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'Tokyo University of Technology, Dividing a geographical region into some subregions with common characteristics is
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Full list of author information is urban planning and transportation planning. In this paper, by network analysis

available at the end of the article approach, we attempt to extract functionally similar regions, each of which consists of

functionally similar nodes of a road network.

For this purpose, we previously proposed the Functional Cluster Extraction method,
which takes a large amount of computation time to output clustering results because it
treats too many high-dimensional vectors. To overcome this difficulty, we also
previously proposed a transfer learning-based clustering method that selects
approximate medoids from the target network using the K medoids of a previously
clustered network and divides all the nodes into K clusters. If we select an appropriate
network with similar structural characteristics, this method produces highly accurate
clustering results. However it is difficult to preliminarily know which network is
appropriate. In this paper, we extend this method to ensure accuracy using the K
medoids of multiple networks rather than a specific network. Using actual urban
streets, we evaluate our proposed method from the viewpoint of the improvement
degree of clustering accuracy and computation time.

Keywords: Spatial network, Functional similarity, Node clustering, Greedy algorithm,
Transfer learning

Introduction

From a geographical area, extracting territorial unit each of which has the homogene-
ity in terms of physical aspects, cultural aspects and so forth, is an important research
task in geography like urban planning and transportation planning. There exist some
studies attempting to divide a given area into subregions or to find similar regions hav-
ing common structural patterns by multivariate analysis approaches (Berry 1964; Grigg
1965; Berry 1968) and by network analysis approaches (Zhang et al. 2011; Farmer and
Fotheringham 2011; Yin et al. 2017; Chen et al. 2018). Without being limited to hyperlink
networks and user-related networks in SNS, various types of networks like road networks
and electric power networks have been analyzed (Burckhart and Martin 2012; Crucitti
et al. 2006; Montis et al. 2007; Opsahl et al. 2010; Park and Yilmaz 2010; Wang et al. 2012).
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In a network, each node plays some sort of function for it. Examples of functions include
manager and general employee in a company network and urban and suburban areas
in a road network. Discovering node roles or extracting functionally similar nodes from
social networks has become an important task in network analysis (Henderson et al. 2011;
Henderson et al. 2012; Rossi et al. 2012; 2013; Gilpin et al. 2013; Rossi and Ahmed 2015).

For the similar purpose, we previously proposed the Functional Community/Cluster
Extraction (FCE) method that extracts functionally similar nodes, which we call func-
tional cluster, from social or web networks (Fushimi et al. 2012) and from spatial networks
like urban streets (Fushimi et al. 2016a). The FCE method first calculates a feature vector
for each node that is generally represented as a high-dimensional vector. Then it divides
all the vectors into K clusters, each of which consists of functionally similar nodes, using
the K-medoids method based on a greedy algorithm.

Figures 1a and b respectively indicate the main landmarks in and around the area of the
Shizuoka network and the functional clusters extracted by the FCE method, where the
node colors stand for the functional clusters at K = 5. From these figures, the blue regions
roughly correspond to the city centers of this network, the red regions approximately cor-
respond to suburban areas, the green regions contain many nodes in the agricultural areas
or mountain foothills, the yellow regions contain many nodes with long, winding roads,
which lead to other towns over the mountainous areas, and the pink regions roughly
correspond to small villages with sparse population.

However, the FCE method takes a large amount of computation time to output cluster-
ing results because it treats so many high-dimensional vectors for a large-scale network.
To overcome this difficulty, we proposed an accelerated version of a greedy algorithm
for K-medoids clustering, which produces identical results to the original FCE method,
by equipping it with some pruning techniques (Fushimi et al. 2016b). For further accel-
eration, by focusing on the structural similarity of urban streets and regarding them as
spatial networks, we proposed a transfer learning-based method (Fushimi et al. 2017c),
which approximates medoid vectors using an already clustered network. We call this a
source domain network (source network). By using approximates medoid vectors, the
method divides all the nodes of a target network into K clusters. If we select an appropri-
ate network with similar functional and structural characteristics, this method produces
highly accurate clustering results. To obtain high approximation accuracy, we must know
in advance which network is suitable as a source network.
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Fig. 1 Visualization results of Shizuoka a Landmarks b Results of FCE method (K = 5)
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Furthermore, a target spatial network naturally consists of some functional regions,
each of which resembles those of other networks rather than a specific network. From
our previous experiments (Fushimi et al. 2016a), we learned that for all of the six cities
used in our experiments, the 1st, 2nd, and 3rd functional clusters share commonly simi-
lar characteristics. On the other hand, the 4th and 5th functional clusters do not, because
they reflect geographical restrictions and/or the historical and the cultural backgrounds
of individual cities. For example, in all the networks, the 3rd functional regions signifi-
cantly contain many nodes whose degree is four, which implies that they are downtown
regions with a lattice structure like Manhattan.

