
Applied Network ScienceCetinay et al. Applied Network Science  (2018) 3:34 
https://doi.org/10.1007/s41109-018-0089-9

RESEARCH Open Access

Nodal vulnerability to targeted attacks in
power grids
Hale Cetinay* , Karel Devriendt and Piet Van Mieghem

*Correspondence:
H.Cetinay-iyicil@tudelft.nl
Delft University of Technology,
Faculty of Electrical Engineering,
Mathematics and Computer
Science, P.O Box 5031, Delft, The
Netherlands

Abstract
Due to the open data policies, nowadays, some countries have their power grid data
available online. This may bring a new concern to the power grid operators in terms of
malicious threats. In this paper, we assess the vulnerability of power grids to targeted
attacks based on network science. By employing two graph models for power grids as
simple and weighted graphs, we first calculate the centrality metrics of each node in a
power grid. Subsequently, we formulate different node-attack strategies based on
those centrality metrics, and empirically analyse the impact of targeted attacks on the
structural and the operational performance of power grids. We demonstrate our
methodology in the high-voltage transmission networks of 5 European countries and
in commonly used IEEE test power grids.
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Introduction
The unavailability of electrical power can severely disrupt daily life and result in
substantial economic and social costs (Baldick et al. 2008). This vital importance encour-
ages a robust design and operation of power grids (Alvarado and Oren 2002). Robust
power grids are able to anticipate, adapt to and/or rapidly recover from a disruptive event
or a failure.
In current practice, flow-based simulations play an essential role in the security analysis

of power grids. Given the generation and demand profiles, the steady-state analyses esti-
mate the operation of power grids. Additionally, many countries require that the power
grids should withstand the scheduled and unscheduled outages of its most critical lines
or other components. In these contingency analyses, the component outages are also
simulated to determine whether the power grids can still function properly under the
failure and consequent loss of an element. However, as power grids grow in size and
get more complex, the number of contingencies increases significantly, increasing the
associated computational time. This motivates research towards alternative techniques
(Bompard et al. 2009; Gutierrez et al. 2013; Hines et al. 2010a).
Disruptions in networks can be caused by unintentional failures or intentional attacks.

Unintentional failures can include manufacturing defects, malfunction in network
elements or human error. These kinds of failures can occur randomly throughout the grid
and are characterized as random failures (Trajanovski et al. 2013). Intentional attacks or
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targeted attacks, on the other hand, are not random and are aimed at maximizing dam-
age (Rueda et al. 2017). A major challenge in power grids is to evaluate the vulnerability
of a power system to these intentional hazards, starting by quantifying the importance of
electrical buses and the impact of the attacks on the network performance.
Power grids are amongst the largest and the most complex man-made systems and, like

many other complex networks, it features a specific topology which characterizes its con-
nectivity and influences the dynamics of processes executed on the network. The complex
nature of power grids and its underlying structure make it possible to analyse power grids
relying on network science (Strogatz 2001; Barabási and Albert 1999). The application of
network science on power grids has shown the promising potential to capture the inter-
dependencies between components and to understand the collective emergent behaviour
of complex power grids (Crucitti et al. 2004; Chassin and Posse 2005).
Topological investigations of power grids have demonstrated that power grids have

several components with significant importance compared to the rest of the network
(Koç et al. 2014a). These components are crucial for the grid as their removal can sig-
nificantly disrupt the operation of the power grids. Identifying these critical components
in advance can enable power grid operators to improve system robustness by monitoring
and protecting these components continuously. (Bompard et al. 2009; Koç et al. 2014a)
Currently, many studies use a complex networks perspective in analysing power system

vulnerabilities (Cuadra et al. 2015; Crucitti et al. 2004; Bompard et al. 2008). A significant
part of these studies investigates the relationship between the topology and specific
performance metrics in the underlying graph of power grids (Crucitti et al. 2004; Negeri
et al. 2015; Rosas-Casals et al. 2007). Such studies focus on the basic structural prop-
erties of a graph (such as nodal degree, clustering coefficient (Hernández and Van
Mieghem 2011)), which typically ignore the electrical properties, such as flow alloca-
tion according to Kirchhoff ’s laws or the impedance values of transmissions lines in the
grid. Mainly, two different aspects are important in the operation and consequent robust-
ness of power grids: the topology of the network formed by electrical buses and their
interconnections, and the operating conditions such as supply and demand distributions
(Bompard et al. 2012; Cetinay et al. 2016). Consequently, these purely topological metrics
could result inmisleading research results, whichmay be far from real physical behaviours
of power grids (Arianos et al. 2009; Hines et al. 2010b; Koç et al. 2014a).
To include the electrical properties of the grid in the analyses, several studies pro-

