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Abstract
Diabetes is a significant health concern with more than 30 million Americans living with
diabetes. Onset of diabetes increases the risk for various complications, including kidney
disease, myocardial infractions, heart failure, stroke, retinopathy, and liver disease. In this
paper, we study and predict the onset of these complications using a network-based
approach by identifying fast and slow progressors. That is, given a patient’s diagnosis of
diabetes, we predict the likelihood of developing one or more of the possible
complications, and which patients will develop complications quickly. This combination
of "if a complication will be developed” with ”how fast it will be developed” can aid the
physician in developing better diabetes management program for a given patient.

Keywords: Disease network, Diabetes, Real-world data, Heart failure, Kidney disease,
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Introduction
Diabetes is a significant public health concern in the United States. According to the
Center for Disease Control (CDC), in 2015 it was estimated that 30.3 million peo-
ple have diabetes, with 23.1 million cases diagnosed and 7.2 million undiagnosed
(for Disease Control et al. 2017). 90 to 95 percent of those cases are Type 2 (for Disease
Control et al. 2017), which is the group that we will focus on throughout this paper.
Complications (co-morbidities) related to Type 2 Diabetes Mellitus (T2DM) are
the key drivers of the health impact and cost of this chronic disease. The vast
majority of diabetics will experience a complication from their disease (Nickerson
and Dutta 2012). Recent data shows that there were 7.2 million hospital dis-
charges reported for people with diabetes in 2014 (for Disease Control et al. 2017).
Further, diabetes was ranked as the seventh leading cause of death in the United
States in 2015, with the total direct and indirect cost of diagnosed diabetes in
2012 at 245 billion dollars (for Disease Control et al. 2017). It is critical to not
only diagnose the onset of diabetes but also predict the onset of complications
(co-morbidities), which would better assist in long-term care management, and better
health and wellness for the patients.
To achieve the objective of predictability of onset of complications, we first represent

a patient’s disease history as a network based on what happens in the second year after
a diabetes diagnosis. Genetic determinants and other independent accelerating factors
of the complications of diabetes (Brownlee 2005) clearly establish the basis for these co-
morbid conditions developing over time. Furthermore, we label patients as either slow
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or fast progressors in developing complications arising from diabetes, thus developing
sub-networks of disease evolution.
The proposed network developed in this study will not only provide a useful modeling

construct but also a mechanism for visualizing disease complications. The use of net-
works to understand disease progression has been studied before, such as in Alzheimer’s
(Wilkosz et al. 2010) and heart failure (Nagrecha et al. 2017). However, the novelty of
our approach lies in the consideration of a heterogeneous network that includes nodes
for disease diagnoses, tests, demographics, etc. Through the proposed networks-based
approach, physicians will be able to leverage the combined experiences of other diabetics
to determine how their patients’ disease will progress. Pinpointing the risks of compli-
cation is of utmost importance for recognizing possible interventions in treatments that
have the potential to delay or stop further progression.
We use a large data set comprising of Type 2 Diabetes patients in Indiana, collected

over 20 years obtained through the Regenstrief Institute. This data includes both diagno-
sis codes taken from the International Statistical Classification of Diseases and Related
Health Problems, Ninth Revision and Tenth Revision, (ICD-9 and ICD-10, respectively)
and clinical laboratory test results. Researchers have had success using ICD codes to
predict future disease states (Davis et al. 2010). We create networks of shared patient
experiences using the sub-networks of patients and then identify common groupings of
disease that have the greatest propensity of developing diabetic complications. Using both
diagnoses and lab results as the nodes and edges in our network we identify those results
that are most predictive of diabetic complications, thereby creating a multi-plex or het-
erogeneous network (Kivelä et al. 2014). This analysis allows us to answer the question:
which patients aremost at risk for developing what complications?We group patients into
two categories — fast or slow progressors, based on whether they develop complications
more quickly or more slowly than 25 percent of the population, respectively. By cate-
gorizing patients into these categories, a more efficient intervention mechanism can be
developed. It also allows us to study, as future work, why certain patients are fast or slow
progressors, leading to personalized interventions and treatments and improved patient
outcomes.

Methods
Predicting diabetic complications is incredibly challenging due to the inequality of health-
care consumption and the speed at which patients receive diagnoses. In our work, we
posit that by establishing appropriate thresholds and choosing balanced populations, we
can ensure that even patients who infrequently visit their physician can still benefit from
our models.