Therefore, in this paper, based on these observations, we extend the above transfer
learning-based method (Fushimi et al. 2017c) by using the K medoids of more than one
source network and use K medoids of M source networks, where the total number of
medoids is MK. For a target network that consists of N nodes, each of whose function
is represented as a high-dimensional vector, we select MK candidates of approximate
medoids from N nodes based on the cosine similarities among the vectors of the MK
medoids and the N nodes. Then we extract the K-approximate medoids from the MK
candidates based on a greedy algorithm, which selects the nodes with the largest marginal
gain of the objective function. In addition, to improve the objective function value, we
introduce an update mechanism like k-means algorithm to the approximate medoids,
which we call Divided Improvement (DI).

The rest of this paper is organized as follows. After explaining related work in “Related
work” section, we revisit the extraction method of functional clusters in “FCE method
revisit” section. Then in “Simple selection of approximate medoids from a single source
network” section, we describe the transfer learning-based method and our proposed
method in “Greedy selection of approximate medoids from multiple source networks”
section. After explaining the network dataset in “Spatial network dataset” section, in
“Evaluation of computation time” section, we evaluate its computational performance.
In “Evaluation of clustering accuracy” section, we evaluate the accuracy of our pro-
posed algorithm and discuss the objective function value of our proposed method and
other comparison methods in “Evaluation of objective function value” section. Finally, we

conclude in “Conclusion” section.

Related work

Extracting node functions from a network is one important research topic, especially
in sociology. Concept and extraction algorithms of regular equivalence (Everett and
Borgatti 1994) and structural equivalence (Lorrain and White 1971) have been pro-
posed. These concepts focus on such local structures as relationships with neighboring
nodes. However, the functional vector of the FCE method reflects not only the local
structure but also the global structure by changing the number of dimensionalities S of
functional vectors. More recently, many role discovery techniques have been proposed
(Henderson et al. 2011; 2012; Rossi et al. 2012; 2013; Gilpin et al. 2013; Rossi and
Ahmed 2015). These techniques are intended for scale-free networks whose degree
distribution follows a power law like a social network. In this paper, we focus
on spatial networks like urban streets, and since the upper limit of the degree
is relatively small, these techniques cannot be straightforwardly applied to spatial

networks.
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Studies on dividing a given geographical area into some functional regions or uniform
regions have been conducted in geography. Though notion of these regions is some-
what different from our functional clusters, they are similar in terms of extracting certain
regions with common characteristics. To extract these regions, multivariate and network
analysis methods were proposed (Berry 1964; Grigg 1965; Berry 1968; Zhang et al. 2011;
Farmer and Fotheringham 2011; Yin et al. 2017; Chen et al. 2018). As a network analysis
based approach, Zhang et al. analyzed topological structure of road networks and distin-
guished these structures into some patterns (Zhang et al. 2011). Though the study was
based on the existing TAZ (Traffic Analysis Zone) delineation, Zhang et al. mentioned
that how to decide the analysis unit is an important task and it should be studied as a
future work. Our FCE method extracts functionally similar regions each of which could
be regarded as an unit with the similar road pattern including lattice in a city center, loops
and lollipops in a residential district, and winding road in a mountainous area (Fushimi
et al. 2016a). Farmer and Fotheringham applied the community detection method, which
is proposed by Newman (2004), to networks of travel-to-work flows, and found inter-
nally well connected and relatively cohesive regions (Farmer and Fotheringham 2011).
Note that their method does not consider whether distant or disconnected regions have
the similar function or not, unlike our FCE method. In order to delineate urban bound-
aries based on human movements, Yin et al. adopted the community detection method,
Infomap (Rosvall and Bergstrom 2007), to a directed weighted network, where nodes and
weighted links respectively represent underlying urban regions and Twitter users” dis-
placements on them (Yin et al. 2017). While the method utilizes actual human movements
obtained from geo-located tweets, our FCE method focuses on artificial ones based on a
random walk model on a road network considering a situation that these movements data
cannot be obtained.

Research on community detection or graph clustering is another major stream of com-
plex network analysis. As mentioned above, we adopt a method (Fushimi et al. 2012) to
extract functional clusters. This is because representative methods for extracting commu-
nities as densely connected subnetworks, which include the Newman clustering method
based on a modularity measure (Newman 2004), cannot directly deal with such func-
tional properties. The conventional concept of a subnetwork that is connected densely, for
example, k-core (Seidman 1983) and k-clique (Palla et al. 2005), cannot also be used for
this purpose. Namely, we naturally anticipate that these representative methods have an
intrinsic limitation for extracting functional similar nodes. Directly applying these con-
ventional methods to a spatial network is difficult, since the maximum degree of nodes in
each network is generally limited to a relatively small number, because it is unlikely that
densely connected subnetworks will appear in these networks.