pose extended metrics (such as effective graph resistance (Koç et al. 2014b), the electrical
centrality (Hines and Blumsack 2008) and the net-ability (Bompard et al. 2012)) by intro-
ducing a set of link weights (such as distance or resistance (Qi et al. 2015)) and node
properties (such as the electrical demand and supply (Bompard et al. 2012)). Additionally,
other studies have used topological and electrical metrics to rank the electrical buses and
lines in power grids as a selective contingency analysis (Gorton et al. 2009; Nasiruzzaman
et al. 2011).
Motivated by the increasing need of alternative studies to the flow-based analyses and

the merits of network science on the investigation of power grids, in this paper, we
combine both of the aforementioned approaches: First, we present two different graph
representations for a power grid: a simple graph and an extended graph representa-
tion that takes the electrical properties of power grids into account. Next, we develop a
methodology to identify the critical electrical buses (nodes) in power grids, and compare



Cetinay et al. Applied Network Science  (2018) 3:34 Page 3 of 19

the impact of targeted node-attacks in detail for European high-voltage transmission net-
works (Cetinay 2018) and for the publicly available IEEE test power grids (IEEE 2018). Our
contributions can be summarized as follows: (i) we consider two different graph models
for power grids based on either purely topological information or by including the link
weight information and the linearised DC power flow equations; (ii) we employ these two
graph models to formulate the standard and the extended centrality metrics of nodes in
power grids; (iii) we formulate 8 different attack scenarios according to these centrality
metrics and empirically investigate the impact of targeted node-attacks on the structural
and operational performance of power grids.

Power grids and network science
In this section, we provide details about power grids, the steady-state power flow
equations and our models for power grids as simple and weighted graphs.

Power grids preliminaries

Power grids consist of nodes (electrical buses) and interconnecting links (transmission
lines and transformers). The status of each node i is represented by its voltage vi = |vi|eiθi
in which |vi| is the voltage magnitude, θi is the phase angle, and i denotes the imaginary
unit. Each line l has a predetermined capacity Cl that bounds its flow fl under a normal
operation of the system. In the steady-state of a power grid with N nodes and L links,
the injected apparent power pi + iqi at node i, where pi is the active power and qi is the
reactive power, is calculated using the AC power flow equations (Grainger and Stevenson
1994):

pi =
n∑

k=1
|vi||vk|

(
y(R)

ik cos θik + y(I)
ik sin θik

)
(1)

qi =
n∑

k=1
|vi||vk|

(
y(R)

ik sin θik − y(I)
ik cos θik

)
(2)

where θik = θi − θk and y(R)

ik = Re(yik) and y(I)
ik = Im(yik) are the real and the imaginary

parts of the element yik in the bus admittance matrix Y corresponding to the ith row and
kth column, respectively.
Each node in a power grid contains a number of electrical devices and according to

those, two basic types of nodes can be defined (Bergen and Vittal 1999):

• Supply node: A supply node generates the active power pi and controls the voltage
magnitude |vi| at its node i.

• Demand node: At a demand node, it is possible to specify the extracted active pi and
the reactive powers qi from the type of the electrical loads that are connected to that
node. There are also nodes without a supply or a demand connected, which can be
modelled as a demand node with no injected power, i.e., pi = 0 and qi = 0.

Due to the impedance of transmission elements, there are power losses during the oper-
ation in power grids. As the losses are dependent on the system state–the supply and
demand dispatches–they cannot be calculated in advance. Therefore, a slack node among
the supply nodes is assigned in power grids to compensate for the difference between the
total supply and the total demand plus the losses.
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DC power flow equations

The AC power flow Eqs. (1) and (2) are non-linear and the solution process is generally
iterative. A linear set of equations is more desirable whenever fast and repetitive solutions
are needed. Linearisation can be reasonably accurate when the following conditions are
met (Cetinay et al. 2017; Van Hertem et al. 2006):

1 The difference between the phase angles of neighbouring nodes is small such that
sin θik ≈ θik and cos θik ≈ 1.

2 The active power losses are negligible, and therefore, the bus admittance matrix
can be approximated as Y ≈ iY(I) where Y(I) is the imaginary part of the
admittance matrix Y, calculated neglecting the line resistances.

3 The variations in the voltage magnitudes |vi| are small and, can be assumed as
|vi| = 1 for all nodes.

If these conditions are approximately met, the AC power flow equations can be
simplified to the so-called the DC power flow equations:

pi =
N∑

k=1
y(I)ik (θi − θk). (3)

Although the DC power flow solution is less accurate than the AC power flow solu-
tion, in practice, the differences in high-voltage transmission networks between the phase
angles of neighbouring buses and the variations in voltage magnitudes are relatively small,
thus the error is assumed to be negligible (Van Hertem et al. 2006).

Graph representations of power grids

This section presents our models for power grids as simple and weighted graphs.