Data description

The Regenstrief Institute created one of the earliest electronic medical record systems in
1972 to support research and continues to handle the research use of the INPC (Indiana
Network for Patient Care) database (JM Overhage and McDonald 1995). With the cre-
ation of the Indiana Health Information Exchange (IHIE) in 2004 to handle the exchange
of data between Indiana’s major healthcare provider systems, the availability of data for
Indiana patients within INPC has greatly increased providing a key resource to drive
research using "real world environment" observations and data.
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In a collaboration of Indiana Biosciences Research Institute, Regenstrief Institute, and
industrial partners, a primary data set of type 2 diabetes mellitus (T2DM) patients
was created. Using inclusion criteria of one T2D diagnosis code OR a laboratory gly-
cated hemoglobin (HbA1C) test results ≥ 6.5% OR at least one Medi-Span-defined
anti-diabetes medication where the patients were ≥ 18 years of age on date of first
inclusion criteria. Using this criteria, a primary T2DM cohort of 805,867 individu-
als was identified from INPC over 20 years (1995-2015). The demographics, diagnosis
codes, medical procedures, prescriptions, and results from clinical laboratory tests were
extracted for these individuals(Schleyer 2016). This extracted data resulted in over
500 million records that was available for analysis. This T2DM data set was then
extensively cleaned and normalized to prepare for the analyses as per the diagram
in Fig. 1.
To clean this T2DM data set, the extracted INPC data placed on a secure Amazon

Web Services (AWS) server. This large T2DM dataset across 20 years was multi-modal
and there were many missing parameters across the records, as well as inconsistency in
the measurements identified by error codes or per-patient longitudinal analysis or out of
range values. In addition, we had to take into account the correction of features that were
reported for quality control (QC) checks. To that end, we implemented a comprehen-
sive a data cleaning framework to normalize the features, remove bad or missing values,
and have consistent units of measure was done using PySpark. The feature values were
normalized and extreme values were identified and filtered on minimum and maximum
values ever measured for a parameter. Additionally, if any values were +/- 2 standard devi-
ations from themedian, they were filtered. Also, we looked for more than two distribution
patterns in the data where potentially two different units of measure were applied to the
same variable, which could indicate a problem with poor previous data integration. After
this extensive effort to clean all the issues from this "real-world" captured data set from
INPC, an "analysis-ready" data set was created for the modeling. An overview of the size
of the different data tables is given in Table 1.
We use the following to categorize primary T2DM diagnoses and complications:

• Type 2 diabetes mellitus - ICD9/ICD10 codes 249, 250, 357.2, 362.[01-07], 366.41,
E10, E11

• Kidney disease - ICD9/ICD10 codes 584, 586, 585, 403, 404, 581, 583, 588, N18, N17,
N19, I12, I13, N04, N05, N08, N25, 593

• Liver disease - ICD9/ICD10 codes 571, 572, 573, K76, K75
• Heart failure - defined as ICD9/ICD10 codes 428, I50

Fig. 1 Above is a flowchart depicting the cleaning and standardization process which (1) combines and QCs
the raw data files, (2) combines variables, standardizes, and cleans using a dictionary specific to the data
source, and finally (3) removes variable outliers and normalizes using a universal clinical parameter dictionary
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Table 1 Size and amount of data per file used

Type of data (Study cohort) Rows Data columns Size

Patients 805,867 13 149 MB

ICD diagnosis codes 96,295,549 3 2.2 GB

Clinical laboratory results 388,524,849 7 393 GB

• Myocardial infarction - ICD9/ICD10 codes 410, 412, I21
• Stroke - ICD9/ICD10 codes 435, G45, 430, 431, I60, I61, 432, I62, 436, 433, 434
• Retinopathy - ICD9/ICD10 codes 362, H35

We further sample to create the following data about patients: patient diagnosis, which
contains all the diagnoses codes (ICD-9/ICD-10) received by a patient, demographics,
which contains age, gender, and race/ethnicity information, and clinical variables, which
contains metabolic measurements taken while at the doctor’s office. Header files for the
diagnosis table is given in Table 2, patient data is given in Table 3, and clinical variables is
given in Table 4. The number of patients who were diagnosed with each complication is
given in Table 5.

Building disease diagnoses graphs

We detail the network construction in Algorithm 1, and network pruning in Algorithm 2.
We retain a listing of the edges and nodes that represent the fast paths to diabetic
complications, along with the nodes that result in the largest information gain.

Algorithm 1 For each patient we go through their disease history and add nodes and
edges connecting information regarding measures of patient health. Each node and edge
will have an attribute which corresponds to how many patients belong to that node and
edge. Every i and j correspond to an entry in that patient’s health record

procedure CREATING THE NETWORK

N ← empty network
for p in all patient networks do

for i in patient disease history do
for j in patient disease history after i do

if i in N then:
in = in + 1

else:
Create i in N
in = 1

if j in N then:
jn = jn + 1

else:
Create j in N
jn = 1

if (i, j) in N then:
(i, j)n = (i, j)n + 1

else:
Create (i, j) in N
(i, j)n = 1
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Algorithm 2 After the network is generated, we test to see which edges pass the two-
sized Z-test by comparing how many patients are fast and slow progressors on each edge.
If the edge’s Z-score’s absolute value is not above 1.96, it is pruned from the graph. After
pruning, the Z-score is added as an attribute to the nodes and edges remaining in the
graph

procedure PRUNING THE NETWORK

N ← empty network
for p in all patient networks do:

if p is a fast progressor then
for all nodes n and edges e in that patient network: do

nfast progressor = nfast progressor + 1 for node ni in p
efast progressor = efast progressor + 1 for edge ei in p

else
for all nodes n and edges e in that patient network: do

nslow progressor = nslow progressor + 1 for node ni in p
eslow progressor = eslow progressor + 1 for edge ei in p

