with a higher value corresponding to higher

similarity of the partitions (i.e., NMI = 1 when there is perfect agreement between
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partitions C andD). TheNMI score is directly related3 to the V-measure used in the com-
puter science literature (Rosenberg and Hirschberg 2007). We use the NMI to compare
the partitions obtained by MS (and other methods) against the hand-coded classification
assigned by the operator.

Application to the analysis of hospital incident reports
Multi-resolution community detection extracts content clusters at different levels of

granularity

We appliedMarkov Stability across a broad span of Markov times (t ∈ [0.01, 100] in steps
of 0.01) to the MST-kNN similarity graph of N = 3229 incident records. At each Markov
time, we ran 500 independent optimisations of the Louvain algorithm and selected the
optimal partition at each time. Repeating the optimisation from 500 different initial
starting points enhances the robustness of the outcome and allows us to quantify the
robustness of the partition to the optimisation procedure. To quantify this robustness, we
computed the average variation of information VI(t) (a measure of dissimilarity) between
the top 50 partitions for each t. Once the full scan across Markov time was finalised, a
final comparison of all the optimal partitions obtained was carried out, so as to assess if
any of the optimised partitions was optimal at any otherMarkov time, in which case it was
selected. We then obtained the VI(t, t′) across all optimal partitions found across Markov
times to ascertain when partitions are robust across levels of resolution. This layered pro-
cess of optimisation enhances the robustness of the outcome given the NP-hard nature of
MS optimisation, which prevents guaranteed global optimality.
Figure 3 presents a summary of our analysis. We plot the number of clusters of the

optimal partition and the twometrics of variation of information across all Markov times.
The existence of a long plateau in VI(t, t′) coupled to a dip in VI(t) implies the presence
of a partition that is robust both to the optimisation and across Markov time. To illustrate
the multi-scale features of the method, we choose several of these robust partitions, from
finer (44 communities) to coarser (3 communities), obtained at five Markov times and
examine their structure and content. We also present a multi-level Sankey diagram to
summarise the relationships and relative node membership across the levels.
The MS analysis of the graph of incident reports reveals a rich multi-level structure

of partitions, with a strong quasi-hierarchical organisation, as seen in the graph layouts
and the multi-level Sankey diagram. It is important to remark that, although the Markov
time acts as a natural resolution parameter from finer to coarser partitions, our process
of optimisation does not impose any hierarchical structure a priori. Hence the observed
consistency of communities across level is intrinsic to the data and suggests the existence
of content clusters that naturally integrate with each other as sub-themes of larger the-
matic categories. The detection of intrinsic scales within the graph provided by MS thus
enables us to obtain clusters of records with high content similarity at different levels of
granularity. This capability can be used by practitioners to tune the level of description to
their specific needs.

Interpretation of MS communities: content and a posteriori comparison with hand-coded

categories

To ascertain the relevance of the different layers of content clusters found in the MS anal-
ysis, we examined in detail the five levels of resolution presented in Fig. 3. For each level,
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we prepared word clouds (lemmatised for increased intelligibility), as well as a Sankey
diagram and a contingency table linking content clusters (i.e., graph communities) with
the hand-coded categories externally assigned by an operator. We note again that this
comparison was only done a posteriori, i.e., the external categories were not used in our
text analysis. The results are shown in Figs. 4, 5, and 6 (and Supplementary Figures in
Additional file 1–Additional file 2) for all levels.
The partition into 44 communities presents content clusters with well-defined char-

acterisations, as shown by the Sankey diagram and the highly clustered structure of the
contingency table (Fig. 4). The content labels for the communities were derived by us from
the word clouds presented in detail in the Supplementary Information (Figure in Addi-
tional file 1 in the SI). Compared to the 15 hand-coded categories, this 44-community
partition provides finer groupings of records with several clusters corresponding to
sub-themes or more specific sub-classes within large, generic hand-coded categories.
This is apparent in the external classes ‘Accidents’, ‘Medication’, ‘Clinical assessment’,
‘Documentation’ and ‘Infrastructure’, where a variety of subtopics are identified corre-
sponding to meaningful subclasses (see Figure in Additional file 1 for details). In other
cases, however, the content clusters cut across the external categories, or correspond to
highly specific content. Examples of the former are the content communities of records
from labour ward, chemotherapy, radiotherapy and infection control, whose reports are
grouped coherently based on content by our algorithm, yet belong to highly diverse exter-
nal classes. At this level of resolution, our algorithm also identified highly specific topics