Power grid as a simple graph

A simple graph is an unweighted, undirected graph containing no self-loops or multiple
links. A power grid can be modelled as a graph G(N ,L) where N denotes the set of
N nodes and L denotes the set of L links in which multiple lines connecting the same
pair of nodes are modelled as one link. The N × N adjacency matrix A specifies the
interconnection pattern of the graphG(N ,L): aik = 1 only if the pair of nodes i and k are
connected by a direct link; otherwise aik = 0. TheN×N Laplacian matrixQ is defined as

Q = � − A

where � = diag(d1, . . . , dN ) is the diagonal degree matrix with the diagonal elements
di = ∑N

k=1 aik .

Power grid as a weighted graph

Alternatively, a power grid can be modelled as a weighted graph where each link is
assigned a weight that is related to the admittance of the transmission line it represents.
We model a power grid as a weighted graphG(N ,L) whereN denotes the set ofN nodes
and L denotes the set of L links1. By writing the DC power flow equations in (3) in terms
of the adjacency matrix A of G(N ,L)

pi =
N∑

j=1
aijy(I)ik (θi − θj) = θi

N∑

j=1
aijy(I)ik −

N∑

j=1
aijy(I)ik θj (4)
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we introduce the weighted adjacency matrix Ã, where each nonzero element ãij = aijy(I)ik
represents both the connectivity and the admittance between nodes i and j. Equation (4)
can then be written as:

pi = θi

N∑

j=1
ãij −

N∑

j=1
ãijθj. (5)

Since (5) holds for every node i, the corresponding matrix representation is

P =
{
diag

( N∑

k=1
ãij

)
− Ã

}
�

=
(
�̃ − Ã

)
� (6)

where P = [ p1 . . . pN ]T is the vector of net active power injection at the nodes with a
balanced supply and demand, i.e. uTP = 0 where u is all-one vector, �̃ is the weighted
diagonal degree matrix, and � = [θ1 . . . θN ]T is the vector of phase angles at the nodes.
Finally, introducing the weighted Laplacian Q̃ = �̃ − Ã into (6) yields

P = Q̃� (7)

where the weighted Laplacian Q̃ is a symmetric, positive semi-definite matrix that pos-
sesses non-negative eigenvalues apart from the smallest eigenvalue, which is zero (Van
Mieghem 2010).
The inversion of the active power - phase angle relation P = Q̃� in (7) is not pos-

sible due to the fact that det Q̃ = 0, which follows from the characteristic property
Q̃u = 0 of the weighted Laplacian. Although the inverse of the weighted Laplacian matrix
does not exist, the active power - phase angle relation inversion can be shown to be
� = Q†P + uT�

N u, where Q† is the pseudo-inverse of the weighted Laplacian Q̃, obeying
Q̃Q† = Q†Q̃ = I − 1

N J with the identity I and all-one matrix J = uuT. By choosing the
average phase angle in the graph θav = uT�

N = 0 as the reference (Cetinay et al. 2016), the
phase angle - active power relation takes the elegant form of

� = Q†P. (8)

While the weighted Laplacian Q̃ and its pseudo-inverse Q† are derived here based on
the linearised DC power flow equations in power grids, their applicability is far wider
(Van Mieghem et al. 2017). A weighted Laplacian Q̃ can describe many processes, that
are linear in or proportional to the network topology such as electrical circuits, water
flow networks, mechanical or thermal systems. The process equivalence between those
systems are given in Table 1.

Table 1 Equivalence between linear systems, adopted from (Van Mieghem et al. 2017)

Power grids Phase angle Power

Electrical circuit Voltage Current

Hydraulic circuit Pressure (height of liquid) Volume flow

Mechanical system Force Displacement velocity

Thermal system Temperature Heat flow

. . . . . . . . .
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Targeted attacks on power grids
The threats for power grids can be classified by using multiple criteria considering the
causes of the threat, their consequences or the preventive actions to manage the haz-
ards (Ciapessoni et al. 2017). One example of such threats are targeted attacks on power
grids, which involve intentional, criminal actions to destroy the network. In modelling
these threats, we assume that the attacks are performed with the knowledge of power
grid layout and with the intention to maximally disrupt the network performance while
attacking as few nodes (electrical buses) as possible. Throughout this section, we describe
how network science can be employed to formulate such attack strategies, where target
nodes correspond to most critical or most vulnerable nodes whose removal signifi-
cantly disrupts the network functioning.We first describe the standard centrality metrics,
which are purely based on the underlying topology of power grids, and then we extend
these metrics to include the information on the link weights, i.e. the admittances of the
transmission lines, and the DC power flow equations in power grids.

Ranking nodes in the simple graph representation of a power grid

In this section, we review some of the existing topological centrality metrics in order to
rank the importance and the centrality of nodes in the underlying simple graph of power
grids.