N = N + p
for all e edges in N do:

Z = Z-test(efast progressor, eslow progressor)
if abs(Z) < 1.96 then

Prune ei
else

ez = Z
for n nodes in N do:

nz = Z-test(nfast progressor, nslow progressor)

There are three primary data sources that we use to build our models: patient demo-
graphic data, which remains constant throughout the duration of the study and is
represented by nodes at the beginning of the network at time zero; patient diagnosis,
which contains all the diagnoses that occur over the course of a patient’s visit with a
doctor or healthcare provider; and clinical variables, which contain all the available mea-
surements and laboratories tests available in the patient’s health records as contained in
INPC.
We tested the following clinical variables and grouped them into quartiles, which

were included in the clinical variables file: non high-density lipoprotein cholesterol
(Non-HDL C), low-density lipoprotien (LDL) high-density lipoprotein (HDL) ratio,
thyroid-stimulating hormone (TSH), fibrosis-4 (Fib 4) index, total cholesterol, low-
density lipoprotein cholesterol (LDL C), high-density lipoprotein cholesterol (HDL C),
cholesterol ratio, total bilirubin, basophil platlet count (PC), monocyte count, aspar-
tate transaminase to platelet ratio index (APRI), neutrophil count, albumin, alkaline
phosphatase (ALP), aspartate transaminase (AST) alanine transaminase (ALT) ratio.
eosinophil PC, protein, HbA1C, ALT, estimated glomerular filtration rate (eGFR), AST,
lymphocyte PC, calcium, red blood PC, platelet count, mean corpuscular volume (MCV),



Thomas et al. Applied Network Science            (2018) 3:48 Page 6 of 16

Table 2 Diagnosis file - this file contains information regarding ICD codes that went along with a
diagnosis received on that day

STUDYID DX_INDEX DX_CODE

1250869 0 250.0

1250869 411 244.9

1250869 487 I50.22

1250869 732 I50.22

1252696 0 E10.9

1252696 172 K75.81

1252696 180 K75.81

1252696 195 K75.81

1252696 209 K75.81

1252696 212 I50.9

1255288 0 250.0

1255288 43 K40.90

1255288 325 H35.30

Diagnoses can appear in subsequent visits. Day 0 is the day that a type 2 diabetes diagnosis was received

mean corpuscular hemoglobin (MCH), glucose, blood urea nitrogen (BUN), chloride,
creatinine, and carbon dioxide (CO2).
Additionally included in the clinical variables file were the following variables, pre-

processed into normal and abnormal statuses: weight classification, HDL C, high
serum creatinine, high urine glucose, hyperglycemia, hypertension, hypertriglyceridemia,
impaired fasting glycemia (IFG), impaired glucose tolerance (IGT), LDL C, and triglyc-
erides. Finally, we also quartile the age of the patients so that we have large groups to test
on. Then every piece of information in a patient history is linked all other nodes, thus
creating a heterogeneous network. An example of the network is given in Fig. 2.
After building the network, we prune it by discarding any edges that do not contain

statistically significant differences between the fast and slow progressors as defined by
using a two-proportion Z test score.
To determine if a patient is a slow or fast progressor, the nodes and edges of the

sub-network that match the patient’s medical history are traversed and their individual
probability of developing a complication is computed. We assume that the node and edge
weights, corresponding to the percentages of patients who suffer from that complication
that are contained by that node or edge, are equally likely and statistically independent.
These weights are multiplied together to get the probability of being a fast progressor. To
decrease noise, we experimentally concluded that the weights, or percent likelihood of
developing the specific complication of diabetes, corresponding to the top 12 most sig-
nificant edges and nodes are used as determined by the two-proportion Z-test. In other
words, for each individual patient, we only used the most significant parts of their indi-
vidual network to predict whether or not that patient was a fast or slow progressor. The
average AUC values from each of these experiments is shown in Table 6 and Fig. 3. The

Table 3 The patient database contains patient age, gender, and race

STUDYID INDEX_YEAR INDEX_AGE GENDER RACE

1250869 2014 75 M UNKNOWN/NOT DOCUMENTED

1252696 2015 53 F UNKNOWN/NOT DOCUMENTED

1255288 2015 44 M UNKNOWN/NOT DOCUMENTED
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Table 4 The clinical variables file contains measurements regarding blood and urine samples during
a patient visit, along with the patient age during the visit, the age at which they were diagnosed
with diabetes, and the number of days after the first diabetes diagnosis the visit occurred

STUDYID AGE DAYS_VIS_INDEX INDEX_AGE albumin alp alt ast bun chloride . . .

1250869 75 0 75 4 80 93 64 18 105 . . .

1250869 76 411 75 17 106 . . .

1250869 76 487 75 26 105 . . .

1250869 76 732 75 79 7 14 19 108 . . .

1252696 52 0 53 14 107 . . .

1252696 52 172 53 . . .

1252696 52 180 53 89 16 28 20 109 . . .