Fig. 5 Analysis of the results of the 12-community partition of documents obtained by MS based on their
text content and their correspondence to the external categories. Some communities and categories are
clearly matched while other communities reflect strong medical content
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a

b

Fig. 6 Results for the coarser MS partitions of the document similarity graph into: a 7 communities and b 3
communities, showing in each case their correspondence to the external hand-coded categories. Some of
the MS communities with strong medical content (e.g., labour ward, radiotherapy, pressure ulcer) remain
separate in our content-driven, unsupervised clustering and are not integrated with other procedural records
due to their semantic distinctiveness even to this coarsest level of clustering
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as separate content clusters. These include blood transfusions, pressure ulcer, consent,
mental health, and child protection.
We have studied two levels of resolution where the number of communities (12 and

17) is close to that of hand-coded categories (15). The results of the 12-community par-
tition are presented in Fig. 5 (see Figure in Additional file 2 in the SI for the slightly finer
17-community partition). As expected from the quasi-hierarchical nature of our multi-
resolution analysis, we find that some of the communities in the 12-way partition emerge
from consistent aggregation of smaller communities in the 44-way partition. In terms of
topics, this means that some of the sub-themes observed in Fig. 4 are merged into a more
general topic. This is apparent in the case of Accidents: seven of the communities in the
44-way partition become one larger community (community 2 in Fig. 5), which has a spe-
cific and complete identification with the external category ‘Patient accidents’. A similar
phenomenon is seen for the Nursing community (community 1) which falls completely
under the external category ‘Infrastructure’. The clusters related to ‘Medication’ similarly
aggregate into a larger community (community 3), yet there still remains a smaller, specific
community related to Homecare medication (community 12) with distinct content.
Other communities strand across a few external categories. This is clearly observable

in communities 10 and 11 (Samples/ lab tests/forms and Referrals/appointments), which
fall naturally across the external categories ‘Documentation’ and ‘Clinical Assessment’.
Similarly, community 9 (Patient transfers) sits across the ‘Admission/Transfer’ and ‘Infras-
tructure’ external categories, due to its relation to nursing and other physical constraints.
The rest of the communities contain a substantial proportion of records that have been
hand-classified under the generic ‘Treatment/Procedure’ class; yet here they are sepa-
rated into groups that retain medical coherence, i.e., they refer to medical procedures or
processes, such as Radiotherapy (Comm. 4), Blood transfusions (Comm. 7), IV/cannula
(Comm. 5), Pressure ulcer (Comm. 8), and the large community Labour ward (Comm. 6).
The high specificity of the Radiotherapy, Pressure ulcer and Labour ward communi-

ties means that they are still preserved as separate groups on the next level of coarseness
given by the 7-way partition (Fig. 6a). The mergers in this case lead to a larger commu-
nities referring to Medication, Referrals/Forms and Staffing/Patient transfers. Figure 6b
shows the final level of agglomeration into 3 communities: a community of records refer-
ring to accidents; another community broadly referring to procedural matters (referrals,
forms, staffing, medical procedures) cutting across many of the external categories; and
the labour ward community still on its own as a subgroup of incidents with distinctive
content.
This process of agglomeration of content, from sub-themes into larger themes, as a

result of the multi-scale hierarchy of graph partitions obtained with Markov Stability is
shown explicitly with word clouds in Fig. 7 for the 17, 12 and 7-way partitions.

Robustness of the results and comparison with other methods

Our framework consists of a series of steps for which there are choices and alternatives.
Although it is not possible to provide comparisons to the myriad of methods and
possibilities available, we have examined quantitatively the robustness of the results to
parametric and methodological choices in different steps of the framework: (i) the impor-
tance of using Doc2Vec embeddings instead of BoW vectors, (ii) the size of training
corpus for Doc2Vec; (iii) the sparsity of the MST-kNN similarity graph construction. We
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Fig. 7 The word clouds of the partitions into 17, 12 and 7 communities show a multi-resolution coarsening
in the content descriptive power mirroring the multi-level, quasi-hierarchical community structure found in
the document similarity graph

have also carried out quantitative comparisons to othermethods, including: (i) LDA-BoW,
and (ii) clustering with other community detectionmethods.We provide a brief summary
here and additional material in the SI.

Quantifying the importance of Doc2Vec compared to BoW: The use of fixed-sized
vector embeddings (Doc2Vec) instead of standard bag of words (BoW) is an integral
part of our pipeline. Doc2Vec produces lower dimensional vector representations (as
compared to BoW) with higher semantic and syntactic content. It has been reported
that Doc2Vec outperforms BoW representations in practical benchmarks of semantic
similarity, as well as being less sensitive to hyper-parameters (Dai et al. 2014).
To quantify the improvement provided by Doc2Vec in our framework, we constructed

a MST-kNN graph following the same steps but starting with TF-iDF vectors for each
document. We then ran Markov Stability on this TF-iDF similarity graph, and compared
the results to those obtained from the Doc2Vec similarity graph. Figure 8 shows that the
Doc2vec version outperforms the BoW version across all resolutions in terms of both
NMI and ̂PMI scores.