Degree centrality

The degree di of a node i in the graph G(N ,L) is equal to the number of its neighbouring
nodes (Freeman 1978). The degree di can be calculated using the adjacency matrix A:

di =
N∑

j=1
aij. (9)

Eigenvector centrality

The eigenvector centrality of a node is a global centrality metric that depends not only
on the number of its neighbouring nodes, but also on the number of 2-hop neighbouring
nodes, 3-hop neighbouring nodes, and so on (Bonacich 1987; 1991). The eigenvector
centrality xi of node i is equal to the ith component of the eigenvector corresponding to
the largest eigenvalue λ1 of the adjacency matrixA. The principal eigenvector centralities
thus follow from the linear equations:

xi = 1
λ1

N∑

k=1
aikxk . (10)

Betweenness centrality

Another metric to assess node importance or centrality is the betweenness central-
ity (Freeman 1977). In calculating the betweenness centrality, it is assumed that informa-
tion or services are transmitted over shortest paths between node pairs. Hence, if many
shortest paths pass through a certain node, this node takes a central role in the network.
If |Ps→t| is the number of all possible shortest paths from node s to node t, and |Ps→t(i)|
is the number of those paths that pass through node i, then the betweenness bi of node i
is equal to
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bi =
∑

s,t∈N\{i}

|Ps→t(i)|
|Ps→t| . (11)

In other words, the betweenness centrality of a node i shows the fraction of all shortest
paths between any pair (s, t) of nodes, that pass through node i.

Closeness centrality

In calculating the closeness centrality, the hopcount H(Pi→j) that is the number of links
in the shortest path Pi→j between a pair of nodes i and j, is used. The closeness centrality
ci of a node i is defined as (Freeman 1977):

ci = 1∑
j �=i H(Pi→j)

, (12)

which is the reciprocal of the sum of the hopcounts of node i to all other nodes. A large
closeness centrality value thus corresponds to a “central” node that is well-connected by
a few hops to other nodes.

Ranking nodes in the weighted graph representation of a power grid

While the standard centrality metrics are based on purely topological information, it is
possible to extend the definition of these metrics by including the link weight information
and the power flow equations in power grids. Different definitions of extended centrality
metrics (extended betweenness (Bompard et al. 2010), modified betweenness and close-
ness centrality (Gutierrez et al. 2013), electical degree (Hines and Blumsack 2008)) exist2

and are evaluated by simulations via power flow solvers or by calculating power transfer
distribution factors (PTDF) in power grids. Such simulation-based definitions are gener-
ally computationally expensive and formulations with the absence of slack node(s) may
not fully explain the analogy between the extended centrality definitions and the weighted
graph model for power grids.
Extended metrics were also defined before (Ellens et al. 2011; Newman 2005) based on

the voltage - current relation in electrical circuits. Since the phase angle - active power
relations in (7) and (8) in power grids obey the same linear relation as those in electri-
cal circuits (as described before in Table 1), these metrics can identify central nodes in
power grids.
We take here a graph theoretical approach using the slack-node-independent weighted

graph representation for power grids described in the previous section. This weighted
graph model facilitates both the analogy between the standard and the extended central-
ity metrics, and the enhanced linear algebra to formulate the closed-form expression of
centrality metrics via graph-related matrices.

Weighted degree centrality

Similar to the topological definition in (9), the weighted degree centrality is related to the
number of neighbours of a node. However, rather than only considering the number of
neighbours, the weighted degree d̃i also includes the information of the admittances ãij
of the transmission lines that link the nodes, which leads to the definition:

d̃i =
N∑

j=1
ãij. (13)
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A large value of the weighted degree d̃i corresponds to larger values of the admit-
tance directly connected to that node, which indicate that node i is well connected to its
neighbours.

Weighted eigenvector centrality

In analogy with the eigenvector centrality in (10), the weighted eigenvector centrality
x̃i not only captures the total admittance of all lines connected to node i, but is also
influenced by the admittance of all lines connected to its neighbours, their neighbours
and so on. The weighted eigenvector centralities correspond to the eigenvector of the
highest eigenvalue λ̃1 of the weighted adjacency matrix Ã. Thus, the principal weighted
eigenvector centrality x̃i is given by the equation:

x̃i = 1
λ̃1

N∑

j=1
ãijx̃j. (14)

Flow betweenness centrality

While in the standard definition of the betweenness and the closeness centrality in (11)
and (12), information exchange and other processes are assumed to travel over shortest
paths, in the case of the DC power flow equations (or in the equivalent linear systems in
Table 1), the flow distribution obeys Kirchhoff ’s and Ohm’s laws. Therefore, the standard
betweenness and closeness centrality based on shortest paths may not fully capture the
operation of power grids. Instead, the flow betweenness centrality b̃i of node i depends
on the total flow running through that node, as proposed by Newman (2005):

b̃i =
∑

s,t∈N\{i}

∑

j∈B(i)
|fs→t(i, j)|, (15)

where B(i) denotes the direct neighbours of node i, and |fs→t(i, j)| is the magnitude of
the power flow through the link between i and j when a unit active power is injected at
node s and extracted from node t. In Appendix 2, we show how these flows can be calcu-
lated from the weighted graph representation of a power grid. Higher values of the flow
betweenness centrality b̃i indicate the importance of a node with respect to the electrical
power transmission in power grids.

