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Abstract

Even though the heterogeneity of centrality in social networks is well documented,
its role and effect on network stability in real life remains unclear. The literature roughly
suggests that network structure is such that networks have an “inner” highly-connected
nucleus and, in contrast, sparse outer shells. But to what extent is the existence of this
nucleus crucial for the survival of a network? To what extent is the outer shells’ much
larger population essential to the longevity of the network? Furthermore, as a network
grows and forms, theoretically speaking, network structure should be dependent on
the patterns of change of degree centrality, i.e., social mobility between centrality shells.
What is the role of social mobility in the formation of the nucleus-to-periphery profile,
and is it related to network lifetime? Here, we explore these questions using
data collected covering over a decade of activity from more than 10, 000 networked
communities, with more than 134,000 users. We find that: (i) social mobility is, on
average, negative but that, (ii) the higher the social mobility of the members of the
network, the more stable and long-living the network is. Further, (iii) the network is,
indeed, composed of two phases - a large but ephemeral sparsely connected “cloud”
of actors, that nucleates around a highly stable nucleus of users. Lastly, (iv) networked
communities which maintain a specific nucleus-to-periphery ratio η, i.e., a ratio of the
size of the nucleus to periphery of around η ¼ 1

4, have a greater chance of survival. We
find that deviations from this nucleus-to-periphery ratio predict a collapse of network
activity, especially in the case of younger communities.

Introduction
Previous studies show that social network degree centrality1 is highly heterogeneous

(Dover & Kelman, 2017). However, only limited empirical evidence exists that explores

the dynamical aspects of this heterogeneity, how it is formed, and whether it is a pre-

dictor of network survival. Further, most empirical works consider a single network

with limited longitudinal or cross-sectional coverage. To appreciate the mechanism

underlying centrality heterogeneity, in this study, we leverage data consisting of more

than 10,000 network online communities spanning over a decade of activity. These

communities can be represented as networks by considering the users as nodes and

the communication interactions as links. Interestingly, we find that inequality in the

centrality of the nodes emerges with increasing network size. The average inequality of

in-links is negligible when the network is small, but grows sharply with size. Evidence

shows that this occurs in congruence with the emergence of a specific and universal

type of network structure. Our data show that the centrality heterogeneity can be
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characterized largely as a division of the network structure to a nucleus of nodes and a

sparsely connected periphery. A typical networked online community is composed of a

relatively small nucleus “surrounded” by a large number of peripheral actors. We

characterize the nucleus and the periphery based on link density and find that this

structure is prevalent across all networks in the data. Further, we find that the nucleus

part of the network is almost impenetrable and long-lived, and is characterized by high

centrality and highly active actors. The peripheral “cloud” of actors is larger than the

nucleus in its size, but is characterized by low activity and high user turnover. Namely,

it is short-lived. Notably, we also find that the size ratio of the nucleus to periphery pre-

dicts network survival and that networks are stable within a narrow range of

nucleus-to-periphery size ratios. Stability, here, is operated as the tendency to maintain

size and network activity. When comparing to a generalized preferential attachment

process (Barabasi & Albert, 1999; de Solla Price, 1986), we find that the dynamics

might be similar (but not identical) with those of a preferential attachment process in

the medium and large groups, but very different in the small ones. This suggests that

in-links dynamics of smaller networks is determined by a more egalitarian process in

which actors reciprocate links. In larger networks, the underlying heuristic that actors

use to choose their network links may be popularity-based, rather than based on local

and more intimate considerations. Finally, to gain better insight into the dynamic pro-

cesses that shape the degree centrality distribution, we look at the within-network so-

cial mobility and other aspects of the network nucleation process. Social mobility, in

our context, is the tendency of actors to change their network degree. We focus on

how members fluctuate between centralities and whether the network has a

steady-state universal structure. In what follows, we further discuss the relationship of

social mobility and the nucleus-to-periphery structure to existing literature. In the rest

of the paper, we describe the data and then the results. We conclude and discuss sug-

gestions for future research in the discussion section.