1252696 52 195 53 13 110 . . .

1252696 52 209 53 . . .

1100737 50 212 53 15 103 . . .

1255288 44 0 44 3.5 177 28 17 19 100 . . .

1255288 44 43 44 3.6 138 21 13 22 104 . . .

1255288 48 325 47 17 103 . . .

A full list of the columns contained is located at the end of this document under Additional file ??. Abbreviations: ALP (alkaline
phosphate), ALT (alanine transaminase), AST (aspartate transaminase), BUN (blood urea nitrogen)

weight that corresponds to the lowest probability of developing complications is removed
since it was observed that removing this weight boosts the signal of the nodes and edges
that result in fast progression of disease. The pruning process can be shown by referring
to Fig. 2.
The method to compute the probability that an individual will be a fast or slow pro-

gressor is: Let w0, ...,wn correspond to the n most significant edge and node weights as
determined by the two-proportion Z-test, where n ≤ 12. Remove wh from the compu-
tation, which corresponds to the lowest probability of developing the complication. Let
pt = �n

i=0wi, and pf = �n
i=0(1 − wi). Then, the probability that a particular patient is a

fast or slow progressor is pt
pt+pf

Data cleaning

Only information in patient history that occurred in the second year following a Type
2 diabetes diagnosis is considered. Healthy patients survive longer than sickly ones, so
if we extend our analysis for too long after a diabetes diagnosis, the data will become
biased towards healthy patients. Patients tend to move and change doctors, and analyzing
what occurs in the second year after the diagnosis will ensure that many patients are still
in the system. We can see in Fig. 4 that many complications of diabetes occur early, so

Table 5 This table provides the number of patients diagnosed with each complication included in
the dataset. These patients were randomly divided into 80 percent training and 20 percent testing
sets

Condition Number diagnosed

Kidney disease 49,720

Heart failure 32,798

Stroke 30,474

Liver disease 20,761

Retinopathy 20,627

Myocardial infarction 19,930
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Fig. 2 Above is an example of a patient network which contains demographic information, lab results, and
diagnoses codes, for a patient who develops heart failure as a fast progressor. The most significant edges and
nodes, as determined by the two-sided Z-test, marked in red, are used in patient risk calculation. Circles
represent ICD diagnoses, hexagons demographic information, and squares clinical variables. Age and clinical
variables had been quartiled such that 3.0 Age represents a patient whose age is in the top 75 percent of
patients, and where 1.0 eGFR represents someone whose eGFR is between 25-50 percent when compared to
the patient population

it is acceptable to limit our analysis to the that year. Our “fast progressors” all develop
complications within two years of a diabetes diagnosis. Only the second year is important
to us. We do not consider what occurs in the first year after diagnosis because we want to
introduce more stability into our data, to exclude patients whomight be in an emergency-
room type situation when diagnosed.
We only consider new diagnoses that occur after a diabetes diagnosis. We do not

consider diagnoses or lab values that occurred before the type 2 diabetes diagnosis.
Incorporating past values might be included in future work.

Table 6 Average area under the curve (< AUC >) values and Standard Deviations (< STD >) for
each complication of diabetes based upon the number of significant nodes and edges that were
included in the prediction

Nodes/Edges STR RET KID MYO HFL LIV < AUC > < STD >

7 0.767 0.793 0.762 0.734 0.766 0.733 0.759 0.021

10 0.785 0.788 0.760 0.748 0.771 0.724 0.763 0.022

12 0.780 0.778 0.755 0.743 0.776 0.743 0.763 0.016

15 0.762 0.792 0.732 0.751 0.764 0.769 0.762 0.018

17 0.743 0.772 0.757 0.757 0.767 0.724 0.753 0.016

20 0.797 0.761 0.742 0.725 0.762 0.740 0.755 0.023

We see that using the 12 most significant nodes and edges gives us the highest average AUC with the lowest standard deviation
across the various complications. Abbreviations: Myocardial infarction (MYO), Heart failure (HFL), Kidney disease (KID), Liver
disease (LIV), Retinopathy (RET), Stroke (STR)
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Fig. 3 Above is a graph of the values shown in Table 6

• Diagnoses are truncated to the first three digits of the ICD-9 or ICD-10 code to
remove the disease subtypes and only focus on the primary diagnoses.

• All nodes that are not shared by at least one percent of the population are removed.
• All patients that have received less than five diagnoses or more than twice the median

amount of diagnoses are removed. This assists with biases introduced by individuals
having an excessive medical history or too few observations.

Fig. 4 By graphing howmany patients are diagnosed with each complication rate per year (starting one year
after a diabetes diagnosis), we can see that most patients develop complications quickly. We want to identify
what will delay complication onset by comparing the patients who are slow and fast progressors, with the
fast progressors occupying the left hand side of the chart. Abbreviations: Myocardial infarction (MYO), Heart
failure (HFL), Kidney disease (KID), Liver disease (LIV), Retinopathy (RET), Stroke (STR)
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• The cleaned dataset is sampled to ensure that our fast and slow progressors have the
same number of patients.