Electrical closeness centrality

Similar to the definition of the closeness centrality in (12), the electrical closeness
centrality of a node is an indicator of the average distance of that node to all other
nodes. However, since the flow in a power grids obeys Kirchhoff ’s laws, the effec-
tive resistance (Ellens et al. 2011; Cetinay et al. 2016) is a more appropriate distance
metric between nodes than the hopcount of shortest-path. The effective resistance �ij
between a pair of nodes can be calculated from the pseudo-inverse Laplacian matrix as
(Van Mieghem 2010):

�ij = (Q†)ii + (Q†)jj − 2(Q†)ij,

and captures the effect of the active power transfer pij and the phase angle difference θi−θj
between a pair of nodes, when active power is only injected at and extracted from nodes
i or j:

�ij = θi − θj

pij
.
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Since the effective resistance satisfies the properties3 of a distance function (Klein and
Randić 1993) and obeys the flow equations in power grids, it can be used to define a
distance-based centrality metric. The electrical closeness centrality c̃i of a node equals the
reciprocal of the total effective resistance of that node to all other nodes4:

c̃i = 1
∑N

j=1 �ij
. (16)

Compared to the shortest-path hopcount H(Pi→j), the effective resistance �ij does not
depend only on the shortest path, but also incorporates the information of all possible
paths between node i and j, where the contribution of each possible path follows from the
linear flow equations. In the case of the unweighted tree networks, the effective resistance
�ij equals the hopcount H(Pi→j) for all nodes. Thus, for tree-like power grids with equal
admittances, the electrical closeness centrality closely resembles the topological closeness
centrality, while for power grids with many loops (i.e. non-tree-like) both metrics could
differ significantly.
Each of the centrality metrics we present captures a certain aspect of the structural and

the operational centrality in the network, such as the strength of a direct connectivity
(degree and eigenvector centrality), being a part of many important paths (betweenness
centrality) or being close to other nodes (closeness centrality). In recent years, another
conceptual definition of centrality has emerged. Based on optimal percolation theory
(Morone and Makse 2015), which considers the problem of “finding the smallest set
of nodes whose removal fragments the network in small disconnected pieces”, a num-
ber of new metrics have been proposed (such as the collective influence (CI) (Morone
and Makse 2015; Morone et al. 2016), belief propagation decimation (BPD) (Mugisha
and Zhou 2016) and CoreHD (Zdeborová et al. 2016)). Such metrics reflect the impor-
tance of a node for the global structural coherence as well as their influence in spreading
behaviour. However, to the best of our knowledge, extended metrics based on percola-
tion theory have not been studied yet. Therefore, in this work, we focus on the generally
accepted and adopted centrality metrics to the power grids.

Identifying the effect of node removals in power grids
In this section, we empirically compare the effects of the targeted node removals based
on the centrality metrics presented in the previous section. To evaluate the change in the
network functioning, we use two performance metrics that can quantify both the topo-
logical and the operational characteristics of the grid after targeted attacks. We consider
the networks from 5 real-world power grids of European countries (Cetinay 2018) and 5
synthetic power grids from the IEEE test case database (IEEE 2018).

Performance metrics

In an ideal power grid which is robust to targeted attacks, the removal of nodes should
not significantly alter the network functioning. In some cases, removing a node from the
power grid can partition the network into several components, which are disconnected
from each other. This is undesirable as this partition both adversely affects (i) the struc-
ture: as the size (i.e. the number of nodes) of the connected component of the network
is decreased, and (ii) the operation: since the disconnected structure disrupts the ser-
vice and the capacity of the network. In this work, we present two performance metrics
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in our case studies, the size and the capacity of the giant component, to assess both the
topological and the operational performance aspect in the network.

The size of the giant component

The giant component (Molloy and Reed 1998) is the connected component of a graph
that contains the largest fraction of the entire graph’s nodes. The size of the giant compo-
nent in the graph reflects the disruptive effect of node removals on the structure of the
network.
We assume that the underlying graph of the initial network is connected, thus the initial

size of the giant component is N. Then, we calculate the normalized size σ of the giant
component after each node removal as the ratio between the size of the current giant
component and the initial network size N, in other words

σ =
∑N

i=1 1{i∈G′}
N

(17)

where 1{x} is the indicator function: 1{x} = 1 if the condition {x} is true, else 1{x} = 0, and
G′ is the current giant component of the initial graph G(N , L).