Social mobility and nucleus-to-periphery structure

Social mobility, i.e., the tendency of actors to change their connectivity over time, is po-

tentially an important construct in actual networks (e.g., see the seminal models in

(Bonabeau et al., 1995; Stauffer, 2003)), as network links can be costly and hard to

maintain over time. Thus, a fundamental question is: What kind of mobility patterns

should we expect in networks that are stable versus networks that are not? Further-

more, the following question is still open: how is network stability associated with cer-

tain configurations of centrality inequality, i.e., the manner in which popularity is

distributed across the network (Fan et al., 2017)? Is it best that all actors are equally

popular, or is it important that a small nucleus of actors “commands” the majority of

the links? Most likely, the answer lies somewhere in between these two scenarios. The

sociological literature suggests, mostly by theory, that the role of a densely connected

nucleus is to provide the foundation for the network activity and to essentially glue the

network together (Oliver et al., 1985; Oliver & Marwell, 2001). On the other hand, the

role of the periphery is less clear. One theory alluded to in the literature is that the role

of the actors in the fringes of the network is to interact with the nucleus, act as a chan-

nel for innovations from external sources, and trigger the activity in the nucleus
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(Granovetter, 1973) either by interaction, or by simply serving as an audience to it. If

this is true, then we would expect the size of the periphery to be an important variable

that correlates with network longevity. In other words, we hypothesize that there

should be a balance between the sizes of the nucleus and periphery. A nucleus with lit-

tle or no periphery may not remain active for long. In contrast, a network with a nu-

cleus that is too small to support a large periphery population will also be less than

optimal for network longevity. Here, we explore whether this point of balance between

the two phases exists using real-life data. The role of social mobility in this context,

and its relationship with stability,2 is also explored. Finally, in the literature, network

temporal analysis usually focuses on a network time slice on which structural ap-

proaches are used. Notable examples are the k-core approach (Carmi et al., 2006) and

community detection algorithms (Newman & Girvan, 2004). Here, the high temporal

resolution of the data affords a more dynamic approach to measure social mobility

within the network. To gain insight into social mobility dynamics, we estimate the

chances of a newly-joined actor to climb up the social ladder and remain there. By

zooming in on the dynamics within networks, we hope to uncover the origins of the

heterogeneity and inequality of network centrality.

Data
To find answers to the above questions, we use a rich longitudinal dataset of 10,122 on-

line discussion communities with 134,747 users, using a total of 9,986,206 posts across

more than 12 years. We collected the data from Tapuz forums (www.tapuz.co.il/forums),

a website that allows users to form and control their own discussion communities. This

setup allows us to observe community time lines in minute-to-minute resolution. For our

purposes, we define a social connection between user i and user j if they interacted within

a community at least once. Fortunately, this website indicates when users respond to spe-

cific messages from specific users. The networks we observe are therefore networks of ac-

tive interaction, and so it is possible to estimate their real-time centralities per each time

period. We describe our findings in what follows.

Results
Inequality grows with network size

Figure 1 presents a visualization of the relationship between the Gini inequality coeffi-

cient (Atkinson, 1970) of user degree and community size. The lifetime of each com-

munity was divided into time windows of 60 days. Each scatter point in Fig. 1 is the

result of the measurement of the Gini coefficient vs. network size within each window,

for each community. The solid red curve represents the median Gini coefficient as a

function of community size within a time window. The median was preferred over the

mean for representing the distribution of Gini coefficients because it is less sensitive to

outlier values. We also chose to use the Gini coefficient as a measure of centrality in-

equality and, specifically, the inequality of user in-degree. In-degree in online commu-

nities effectively measures social attention or popularity, i.e., the time and effort that an

actor attracts from their peers. Fig. 1 presents hints towards the evolution of a central-

ity inequality, i.e., how it grows with growing network size. The median Gini coefficient

across size-bins initially is flat, up until communities of four individuals and then,
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starting at groups of four actors, it monotonously increases until it flattens again for

large groups. It seems that as communities grow, they naturally also become more and

more unequal in terms of peer-to-peer attention and up to a plateau of a Gini coeffi-

cient of 0.8. To get an idea of the level of inequality in the figure, Gini levels in world

economies: the economy of Botswana tops the inequality list with a Gini of 0.63 (South

Africa in 0.62), while Sweden has an estimated Gini value among the lowest, of 0.25.3

These findings suggest that there is, presumably, a difference in the formation of

small networks and larger networks. The formation process of small networks (up to

about 5 members) results in a relative uniform distribution of connections, while for

larger networks, connectivity inequality grows strongly with growing network size. In

fact, it is this small densely-connected seed group4 that, later as the network grows,

comprises the nucleus. Newcomers receive less and less in-link attention; thus, a sizable

gap forms between the popularity of the original early small nucleus of users and the

(much larger population of ) newcomers.