• The significance on the edges is computed and any edges that do not test for a
two-proportion z-test with 95 percent confidence are removed.

• Fast progressors are defined as patients who develop a complication of diabetes faster
than 75 percent of the population. All patients from our dataset who develop the
complication before being diagnosed with diabetes, or up to one year afterwards are
removed.

• Slow progressors are defined as patients who develop a complication of diabetes
slower than 75 percent of the population. Everyone retained in our network is
eventually diagnosed with the complication which assists in making sure the datasets
are balanced and with limited bias.

• Every node and every edge is given a Z-score, which corresponds to the likelihood of a
significant difference between fast and slow progressors. Every node and edge will be
given the percent likelihood that a patient who has the condition given in the node, or
combination of conditions as represented by an edge, will be a fast or slow progressor.

Results
Our test set contained 20 percent of our patients. The percent likelihood of
their complication development was computed against the patient network gener-
ated from the 80 percent training set. We queried the large network for nodes
and edges corresponding to an individual patient’s disease history. Because all the
edges that failed to show a significant difference between the fast and slow progres-
sors were pruned, the sub-network might be disconnected. The top five conditions
that lead to each complication by percentage of fast progressors and Z-score are
given in Table 7.
The results for these predictions of fast progressors for onset of these various diabetic

complications are shown in Table 8. These values are averaged over five runs of differ-
ent test/train splits and they are comparable to the AUCs of other real-world predictive
models (Weng et al. 2017).

Discussion
Diabetic complications are often correlated with one another, which might reflect the
generalized damage that the body has taken from a micro and macrovascular perspective
(Forbes and Cooper 2013). Others have found evidence of biomarkers that have an impact
on diabetic progression and can lead to a greater understanding of a patient’s personal-
ized developments with diabetes (Scirica 2017). Other researchers have created models
of diabetic risk from searching endocrinology text books and literature from clinical trials
to search for indicators that lead to complications (Sangi et al. 2015). We believe that our
model is unique in its ability to distinguish between fast and slow progressors.

Similarities in Comorbid complications

Many of the top confidence nodes are shared between different complications.
Correlations between the fast and slow progressors are given in Table 9. Some of the
most significant nodes, including mental diseases such as psychoses, cerebral degenera-
tions, psychotic conditions, and pain, are symptoms or causes of uncontrolled diabetes.
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Table 7 Here we have some of the health conditions that are most likely to lead to complications
based upon percentages of patients with that condition that are fast progressors, and Z-scores
which correspond to the Z-test result on these particular nodes between fast and slow progressors

Health conditions likely to lead to
diabetic complications

Kidney disease Fast % Kidney disease Z-score

0.0 eGFR 92 3.0 Age 18.21

Other organic psychotic conditions
(chronic)

85 1.0 eGFR 16.86

Organic sleep disorders 84 0.0 eGFR 16.24

Pain not elsewhere classified 83 Heart failure 15.14

1.0 eGFR 83 Organic sleep disorders 16.01

Myocardial Infarction Fast % Myocardial Infarction Z-score

Pain not elsewhere classified 82 Chronic renal failure 12.46

Chronic renal failure 82 Other forms of chronic ischemic heart
disease

11.56

Other organic psychotic conditions
(chronic)

81 Heart failure 11.44

0.0 eGFR 81 Hypertensive renal disease 9.96

Hypertensive renal disease 81 3.0 Age 9.92

Heart failure Fast % Heart failure Z-score

Chronic pulmonary heart disease 85 3.0 Age 18.68

Chronic renal failure 85 Chronic renal failure 16.38

Other organic psychotic conditions
(chronic)

85 Cardiac dysrhythmias 14.88

Other cerebral degenerations 85 Symptoms involving respiratory
system and other chest symptoms

13.97

0.0 eGFR 84 Symptoms involving skin and other
integumentary tissue

12.31

Liver disease Fast % Liver disease Z-score

Other cerebral degenerations 88 Organic sleep disorders 11.38

Pain not elsewhere classified 87 Pain not elsewhere classified 9.81

Organic sleep disorders 87 Nonspecific abnormal findings on
radiological and other examination of
body structure

9.23

Acute renal failure 79 2.0 eGFR 8.48

Chronic renal failure 78 Other diseases of lung 8.41

Retinopathy Fast % Retinopathy Z-score

Neoplasm of uncertain behavior of
other and unspecified sites and
tissues

82 3.0 Age 12.39

Renal failure unspecified 82 Disorders of lipid metabolism 10.58

Pain not elsewhere classified 81 Symptoms involving respiratory
system and other chest symptoms

9.61

Other organic psychotic conditions
(chronic)

81 Other and unspecified disorder of
joint

9.15

Chronic renal failure 80 Heart failure 8.68

Stroke Fast % Stroke Z-score

Other organic psychotic conditions
(chronic)