Robustness to the size of dataset to train Doc2Vec : As shown in Table 1, we have
tested the effect of the size of the training corpus on the Doc2Vec model. We trained
Doc2Vec on two additional training sets of 1 million and 2 million records (randomly
chosen from the full set of ∼13 million records). We then followed the same procedure
to construct the MST-kNN similarity graph and carried out the MS analysis. The results,
presented in Figure in Additional file 3 in the SI, show that the performance is affected
only mildly by the size of the Doc2Vec training set.
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a

b

Fig. 8 Comparison of Markov Stability applied to Doc2Vec versus BoW (using TF-iDF) similarity graphs
obtained under the same graph constructions steps. a Similarity against the externally hand-coded
categories measured with NMI; b intrinsic topic coherence of the computed clusters measured with ̂PMI

Robustness of the MS results to the level of sparsification: To examine the effect of
sparsification in the graph construction, we have studied the dependence of quality of the
partitions against the number of neighbours, k, in the MST-kNN graph. Our numerics,
shown in Figure in Additional file 4 in the SI, indicate that both the NMI and ̂PMI scores
of the MS clusterings reach a similar level of quality for values of k above 13-16, with
minor improvement after that. Hence our results are robust to the choice of k, provided it
is not too small. Due to computational efficiency, we thus favour a relatively small k, but
not too small.

Comparison of MS to Latent Dirichlet Allocation with Bag-of-Words (LDA): We
carried out a comparison with LDA, a widely used methodology for text analysis. A key
difference between standard LDA and our MS method is the fact that a different LDA
model needs to be trained separately for each number of topics pre-determined by the
user. To offer a comparison across the methods, we obtained five LDA models corre-
sponding to the five MS levels we considered in detail. The results in Table 2 show that
MS and LDA give partitions that are comparably similar to the hand-coded categories
(as measured with NMI), with some differences depending on the scale, whereas the MS
clusterings have higher topic coherence (as given by ̂PMI) across all scales.
To give an indication of the computational cost, we ran both methods on the same

servers. Our method takes approximately 13 h in total to compute both the Doc2Vec
model on 13 million records (11 h) and the full MS scan with 400 partitions across all
resolutions (2 h). The time required to train just the 5 LDA models on the same corpus
amounts to 30 h (with timings ranging from ∼2 h for the 3 topic LDA model to 12.5 h for
the 44 topic LDA model).
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Table 2 Benchmarking of Markov Stability clusters versus LDA topics at different levels of resolution

Similarity to hand-coded categories (NMI) Topic Coherence (̂PMI)

No. of topics/clusters LDA MS LDA MS

3 0.311 0.267 2.991 3.033

7 0.409 0.393 3.218 3.303

12 0.361 0.398 3.270 3.517

17 0.390 0.401 3.419 3.457

44 0.395 0.388 3.549 3.716

Scores for similarity to hand-coded categories (NMI) and topic coherence (̂PMI) for the five MS resolutions highlighted in the main
text and their corresponding LDA models. Boldface identifies the best computational result

This comparison also highlights the conceptual difference between our multi-scale
methodology and LDA topic modelling. While LDA computes topics at a pre-determined
level of resolution, our method obtains partitions at all resolutions in one sweep of
the Markov time, from which relevant partitions are chosen based on their robustness.
However, the MS partitions at all resolutions are available for further investigation if so
needed.

Comparison of MS to other partitioning and community detection algorithms: We
have used several algorithms readily available in code libraries (i.e., the iGraph mod-
ule for Python) to cluster/partition the same kNN-MST graph. Figure in Additional
file 5 in the SI shows the comparison against several well-known partitioning methods
(Modularity Optimisation (Clauset et al. 2004), InfoMap (Rosvall et al. 2009), Walktrap
(Pons and Latapy 2005), Label Propagation (Raghavan et al. 2007), and Multi-resolution
Louvain (Blondel et al. 2008)) which give just one partition (or two in the case of
the Louvain implementation in iGraph) into a particular number of clusters, in con-
trast with our multiscale MS analysis. Our results show that MS provides improved
or equal results to other graph partitioning methods for both NMI and ̂PMI across
all scales. Only for very fine resolution with more than 50 clusters, Infomap, which
partitions graphs into small clique-like subgraphs (Schaub et al. 2012a, b), provides
a slightly improved NMI for that particular scale. Therefore, Markov Stability allows
us to find relevant, good quality clusterings across all scales by sweeping the Markov
time parameter.