An alternative explanation is that these patterns are merely due to an age effect, i.e.,

even though newcomers start with a popularity disadvantage, they will accumulate

popularity over time, replacing older members and enabling a positive turnover rate in

the nucleus. However, this is not what we find in the data. As discussed in section

“Transient populations in outer shells nucleate around a highly stable nucleus”, turn-

over in the nucleus is negligibly small relative to the visible turnover rates of the per-

iphery. Unlike models that predict the formation of online networks by a process of

coagulation around several communities/nuclei, we find that online discussion forums

nucleate around one major central core, thus leading to a high level of popularity

inequality.

In order to qualitatively compare our observations to one of the leading models of

structure formation, we simulated a wide range of Gini-vs.-size curves in the General-

ized Barabasi-Albert model (Pham et al., 2015) and overlaid the results on the empirical

Gini-vs.-size curve, as seen in Fig. 2. The Generalized Barabasi-Albert model attach-

ment function is of the form Ak ∝ ka where α > 0. The envelope depicted in the figure,

marked by the gray area and bordered by black curves, covers a wide range of alpha

values in the Generalized Barabasi-Albert model. Specifically, this envelope spans the

simulated results of the Gini-vs.-size median curve of α = 0.1 (top curve) and the curve

Fig. 1 The median Gini coefficient of online communities degree centrality as a function of the size of the
community. Community lifetime was divided into 60 days windows. Size and Gini were calculated for each
time window separately
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of α = 2. We deployed 500 instances of simulated Generalized Barabasi-Albert networks

per each community size in the range of 3 ≤N ≤ 400. The simulations were split to two

parts: networks greater than three members were simulated with the general algorithm

because three is the minimal number that the Generalized Barabasi-Albert algorithm

allows. Smaller community sizes were generated using the ordinary Barabasi-Albert

model (Csardi & Nepusz, 2006). The range of sizes which were generated by the ordin-

ary Barabasi-Albert model are depicted by the light green band in the figure. In Fig. 2

two patterns stand out: (1) small communities are highly equal, on average, especially

relative to the preferential attachment models and: (2) real-life inequality exceeds the

highest preferential attachment levels of inequality across two orders of magnitude of

network sizes. In that sense, it seems that the data suggest that there are two regimes

of dynamics that govern networks, according to size. When the network is small, at the

stage in which its nucleus forms, the dynamics are more-egalitarian, i.e., reciprocal.

But, when the network grows in size and expands, these reciprocal dynamics do not

translate into the rest of the network. The nucleus retains its high level of connectivity

and accumulates more popularity with increasing size, while the periphery does not;

thus, high levels of inequality emerge. In the next section, we zoom in on the social

mobility within a network to explore if, indeed, the patterns that we hypothesize, gov-

ern turnover within network communities.

Social mobility is negative on average

Figure 3 shows a transition matrix where we color-code the probability of a member to

shift from degree i to any other degree j, during a time period within the community.

A guiding black line marks the stable case i = j. The time window used for calculating

the matrix in Fig. 3 is 60 days.5 For example, the color of the point {10, 20} in the fig-

ure, illustrates the probability that actors who had 10 connections in the previous

60 days period, will have 20 connections in the 60 days period that follows. The estima-

tions were done across communities that exhibited activity allowing meaningful inter-

action.6 The figure shows a strong negative drift across degree, i.e., it is much harder to

climb up the centrality “ladder” than it is to drop down. The figure also suggests that

degree tier turnover is the greatest for degrees k < 20 and drops beyond this value.