87 3.0 Age 16.67

Other cerebral degenerations 86 Chronic renal failure 13.42
Pain not elsewhere classified 86 Symptoms involving respiratory

system and other chest symptoms
12.09

Senile and presenile organic
psychotic conditions

85 Symptoms involving nervous and
musculoskeletal systems

11.75

Chronic renal failure 84 Symptoms involving skin and other
integumentary tissue

11.56
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Table 8 Average AUC value, specificity, and sensitivity after five experiments

Complication AUC Sensitivity Specificity

Myocardial infarction 0.743 0.799 0.483

Heart failure 0.776 0.851 0.481

Kidney disease 0.755 0.774 0.558

Liver disease 0.743 0.710 0.611

Retinopathy 0.778 0.897 0.432

Stroke 0.780 0.873 0.447

This could be because many diabetic patients are suffering from many of the same co-
morbidities which have a negative influence on disease control and care (Magnan et al.
2015). Others have found patterns of these co-morbidities, and split diabetics into sev-
eral classes which represent their progression through diabetes: severe cardiac, cardiac,
noncardiac vascular, risk factors, and no concordant co-morbidities (Magnan et al. 2018).
Being diagnosed with a mental disorder soon after a diagnosis with diabetes would have a
limiting effect on the patient’s ability to maintain glycemic control. Chronic pain also lim-
its the control of patients’ diabetes, potentially resulting in development of complications
(Krein et al. 2005). Diseases such as arthritis can impair patient function and drive barriers
to lifestyle changes and regimen adherence (Piette and Kerr 2006). Other disabling condi-
tions, such as heart failure or dementia, make self-care impossible (Piette and Kerr 2006).
Lack of sleep worsens glucose tolerance (DJ et al. 2005), which could lead to fast compli-
cation development. Also, diabetic patients are at higher risk for sleep disorders such as
nocturia, neuropathic pain, and restless leg syndrome (DJ et al. 2005). Patients with fur-
ther developed complications could be more likely to have these problems, which lead to
sleep disorders. For many patients, diabetic complications do not occur unexpectedly. It
is a pattern of poor health that leads to many co-occurring complications of diabetes. Low
eGFR is shown to be one of the top confidence nodes for fast progressors in kidney dis-
ease, in both the highest distinguishers and absolute percentages. Low eGFR is one of the
most important markers of kidney disease (Levey and Coresh 2012). Renal function is a
prognosticator of heart failure since it is a good marker for impaired hemodynamic status
and general vascular disease (Hillege et al. 2006).

Potential implications for personalized medicine

In our future work, we would like to examine the false positives and identify what causes
them to not develop complications immediately, even though their diagnosis history
and lab results identify them as fast progressors. This will inform health management
strategies – lifestyle, behavioral or environmental factors – in addition to the medication

Table 9 Correlations between fast progressors of each complication

Myocard Inf Heart Fail Kidney Liver Retinopathy Stroke

Myocard Inf 0.688 0.576 0.367 0.312 0.528

Heart failure 0.677 0.545 0.419 0.281 0.437

Kidney 0.576 0.545 0.575 0.307 0.438

Liver 0.367 0.419 0.575 0.267 0.350

Retinopathy 0.312 0.281 0.307 0.267 0.291

Stroke 0.528 0.437 0.438 0.350 0.291
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to manage diabetes. We believe this analysis should help enable recommendations for
diabetic patients to limit development of complications.

Conclusion
Given a patient’s disease history and lab results, we can predict their likelihood of develop-
ing complications from diabetes.We also showwhat disease diagnoses or lab results (from
our heterogeneous network or graph) are most likely to lead to specific diabetic compli-
cations. We reaffirm that diabetes is a complicated disease. It continues to be important
for diabetic patients to manage their disease and be aware of the complications. The
diagnoses graphs can help illuminate health problems faced by many patients and what
might be the best course of disease management. Not managing complications, especially
for fast progressors, can cause rapid development of uncontrolled diabetes, from which
it is hard to recover. Moreover, disease diagnoses graphs can also be a useful tool for
physicians to understand the effects of co-morbid conditions, and personalize a wellness
and disease management plan. This can lead to an improvement in both individual and
population health outcomes.