The capacity of the giant component

Each transmission line in a power grid is associated with a maximum flow carrying capa-
bility. For the safe operation of a network, the flows through the network links should be
below these capability. If the flow limits are exceeded, the situation is detected by protec-
tion relays, the circuit breakers are tripped, and the corresponding element is taken out
of service. The possibility and the negative impact of cascading failures in power grids
increases when the operating point of a power grid is close to the flow carrying capabili-
ties of its links (Koç et al. 2013; Cetinay et al. 2017). Consequently, a network with a high
flow carrying capability is desired.
We calculate the total capacity of the network as the sum of the maximum flow carrying

capabilities of links in the largest connected component of the graph.Whenmultiple lines
are connecting the same pair of nodes, we consider an equivalent capacity between those
nodes. This equivalent capacity represents the maximum power that can be transferred
between these nodes such that the resulting power flow through each single line is at most
at its capacity. In Appendix 3, we describe how this equivalent capacity is calculated.
The capacity of the giant component depends on the number of links in the giant com-

ponent as well as the flow carrying capability of links, which are closely related to the
electrical demands and supplies at the neighbouring nodes5. We calculate the normalized
capacity of the giant component γ after each node removal as the ratio between the total
capacity of the current giant component and the total capacity of the initial network, in
other words

γ =
∑L

l=1
(
Cl × 1{l∈G′}

)
∑L

l=1 Cl
. (18)

Properties of the networks used in simulations

We considered the high-voltage transmission networks of 5 European countries in our
case studies: Austrian, Belgian, Dutch, French and German power grids. In addition, we
included 5 widely used test power grids from IEEE database (IEEE 2018). In all networks,
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multiple lines connecting the same pair of nodes are represented as an equivalent sin-
gle link using the equivalent admittance (23) and the equivalent maximum flow carrying
capability (25). The degree distributions of the underlying graphs are shown Figs. 1 and 2.
Additionally, more details of the power grids in our case study are available on our GitHub
page (Cetinay 2018).

The effects of targeted node removals in power grids

We apply both the standard and the extended centrality metrics as node-attack strategies
in power grids. For each centrality metric, we start the attacks by removing the node
(and all its links) with the highest value of the chosen centrality metric. After each node
removal, we recalculate the values of the centrality metric, and continue by removing the
node with the highest value of the centrality metric in the current giant component of
the graph. Note that, during the successive node removals, we do not take the cascading
dynamics (such as overloading of links or demand/supply redistribution due to cascading
failures (Cetinay et al. 2017)) into account. In other words, we focus on the instant just
after the removal of nodes to identify the effects on the structure and the operational
performance indicators of the power grid.
Figures 3 and 4 show the changes in the normalized size and the capacity of the giant

component when we sequentially remove the nodes according to 8 different central-
ity metrics. We observe that the betweenness and the flow betweenness centrality are
the best attack strategies as they can maximally disrupt the network functioning with
fewer attacked nodes. On the other hand, the degree centrality may not always success-
fully assign an important node. Compared to the degree centrality, the betweenness and
the flow betweenness centrality give more fine-grained centrality values for each node,
whereas, multiple nodes with the same degree exist, as illustrated in Figs. 1 and 2, making
them indistinguishable. In addition, we observe that the eigenvector and the weighted
eigenvector centrality are the least effective attack strategies: Targeted attacks according
to these centrality metrics destroy the network slower than other attack strategies.

Fig. 1 The degree distribution of the simple graphs of 5 European power grids
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Fig. 2 The degree distribution of the simple graphs of 5 IEEE power grids

Next, in order to compare the attack strategies and to further quantify the topological
and operational changes in power grids, we calculate the average of the structural and the
operational performance indicators (or the energy ε values of a graph (Trajanovski et al.
2013)) that are the normalized sums of the size and the capacity of the giant component
over successive targeted attacks, respectively. Thus, the average value σ̄ of the structural
performance indicator of the power grid overK successive node-attacks can be calculated
as

σ̄ =
∑K

k=1 σ(k)
K

(19)

where σ(k) is the normalized size of the giant component after k successive attacks. Sim-
ilarly, the average value γ̄ of the structural performance indicator of the power grid over
K successive node-attacks is

γ̄ =
∑K

k=1 γ (k)
K

(20)

Fig. 3 The normalized size of the giant component in the French power grid versus the removal of nodes
according to the standard centrality metrics (left) and the extended centrality metrics (right). The node with
optimal graph metric, computed in resulting giant component, is removed
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Fig. 4 The normalized capacity of the giant components in the French power grid versus the removal of
nodes according to the standard centrality metrics (left) and the extended centrality metrics (right). The node
with optimal graph metric, computed in resulting giant component, is removed

where γ (k) is the normalized capacity of the giant component after k successive attacks.
The structural σ̄ and the operational γ̄ performance indicators in (19) and (20) are eval-
uated on a score between 0 and 1: In an ideal power grid which is robust to targeted
attacks, the node removals should have slight effects on the network performance. Thus,
a performance indicator close to 1 is desirable by the network operators. On the other
hand, a lower performance indicator over successive node-attacks indicates a powerful
(destructive) attack-strategy in which few important nodes of the network are identified
and removed, with negative operational and structural consequences.
In Figs. 5 and 6, we present the average values of the performance indicators in Euro-

pean and IEEE test power grids (PG) after different attack strategies that remove 10% of
the initial network nodes, respectively. Higher values in Figs. 5 and 6 represent higher
robustness to the targeted attacks, whereas lower values indicate vulnerability or a severe
disrupt in network functioning. We observe that targeted attacks based on the flow
betweenness and the betweenness centrality followed by the closeness and the electri-
cal closeness centrality are the best attack strategies to decrease the structural and the
operational performances of the power grids. As an example, the targeted node attacks