Fig. 2 Measure of degree inequality within the community plotted against size. Red is the median line of
networks from real-life data, the grey envelope are simulations of Generalized Barabasi-Albert networks with
0.1≤ α ≤ 2, and the light green band marks the range where we used the ordinary Barabasi-Albert
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The second observation is that the expected dynamics seem somewhat different for

degrees above and below k = 40. For k < 40, there is a dense concentration of

points in which there is a narrow range of high probability that is exhibited by a

green stripe that stretches along and below the i = j line. Our interpretation of this

is that, while the data show that transitions exist above and below k = 40, most of

the time, communities exist in the lower tier of degrees and that there is difference

between the low- and high-degree regimes. For the k > 40 regime, there are also

high probability clusters (seen as blue points) below the solid reference line which

mark more-probable jumps to lower degrees, i.e., negative social mobility. This

suggests that the high-degree region is more unstable.

Most nodes do not make it into the nucleus

Figure 4 illustrates the curve of the expected degree (black) in the next time period, per

each degree i in the current time. The figure clearly shows that, overall, social mobility

is negative, consistent with previous findings, i.e., that the next-period degree’s expect-

ation line lies below the stable community line (here in green). On average, individuals

Fig. 3 A heat map of the degree transitions over time. The X-axis marks the degree in the current period
and the Y-axis marks the degree in the following 60 days. The probability of a transition from degree X to
degree Y is color coded

Fig. 4 The expected next-period degree (Y-axis) as a function of the current-period degree (X-axis) is marked
by the black dotted line. The next-period expected degree was calculated per current-period degree using the
respective column in the transition matrix (Fig. 3). The green line marks the stability reference - when
the expected next-period degree is equal to the current-period degree
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constantly lose connections. The instability increases with growing degree, as is seen by

the growing gap between the expectation and stability lines. The general picture in

Fig. 4 is that the influx of actors into the high-centrality nucleus is low. An alternative

explanation for the patterns we observe is that of activity fatigue, or, an expected activ-

ity life cycle. In this scenario, the observed patterns are the result of a natural decay of

the average user’s activity levels. Initially, a typical actor will be active and climb up the

ranks. Then, after a certain period, activity will slow down, and the actor will gradually

lose in-links. First, this alternate story is inconsistent with the observed high stability of

the nucleus (see section “Transient populations in outer shells nucleate around a highly

stable nucleus”). Second, in this scenario, we would expect newcomers to exhibit low

degrees and positive social mobility, while negative social mobility will be common

among more senior actors. To explore whether it is true that newly-joined actors ex-

hibit positive social mobility, Fig. 5 gives the social mobility for different durations of

activity (actor activity “ages”). The patterns in the figure do not support the activity fa-

tigue effect as an alternative story. The figure shows that Short-lived actors, who were

active for less than 2 weeks (solid black), accumulate degrees up to k = 20. This is ex-

pected since we assume that gaining connections takes time.

Interestingly, very young communities (up to 2 weeks old), exhibit higher social mo-

bility, relative to the older communities we explored. Although this is out of scope of

the paper, it could be a sign that communities undergo an initial period of stabilization

of social mobility, starting with higher rates and later settling on lower levels, as is seen

for older communities. But, it is clear that even at this very early stage, communities

exhibit negative mobility, regardless of age and a low influx of actors into the nucleus.

Transient populations in outer shells nucleate around a highly stable nucleus

The box plot in Fig. 6 shows the distribution of the logarithm of activity lifetimes (in

days) for each centrality percentile, calculated across all 10,122 communities. In order

to compare between online communities of varying sizes, we consider lifetime vs. cen-

trality percentiles. Within each community, we partition the users to 101 equal-count

groups according to degree, whereby each user is assigned a discrete position from 0 to

100. For example, 90% on the X-axis denotes individuals with degree-centrality greater

Fig. 5 The expected next-period degree (Y) vs. the current-period degree (X) for three stages of actors’
lifetimes: less than two weeks, two weeks to a month, and one to four months. Curves were calculated as in
Fig. 4. The stability reference line is in green
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than 90% of the degrees within their community, but lower than 9% of them. Per each

actor, their lifetime within the community is calculated by their assigned centrality per-

centile score. The thick horizontal line, per percentile, marks the median lifetime across

all actors of a given percentile score. The 2nd and 3rd quartiles are denoted by a box

around the median, and the dashed lines denote the 1st and 4th quartiles of the distri-

bution. Figure 6 clearly shows a strong divide between parts of the network that have

varying degree centralities. Up to around the 48th percentile, the median lifetime is