Appendix
Data Columns Included in the Clinical Variables File

Below is a list of data columns included in the clinical variables file: STUDYID,
AGE, DAYS_VIS_INDEX, GENDER, INDEX_AGE, angiotensin converting enzyme
(ace), acetaminophen, acetone, act, albumin, albumin_creatinine_ratio, albu-
min_globulin_ratio, alcohol_pc, aldolase, aldosterone, alp, alp_bone_isoenzyme,
alpha_1_antitrypsin, alpha_1_globulin, alpha_2_globulin, alpha_tocopherol, alt, ammo-
nia, amylase, anion_gap, aorta_sinuses_diam, aortic_root_diam, aov_peak_pressure,
aov_peak_velocity, apri, arterial_diastolic_bp, ast, ast_alt_ratio, antithrombin iii (atiii),
band count (cnt), band_pc, bard_score, base_excess, basophil_count, basophil_pc,
beta2_microglobulin, beta_globulin, beta_hydroxybutyrate, bicarbonate, blast_count,
blast_pc, body mass index (bmi), body_surface_area, bun, bun_cr, bun_post_dialysis,
bun_pre_dialysis, complement 3 (c3), complement 4 (c4), c_peptide, calciferol, cal-
cium, calcium_albumin, carboxyhemoglobin, cyclic citrullinated peptide (ccp), cluster
of differentiation (cd) 2_t_cells, cd3_t_cells, cd4_cd8_ratio, cd4_helper_t, cd4_t_cells,
cd8_supprs_t_cells, cd8_t_cells, carcinoembryonic antigen (cea), cell_count, chlo-
ride, cholecalciferol, cholesterol_ratio, creatine kinase (ck)_bb), ck_index, ck_mb,
ck_mb_tot, ck_mm, ck_total, chronic kidney disease (ckd)_stage, co2, colony_count,
conjugated_bilirubin, cortisol, creatinine, creatinine_ck, creatinine_clear, c-reactive
protein (crp), central venous pressure (cvp), d_dimer, (dehydroepiandrosterone) dhea_s,
diabetic_nephropathy_status, diabetic_status, diastolic_bp, diastolic_bp_standing,
direct_bilirubin, epstein-barr (ebv)_antibody, eGFR, eosinophil_count, eosinophil_pc,
esr, estradiol_unconjugated, estrogen, factor_viii_activity, fasting_glucose, forced expira-
tory flow (fef )25_75, ferritin, fib_4_index, fibrinogen, fraction of inspired oxygen (fio2),
folate, free_lambda, fructosamine, follicle-stimulationg hormone (fsh), gamma-glutamyl
transpeptidase (ggt), globulin, glucose, glucose_gtt_1h, glucose_gtt_1hr_ob, glu-
cose_gtt_2h, glucose_gtt_3h, glucose_gtt_pp, hba1c, hdl_c, hdl_c_status, hdl_ cholesterol
(chol), hdl_ldl, height, hepatitis (hepb)_ab, hemoglobin (hgb), hemoglobin a2 (hgb_a2),
high_serum_creatinine_status, high_urine_glucose_status, histamine, homeostatic
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model assessment of beta cell function (homa_b), homeostatic model assessment of
insulin resistance (homa_ir), homocysteine, hyperglycemia_status, hypertension_status,
hypertriglyceridemia_status, ifg_status, immunoglobulin a (iga), immunoglobulin e (ige),
insulin-like growth factor 1 (igf_1), immunoglobulin g (igg), immunoglobulin m (igm),
igt_status, immature_granulocytes_pc, indirect_bilirubin, insulin, iron, interventricular
septum (ivs)_thickness, left atrium (la)_diameter, lactate, lactate_dehydrogenase, lactic
acid dehydrogenase (ldh)_1, ldh_2, ldh_3, ldh_4, ldh_5, ldl_c, ldl_c_status, ldl_hdl_ratio,
lh, lipase, lipoprotein (lpa), left ventricle (lv)_mass, lv_stroke_volume, lv_systolic_volume,
left ventricular outflow tract (lvot)_peak_gradient, lvot_peak_velocity, left ventricular
posterior wall (lvpw)_thickness_diastolic, lymphocyte_atypical, lymphocyte_count,
lymphocyte_pc, lymphocyte_reactive, lymphocyte_variant, lymphotycte cere-
brospinal fluid (csf ), macrophage_pc, map, mch, mcv, mean_arterial_pressure,
mean_glucose_bld_ghb_test, mesothelial_cells_pc, metamyelocytes_count, metamyelo-
cytes_pc, methemoglobin, methemoglobin_pc, mixed_mono_count, mixed_mono_pc,
monocyte_count, monocyte_csf_pc, monocyte_pc, myelocyte_count, myelocyte_pc,
nafld_fibrosis_score, neutrophil_count, neutrophil_pc, non_hdl_c, nucleated red blood
cells (nrbc)_count, nrbc_pc, nrbc_white blood cell (wbc), N-terminal pro b-type natri-
uretic peptide (nt_probnp), nucleated_cell_count, oxygen (o2), oxyhemoglobin_pc,
p_wave_offset, p_wave_onset, partial pressure of carbon dioxide (pco2), ph, phospho-
rus, platelet_count, partial pressure of oxygen (po2), poly_count, poly_pc, potassium,
pr_interval, pre_diabetic_status, progesterone_17_OH, promyelocytes_count,
prostate_free, prostrate_total, protein, pulse, qt_corrected, quantitative insulin-sensitivity
check index (quicki), red blood cell distribution width (rdw), red_blood_cell_count_csf,
red_blood_pc, renal_exocrine pancreatic insufficiency (epi)_cells, respiratory_rate, sele-
nium, serum_osmolality, smudge_cell_count, sodium, systolic_bp, systolic_bp_standing,
triiodothyronine (t3)_free, t3_total, thyroxine (t4)_free, t4_total, t_wave_axis,
t_wave_offset, temperature, testosterone_free, testosterone_total, total iron binding
capacity (tibc), total_bilirubin, total_cholesterol, triglyceride_hdl_ratio, triglycerides,
triglycerides_status, troponin, troponin_2h, tsh, urine albumin-to-creatinine ratio (uacr),
unconjugated_billirubin, uric_acid, urine_albumin, urine_ascorbate, urine_bacteria,
urine_billirubin, urine_cast, urine_chloride, urine_cortisol_free, urine_creatinine,
urine_creatinine_24, urine_crystals, urine_epithelial_cells, urine_gamma_globulin,
urine_glucose, urine_granular_cast, urine_hgb, urine_hyaline_cast, urine_ketones,
urine_microalbumin, urine_microalbumin_24, urine_microalbumin_creatinine_ratio,
urine_microalbumin_creatinine_ratio_24, urine_potassium, urine_protein,
urine_protein_24, urine_protein_creatinine_ratio, urine_red blood cells
(rbc), urine_specific gravity (sp_grav), urine_squaous_epithelial (epi)_cells,
urine_trans_epi_cells, urine_urea_nitrogen, urine_urobilinogen, urine_waxy_cast,
vitamin (vit)_a, vit_b1, vit_b12, vit_d2, vit_25-hydroxyvitamin d2(d2_25_oh), very
low-density lipoprotein (vldl), vldl_c, waist_circumference, wbc_count, wbc_count_csf,
weight, weight_classification, zinc, CARDIOVASCULAR, NEPHROPATHY, LIVER,
OUTCOME