Fig. 5 The structural performance indicator σ̄ (left) and the operational performance indicator γ̄ (right) in
European power grids after the targeted attacks
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Fig. 6 The structural performance indicator σ̄ (left) and the operational performance indicator γ̄ (right) in
IEEE power grids after the targeted attacks

according to the flow betweenness centrality of nodes destroy the Dutch power grids
faster than any other attack strategy.

Main lessons learned from the analyses

In this section, we summarize the insights obtained in the previous sections. The main
lessons learned from the analyses of the targeted node-attacks based on the different cen-
trality metrics from the simple and the weighted graph representations of power grids in
the tested networks are as follows:

• The degree centrality (9) only provides information on the local structure around a
node. Similarly, the weighted degree centrality (13) reflects local connectivity
information. Thus, a node that is connected to many other nodes (with high
admittance) is not necessarily a central node for the whole network. Therefore, as
illustrated by the targeted attack simulations, the degree and the weighted degree
centralities cannot always indicate the important nodes.

• The betweenness centrality (11) incorporates information about the global network
structure, and in the analyses of the test networks, high betweenness centrality values
were found to efficiently indicate the nodes whose removal would significantly
disrupt the network performance. While successfully indicating vulnerable nodes, the
betweenness centrality (11) is based on the shortest paths only. This means that the
betweenness centrality does not discriminate nodes that are positioned “close” to
many shortest paths (and would be considered central), and peripheral nodes. This
limitation is partly addressed by the flow betweenness centrality (15), in which the
flows through the network links are distributed throughout the network according to
the Kirchhoff’s laws. In the analyses of the test networks, removing nodes with a high
flow betweenness usually resulted in the most destructive effects on the network.

• The closeness centrality (12) reflects the average shortest path distance from a node
to all other nodes in the network. Higher closeness centrality values thus indicate
nodes which can easily reach the other nodes in the network. Similarly, higher values
of electrical closeness centrality (16) show a node that is on average close to the other
nodes in the network, based on the operationally inspired effective resistance
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distance instead of the shortest-path distance. In the analyses of targeted attacks, the
performance of the closeness and the electrical closeness centrality in identifying the
important nodes in the tested power grids are found to be similar.

• The eigenvector centrality (10) can rarely identify the critical nodes, and thus, the
targeted attacks based on the eigenvector centrality are generally the worst
destructive strategy among the traditional centrality metrics in the tested networks.
Similarly, the weighted eigenvector centrality (14) seems not to successfully indicate
important nodes.

The analyses of the targeted node-attacks show that centrality metrics, in particular the
(flow) betweenness and (electrical) closeness, are very successful in indicating the critical
nodes whose removals sharply decrease the selected performance indicators (the size and
the capacity of the giant component) of power grids. Identifying these critical components
in advance can enable power grid operators to improve system robustness by monitoring
and protecting these components continuously. Additionally, although the effect of tar-
geted attacks are more significant when the centrality information is updated after each
node removal, the information based on the initial calculation of the centrality metrics is
also fairly successful in finding the important nodes. The degree centrality is a good indi-
cator to fragment the network to decrease the structural and operational performance
indicators of power grids (See Appendix 1).

Conclusion
In this paper, we took a network science approach to investigate the vulnerability of power
grids to malicious targeted attacks. First, we presented two different graph models for
power grids: simple and weighted graphs. Subsequently, using these graph models, we
ranked the importance of each node according to the standard and the extended cen-
trality metrics that take into account the electrical properties of the grids such as the
admittance of the transmission lines and the flow allocation according to the DC power
flow equations. Via case studies in both real-world and test power grids, we show that the
power grids are highly vulnerable to targeted attacks: sequentially removing the nodes
with the highest centrality is a good strategy to fragment the power grids, and to maxi-
mally decrease its operational performance. In almost all power grids in our case study,
removing approximately 15% of the nodes according to the flow betweenness centrality
destroys the network almost completely. Grid operators can use the proposed methodol-
ogy to analyse the current vulnerability of their network to targeted attacks and to take
necessary measures by protecting the important nodes in their networks.