very short. Above this percentile, lifetime increases non-linearly with percentile. For ex-

ample, the lifetime of the 98th percentile is three orders of magnitude higher than that

of the members in 50th percentile. This, along with our findings regarding social mobil-

ity, provides the following insight into the centrality dynamics. The network is com-

posed of subnetworks of varying connectivity. The more connected a sub-network is,

the more stable and long-lasting it is. Given that the social mobility is largely negative

and drops significantly for higher degrees, we can conclude the following ≠ it is hard

for actors to climb up and join the high-connectivity nucleus, but once an actor pene-

trates it (or is already inside), the actor stays there for long periods. The outer shells,

on the other hand, constantly turn over and are short-lived. These dynamics seem to

be prevalent across more than 10,000 communities of varying topics and populations,

and for more than a decade. In light of the stable two-mode (nucleus-to-periphery)

structure across communities, the following questions are still unanswered: To what

extent is it related to the stability of the network? What is the optimal size of a nucleus,

versus periphery for a network to survive? Small or large? Is the short-lived and less

connected population redundant, or is it critical to the longevity and activity of the net-

work? In what follows, we explore how social mobility and certain compositions of nu-

cleus and outer shells predict community growth, or demise.

Fig. 6 Persistence in the community. A box-and-whisker plot of the distribution of user activity log-lifetime
(Y-axis) per degree grouping X. The base of the log function is e here. Each equal-count centrality group is
1 %. The median lifetime is represented by thick black marks
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Low social mobility is associated with lower network longevity

We divided all communities in the data into two groups, short- and long living, using

median community lifetime as the cutoff threshold. Community lifetime is the time

from the first post within the community of any actor until the time when the last

community activity is recorded. We define the short-lived (long-lived) communities as

those that have lifetimes of less or equal to (greater than) the overall median lifetime,

which is 317 days. Figure 7 shows that the average social mobility is negative, and dif-

ferent between the two groups. The instability (shorter lifetime) of the short-lived net-

works (red curve) is greater such that these communities find the “social ladder”

consistently harder to climb, irrespective of the typical user’s degree. Further, the

degree-dependent negative drift increases at a faster rate in short-lived communities

with increasing degree. Long-living communities allow more centrality turnover, espe-

cially into the higher degrees. In that sense, the long-lasting communities seem to be

supportive of a more “equal opportunity” scenario when it comes to social mobility of

users. A different approach to exploring the relationship between social mobility and

community lifetime, is the following. For each community we estimate the magnitude

of social mobility by using regression analysis on how the current degree predicts fu-

ture degree, per each time window of 60 days, and per user within a community. This

allowed us to compare each community’s social mobility (as expressed by the regression

coefficient of current degree) to its lifetime in days. The distribution of community life-

times as a function of the regressed social mobility is shown in the form of a box plot

in Fig. 8. The figure shows, consistent with our other findings, that higher social

mobility is associated with longer community lifetimes. In sum, we observe that so-

cial mobility is negative and that higher mobility is associated with higher stability.

Also, as discussed above, we observe that it is almost impossible to penetrate a

highly-connected nucleus.

Network survival is associated with a unique proportion of nucleus-to-periphery size

The relationship between the nucleus-to-periphery size ratio and social network prop-

erties is relatively unexplored in the literature. The black curve in Fig. 9 illustrates the

average nucleus-to-periphery ratio as a function of community size. Interestingly, it

seems that for communities smaller than 5 members, the nucleus is small and

Fig. 7 Similar to Fig. 4, the expected next-period degree (Y-axis) is plotted against the current-period
degree (X-axis). The blue line marks the long-lived communities and the red line marks the short-lived communities.
The solid green line is the stability scenario X = Y
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under-developed. This is consistent with the fact that very small communities exhibit

relative equal connectivity among their members, and that inequality (in the sense that

there is a separation between dense nucleus and sparse periphery) develops only when

communities grow larger. For larger communities, the ratio is mostly around 0.20 but

mildly declines with size. For very large communities, of above several hundreds of

members, there is steeper decline. The relationship between degree centrality hetero-

geneity and the relative size of the nucleus is demonstrated in Fig. 10. Each curve cor-

responds to a group of communities in a certain range of nucleus-to-periphery ratios.