Abbreviations
ALP: Alkaline phosphatase; ALT: Alanine transaminase; APRI: Aspartate transaminase to platelet ratio index; AST: Aspartate
transaminase; ATIII: Anithrombin III; AUC: Area under the curve; AWS: Amazon Web Services; BMI: Body Mass Index; BP:
Blood pressure; BUN: Blood urea nitrogen; C3: Complement 3; C4: Complement 4; CCP: Cyclic Citrullinated Peptide; CD:
Cluster of Differentiation; CDC: Center for Disease Control; CEA: Carcinoembryonic antigen; CHOL: Cholesterol; CK:
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Creatine kinase; CKD: Chronic kidney disease; CNT: Count; CO2: Carbon dioxide; CRP: C-reactive protein; CSF:
Cerebrospinal fluid; CVP: Central venous pressure; D2_25_OH: 25-hydroxyvitamin d2; DEA: Dehydroepiandrosterone; EBV:
Epstein-Barr Virus; eGFR: Estimated glomerular filtration rate; EPI: Exocrine pancreatic insufficiency; EPI: Epithelial; FEF:
Forced expiratory flow; Fib 4: Fibrosis-4; FIO2: Fraction of inspired oxygen; FSH: Follicle-stimulating hormone; GGT:
Gamma-glutamyl Transpeptidase; HbA1C: Glycated hemoglobin; HDL: High-density lipoprotein ; HDL C: High-density
lipoprotein cholesterol; HEPB: Hepatitis; HFL: Heart failure; HGB: Hemoglobin; HGB A2: Hemoglobin A2; HOMA B:
Homeostatic Model Assessment of Beta Cell Function; HOMA IR: Homeostatic Model Assessment of Insulin Resistance;
ICD-10: International Statistical Classification of Diseases and Related Health Problems, Tenth Revision; ICD-9:
International Statistical Classification of Diseases and Related Health Problems, Ninth Revision; IFG: Impaired fasting
glycemia; IGA: Immunoglobulin A; IGE: Immunoglobulin E; IGG: Immunoglobulin G; IGM: Immunoglobulin M; IGT:
Impaired glucose tolerance; IHIE: Indiana Health Network Exchange; ILGF-1: Insulin-like growth factor 1; INPC: Indiana
Network for Patient Care; IVS: Interventricular septum; KID: Kidney disease; LA: Left atrium; LDH: Lactinc acid
dehydrogenase; LDL: Low-density lipoprotien; LDL C: Low-density lipoprotein cholesterol; LIV: Liver disease; LPA:
Lipoprotein; LV: Left ventricle; LVOT: Left ventricular outflow tract; LVPW: Left ventricular posterior wall; MCH: Mean
corpuscular hemoglobin ; MCV: Mean corpuscular volume; MYO: Myocardial infarction; Non-HDL C: Non high-density
lipoprotein cholesterol; NRBC: Nucleated red blood cells; NT-PROBNP: N-terminal pro b-type natriuretic peptide; O2:
Oxygen; PC: Platlet count; PCO2: Partial pressure of carbon dioxide; PO2: Partial pressure of oxygen; QC: Quality control;
QUICKI: Quantitative insulin-sensitivity check index; RBC: Red blood cells; RDW: Red blood cell distribution width; RET:
Retinopathy; SP GRAV: Specific gravity; STD: Standard deviation; STR: Stroke; T2DM: Type 2 Diabetes Mellitus; T3:
Triiodothyronine; T4: Thyroxine; TIBC: Total iron binding capacity; TSH: Thyroid-stimulating hormone; UACR: Urine
albumin-to-creatinine ratio; VIT: Vitamin; VLDL: Very low-density lipoprotein; WBC: White blood cell
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