Discussion
This work has applied a multiscale graph partitioning algorithm (Markov Stability) to
extract content-based clusters of documents from a textual dataset of healthcare safety
incident reports in an unsupervised manner at different levels of resolution. The method
uses paragraph vectors to represent the records and obtains an ensuing similarity graph
of documents constructed from their content. The framework brings the advantage of
multi-resolution algorithms capable of capturing clusters without imposing a priori their
number or structure. Since different levels of resolution of the clustering can be found
to be relevant, the practitioner can choose the level of description and detail to suit the
requirements of a specific task.
Our a posteriori analysis evaluating the similarity against the hand-coded categories

and the intrinsic topic coherence of the clusters showed that the method performed well
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in recovering meaningful categories. The clusters of content capture topics of medical
practice, thus providing complementary information to the externally imposed classi-
fication categories. Our analysis shows that some of the most relevant and persistent
communities emerge because of their highly homogeneous medical content, although
they are not easily mapped to the standardised external categories. This is apparent
in the medically-based content clusters associated with Labour ward, Pressure ulcer,
Chemotherapy, Radiotherapy, among others, which exemplify the alternative groupings
that emerge from free text content.
The categories in the top level (Level 1) of the pre-defined classification hierarchy are

highly diverse in size (as shown by their number of assigned records), with large groups
such as ‘Patient accident’, ‘Medication’, ‘Clinical assessment’, ‘Documentation’, ‘Admis-
sions/Transfer’ or ‘Infrastructure’ alongside small, specific groups such as ‘Aggressive
behaviour’, ‘Patient abuse’, ‘Self-harm’ or ‘Infection control’. Our multi-scale partition-
ing finds corresponding groups in content across different levels of resolution, providing
additional subcategories withmedical detail within some of the large categories (as shown
in Fig. 4 and Additional file 1). An area of future research will be to confirm if the cate-
gories found by our analysis are consistent with a second level in the hierarchy of external
categories (Level 2, around 100 categories) that is used less consistently in hospital set-
tings. The use of content-driven classification of reports could also be important within
current efforts by the World Health Organisation (WHO) under the framework for the
International Classification for Patient Safety (ICPS) (World Health Organization and
WHO Patient Safety 2010) to establish a set of conceptual categories to monitor, analyse
and interpret information to improve patient care.
One of the advantages of a free text analytical approach is the provision, in a timely

manner, of an intelligible description of incident report categories derived directly from
the rich description in the ‘words’ of the reporter themselves. The insight from analysing
the free text entry of the person reporting could play a valuable role and add rich informa-
tion than would have otherwise been obtained from the existing approach of pre-defined
classes. Not only could this improve the current state of play wheremuch of the free text of
these reports goes unused, but it avoids the fallacy of assigning incidents to a pre-defined
category that, through a lack of granularity, can miss an important opportunity for feed-
back and learning. The nuanced information and classifications extracted from free text
analysis thus suggest a complementary axis to existing approaches to characterise patient
safety incident reports.
Currently, local incident reporting system are used by hospitals to submit reports to

the NRLS and require risk managers to improve data quality of reports, due to errors or
uncertainty in categorisation from reporters, before submission. The application of free
text analytical approaches, like the one we have presented here, has the potential to free up
risk managers time from labour-intensive tasks of classification and correction by human
operators, instead for quality improvement activities derived from the intelligence of the
data itself. Additionally, the method allows for the discovery of emerging topics or classes
of incidents directly from the data when such events do not fit the pre-assigned categories
by using projection techniques alongside methods for anomaly and innovation detection.
In ongoing work, we are currently examining the use of our characterisation of inci-

dent reports to enable comparisons across healthcare organisations and also to monitor
their change over time. This part of ongoing research requires the quantification of in-
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class text similarities and to dynamically manage the embedding of the reports through
updates and recalculation of the vector embedding. Improvements in the process of
robust graph construction are also part of our future work. Detecting anomalies in
the data to decide whether newer topic clusters should be created, or providing online
classification suggestions to users based on the text they input are some of the improve-
ments we aim to add in the future to aid with decision support and data collection,
and to potentially help fine-tune some of the predefined categories of the external
classification.

Endnotes
1 The code for Markov Stability is open and accessible at https://github.com/

michaelschaub/PartitionStability and http://wwwf.imperial.ac.uk/~mpbara/Partition_
Stability/, last accessed on March 24, 2018

2The word cloud generator library for Python is open and accessible at https://github.
com/amueller/word_cloud, last accessed on March 25, 2018

3 http://scikit-learn.org/stable/modules/generated/sklearn.metrics.v_measure_score.
html
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