The nucleus-to-periphery ratio, η, is the proportion of actors that form the nucleus

over the size of the whole community. The blue curve, calculated for communities with

ratios in the range 0.25 ≤ η ≤ 0.5, shows the highest heterogeneity of degree. For some

reason, high relative connectivity develops in communities in this range. In ranges that

are lower or higher than those denoted by the blue curve, the fraction of members

drops faster in low degrees and thus the frequency of high degrees tends to be smaller.

We interpret this as suggestive that nucleus-to-periphery ratios in this range serve

better basis for high-connectivity groups to emerge.

Fig. 8 A box plot of the distribution of the natural log of community lifetimes in days, as a function
of regressed social mobility. The solid horizontal line in each box represents the median and the box
represents the 2nd and 3rd quartiles. The dotted lines designate the 1st and 4th quartiles of the lifetime distribution.
Only communities with more than 200 posts were used in the analysis

Fig. 9 The average nucleus-to-periphery size ratio is denoted by the black curve. The red curves denote one
standard deviation around the average
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In the context of these last observations, it is of interest to try and test whether

nucleus-to-periphery ratios can predict future community activity. Figure 11 is an illus-

tration of how the ratio of nucleus-to-periphery size is a predictor of future community

activity. The X-axis marks the nucleus-to periphery ratio, η. We choose a definition

that allows a clear and discrete distinction between nucleus and periphery: an actor is

part of the nucleus if their node is embedded in a fully connected neighborhood, or for-

mally, with a clustering coefficient of unity. In each 60-day time slice, we construct the

interaction network between actors and estimate the local clustering coefficients. Then,

we classify whether users are members of the nucleus or not, using their local cluster-

ing coefficients. Last, we calculate ηfor that community during that time slice. We plot

the average weekly activity Â community’s next frame as a function of the proportion η

(X-axis). Future activity is the total activity of all actors in the following time slice

(Y-axis). We generate η and Â curves in the figure denote the sampling standard error.

Notably, Panel 11a shows that there is a narrow nucleus-to-periphery ratio that predicts

maximal activity across all communities. Interestingly, the peak lies at around 25% nu-

cleation, i.e., a 1:3 ratio between nucleus size and the periphery. It is also clear from the

figure that as a network departs from that exact ratio, the predicted future activity di-

minishes. We interpret the patterns in Panel 11a as suggesting that networks over-

whelmingly dominated by their nucleus do not survive for long. This can be seen by

the rapid diminishing of future activity for high nucleus-to-periphery ratios. Conversely,

to survive, a network requires a relatively large population in the outer shells. The the-

oretical literature stresses that the nucleus is responsible for the better part of the net-

work activity (Oliver et al., 1985). While our findings are consistent with that, here, we

show that focusing only on the high centrality nucleus is not enough to gain useful

insight into network stability. The relationship between the nucleus and periphery is a

better indicator and seems to be a crucial variable that predicts stability. In fact, Panel

11a shows that there is a certain relative nucleus-to-periphery size ratio that is a pre-

dictor of stability and survival. Consistent with the literature, we interpret the effect of

the external short-lived periphery to be an effect of “fertilization” within the network.

The large periphery enriches the nucleus and the network with new ideas, external op-

portunities, and innovation (Granovetter, 1973). A major observation that one can

Fig. 10 The fraction of actors in a community with a given degree K or above (X axis), for varying ranges of
nucleus-to-periphery ratios (see legend)
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extract from Panel 11a is that there exists an optimal proportion of nucleus-to-periph-

ery sizes. Using our interpretation, it is possible to hypothesize that within the optimal

range of nucleation, a balance is reached between the need of the network to have a

large enough nucleus that dominates activity vis-a-vis the need for a large mass of per-

ipheral population that will enrich and trigger the nucleus population.