Endnotes
1Multiple lines connecting the same pair of nodes are represented as a single equivalent

link in the graph, see Appendix 3.
2A broad review of robustness studies in power grids using network science can be

found in (Cuadra et al. 2015).
3 The properties of a distance functionD(i, j) between a pair of nodes i and j are: (a) non-

negativity: D(i, j) ≥ 0, (b) zero distance for identical nodes: D(i, j) = 0 if and only if i = j,
(c) symmetry: D(i, j) = D(j, i) and (d) the triangle inequality: D(i, k) + D(k, j) ≥ D(i, j).
The effective resistance D(i, j) = �ij satisfies all four properties (Klein and Randić 1993).



Cetinay et al. Applied Network Science  (2018) 3:34 Page 16 of 19

4Van Mieghem et al. (2017) defines the node i
 which is electrically the best spreader
to all other nodes based on the flow equations in electrical circuits. This best spreader
node i
 corresponds here to the node with the highest electrical closeness centrality, i.e.
i
 = argmax

i∈N
c̃i.

5 Another metric that can be used to capture the operational performance of power
grids is the Yield which is the ratio of the total demand supplied at the end of an attack
with respect to the initial demand of the network (Cetinay et al. 2017). This electrical
demand information, which is needed to calculate Yield, is not available in our data sets
of real-world power grids.

Appendix 1: Targeted attacks based on initial centrality metrics
Instead of recalculating the centrality metrics after each node removal, we consider here
a more simplified attack strategy based on calculating the centrality metrics only once,
at the beginning of the attacks. The targeted attacks are then performed sequentially
according to these initial values.
Figures 7 and 8 show the changes in the normalized size and the capacity of the giant

component in French power grids after the targeted attacks, respectively. Figures 7 and 8
illustrates that even these simplified attack strategies could inflict a significant damage
on the network functioning: For instance, removal of 15% of the nodes according to the
initial rankings nearly destroys French power grids. Compared to Figs. 3 and 4, in Figs. 7
and 8, we observe that the degree centrality is the most destructive attack strategy when
the centrality metrics are based on only the initial calculation of the centrality metrics, i.e.
when the node-rankings are not updated after the targeted attacks.

Appendix 2: Calculation of flow betweenness centrality in power grids
Following the linearised DC power flow equations in power grids, the active power P and
phase angle � in all nodes are related by Eqs. (7) and inversely by (8). When a unit active
power is injected at node s and extracted at node t, this corresponds to the active power
input to the grid:

Ps→t = es − et

Fig. 7 The normalized size of the giant component in the French power grid versus the removal of nodes
according to the standard centrality metrics (left) and the extended centrality metrics (right). Nodes are
removed sequentially according to the initial values of the centrality metrics
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Fig. 8 The normalized capacity of the giant component in the French power grids versus the removal of
nodes according to the standard centrality metrics (left) and the extended centrality metrics (right). Nodes
are removed sequentially according to the initial values of the centrality metrics

where ek is the basis vector with the kth component equal to one and all other components
zero. Based on Eq. (8), the resulting phase angle vector for this active power input can be
calculated as

�s→t = Q†(es − et).

Knowing the phase angle at each node, it is then possible to calculate the flow fs→t(i, j)
through the link between nodes i and j as

fs→t(i, j) = ãij(ei − ej)T�s→t . (21)

The flow betweenness centrality b̃i of a node i is the sum of the absolute flows that pass
through that node i, over all possible pairs of source and target nodes6:

b̃i =
∑

s,t∈N\{i}

∑

j∈B(i)

∣∣∣ãij(ei − ej)TQ†(es − et)
∣∣∣ . (22)

Appendix 3: Multiple lines connecting the same pair of nodes
We consider multiple lines L′ connecting the same pair of nodes i and j: each line l has
admittance yl and flow capacity Cl. In the weighted graph model for power grids, those
multiple lines L′ are represented as a single equivalent link between node i and j, with
admittance

y(I)ij =
∑

l∈L′
y(I)l . (23)

The maximum possible flow between those nodes i and j is constrained by the capacity
of each single line connecting them. If power fij flows from node i to node j, then according
to the DC power flow equations in (3), this results in the phase angle difference

(θi − θj) = fij
y(I)ij

, (24)

where y(I)ij = ∑
l∈L′ y(I)l is the equivalent admittance between node i and j of L′ lines in

parallel. For each single line, Ohm’s law states that the flow fl through that line is related
to the phase angle difference by

fl = y(I)l (θi − θj).
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Introducing the phase angle difference from Eq. (24) then leads to

fl = fij
y(I)l
y(I)ij

for the flow fl through line l. Since the maximum flow through each line is constrained by
its flow capacity: fl ≤ Cl, we find that the total flow fij between node i and j is constrained
by an equivalent capacity Cij equal to:

fij ≤ Cij

where,

Cij = min
l∈L′

(
Cl
y(I)l

)
y(I)ij . (25)
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