To gain more insight into the optimal nucleus-to-periphery ratio, we repeated the

analysis for short- and long-lived communities, again using median community lifetime

as the determining cutoff. The results for the short-lived communities are illustrated in

Panel 11c. This panel shows that the unique nucleation value of about 1:3 is crucial to

younger communities. Deviation from the ratio translates into a collapse of network ac-

tivity. Long-lived communities, on the other hand, show more flexibility, in that they

can host a wider range of nucleus-to-periphery ratios, as seen in Panel 11b. We inter-

pret this as evidence that older communities that have already established patterns of

social interaction could support both larger and smaller nuclei. Interestingly, the ratio

a

c

b

Fig. 11 Future activity Â of a community as a function of the fraction of actors in the nucleus N. Members
of the nucleus are defined to have a local clustering coefficient of 1 and are identified on the network, per
each time slice. Future activity is the total of messages posted during a 60-day time frame following the
identification of nucleus members. Mean future activity per nucleus size is shown in black (standard error in
red). a The calculation across all 10,122 communities. b The subset of long-lived communities (above-median
lifetime). c The short lived communities (below median lifetime)
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in which future activity peaks has a wider range for old communities, suggesting that

older communities thrive with relatively large nuclei. The reason for this might be ei-

ther because these well-established communities require less peripheral support, or that

they can host larger nuclei.

A more detailed exploration of the role of community age in the relationship between

nucleus-to-periphery ratio and future activity, is illustrated in Additional file 1: Figure S1.

In that figure, we divide communities into six tiers of age. The situation depicted in that

figure is a bit more complex. As communities age, the optimal nucleus-to-periphery ratio

spreads out and then for communities of 2 years and older, it narrows again at a

lower value. In other words, as communities reach very old ages, a small nucleus

is associated with more activity (even though, in general, future activity wanes as

communities mature).

Discussion
In this paper, we present data of online communities where the actors and their inter-

actions inside a community can be represented as a network. We study the relationship

between the network’s size and the heterogeneity of its degree centrality. We also ex-

plore the relationship between dynamical stability and social mobility, whereby in each

community a high-centrality nucleus, and sparser outer shells, exist. We term this pro-

portion the nucleus-to-periphery ratio,η. In general, we find that the network is com-

posed of two sub-structures that correspond with two dynamical patterns, or phases:

the large and highly mobile “cloud” of loosely connected users that nucleates around a

practically impenetrable nucleus of tightly connected members. From real-life data, we

find evidence that the nucleus-to-periphery configuration of a network is crucial for its

stability and survival. Remarkably, a specific narrow range of the nucleus-vs-periphery

ratio, η ≈ 1
4, predicts network success across more than 10,000 communities, over more

than a decade of activity. This is especially true for younger networks.

Even though our findings do not offer complete causal validity, we argue that they do

supply fundamental insight. Notably, one contribution of this work is to emphasize the

significance of the myriad but less popular users whose role in achieving long-standing

dynamical stability is, by and large, ignored in the literature. Our interpretation of the

findings is that these actors play the role of (1) triggering the nucleus users by being

the “audience”, and (2) enriching the interactions in the community by bringing in ex-

ternal information and ideas. A direction for future research is to further investigate

the role of network actors in affecting network function and stability, on both the mi-

cro and macro levels. Possibly, research should explore the dynamics of the varying life-

time stages of networks using data similar to ours. A more complete body of research

of the relationship between network structure and stability could, perhaps, enable the

engineering and fostering of long-lasting and stable social groups.

Endnotes
1In this work, we focus on degree centrality, i.e., the number of links that an actor

maintains in a social network.
2In general, we measure stability by looking at a community’s tendency to remain ac-

tive or maintain and/or attract members.
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3OECD statistics, Social Protection and Well-being ≠ Income Distribution and

Poverty - by country - INEQUALITY. OECD. 2016. http://stats.oecd.org
4It is noteworthy that although this scenario seems similar to that of preferential at-

tachment, we do not claim that preferential attachment is the underlying scenario. Any

scenario in which the seed group becomes the nucleus in a larger older network, will

be consistent with our findings.
5Varying the lengths of the time windows keeps the results qualitatively similar. The

60-day time frame was eventually chosen because it is large enough to register suffi-

cient activity, while still allowing a sizable set of temporal observations
6We selected communities with 200 posts at the very least, a total of 1,127

communities.

Additional file

Additional file 1: Figure S1. The relationship between current-period nucleus-to-periphery size ratio and future
weekly activity, for varying community age tiers. Nucleus-to-periphery ratio were calculated for each community,
within time windows of 60 days. Future weekly activity was calculated, per each time window and correlated with
the previous 60 days time window. (PDF 17 kb)
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