The process of Power Iteration Clustering (PIC) (Lin and Cohen 2010), which is one
scalable graph clustering method, and those of our FCE method create a similar frame-
work. The PIC method utilizes vectors obtained by truncated power iteration on a matrix,
which resembles the normalized random-walk Laplacian matrix, by changing initial vec-
tor and then dividing all the nodes into K clusters with the K-means algorithm. On the
other hand, our FCE method utilizes power iteration on a random-walk transition matrix
for generating a feature vector of each node u, whose elements are the midstream prob-
abilities of random-walk until the values converge. Therefore, for a large-scale spatial
network, the dimensionality of S tends to be large.
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In this paper, we focus on the FCE method using the K-medoids clustering method
that divides all the nodes into functionally similar nodes by the greedy maximization of
the objective function. Typical sampling algorithms like Jiang et al. (2002) and Aggarwal
et al. (2009) can cluster large datasets. Another previous work (Jiang et al. 2002) focused
on the fractal structure of the dataset and extracted a subset of significant size that
holds the entire dataset structure. However, because the approximate centers or clus-
ters are computed from stochastically chosen, relatively small objects, the accuracy of the
results is not guaranteed. Since our proposed method focuses on the similar structure of
road networks, we expect to obtain relatively higher accuracy than the above sampling
methods.

FCE method revisit
We proposed the Functional Cluster Extraction (FCE) method that just extracts func-
tionally similar node groups from the topological structure of a given network (Fushimi
et al. 2012). The FCE method consists of two steps: the calculation of the feature vector
for each node and the clustering of these vectors. For undirected network G = (V, E),
where V and E respectively stand for sets of nodes and undirected links, the FCE method
considers the random-walk process, where the initial probability of each node is set to a
uniform value.

Concretely, for each node u € V, we define the probability at iteration step s of random-
walk process

_ Ys—1(v)
ys(”) - VE;(M) |F(V)| )

where I'(#) = {v | (4, v) € E} is the adjacent node set of node u. Random-walk probability
¥s(u) has properties where ys(#) > 0 and ),y ¥s(#) = 1, and the initial probability
of each node u is set to yo(#) = 1/N, where N is the number of nodes and N = |V]|.
Then we define the probability vector y, whose element is the probability of each node at
iteration step s. This model can be regarded as a special version of PageRank where the
teleportation jump probability is set to O.

Now we define the S-dimensional vector of node u:

Xy = @), ---,ysw)),

where S denotes the final step of the random-walk iterations. Hereafter, x,, is called the
functional vector of node u.
Next, for each pair of nodes, we define the functional similarity calculated by the cosine

similarity,

Xy Xy
p(u,v) = < >,

)
[l 11yl

between the functional vectors of the corresponding nodes. Then the FCE method divides
all the nodes into K groups of functional clusters by employing the K-medoids algo-
rithm (Vinod 1969) due to its robustness. Formally, we maximize the following objective
function with respect to set of medoids R C V:

fR) = Zr?e%exp(v, r). 1)

veV
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To maximize this objective function, we employ a greedy algorithm based on the
following marginal gain of each node:

gwR) =fRU{w)) —f(R) = Y max{p(v,w) — u(vR),0}, (2)
veV\R
where w is a candidate node of the medoid, R is the set of already selected medoids, and
1 (v; R) = max,eg p(v,r) is the similarity between node v and the most similar medoid, r.
The greedy algorithm selects a node that gives the highest marginal gain with respect to
the already selected medoid set as the next medoid (representative vector):

ry = arg max g(w; R). (3)
weV\R

Therefore, we obtain a node with the most central functional vector as the first medoid
and a node with the most different functional vector from the first medoid as the sec-
ond medoid. That is, in the FCE method, each medoid is a representative node of each
functionally different area.

For a large-scale network, however, the K-medoids method based on a greedy algorithm
needs a huge amount of computation time, O (N 2S), to calculate the functional similarity
of all the node pairs, and it is also difficult to store all N(N — 1)/2 similarities on the
main memory. Thus we have to re-calculate all the similarities in all the K-greedy steps of
K-medoids clustering, and the calculation cost becomes O (KN 25).

Simple selection of approximate medoids from a single source network

Spatial networks like urban streets have similar topological structures among distant
areas (Wang et al. 2012; Jiang et al. 2014; Fushimi et al. 2016a). By exploiting this knowl-
edge, we propose a fast method of the clustering phase in the FCE method based on
transfer learning, which utilizes a set of K medoids in a source domain network (source
network) for clustering all the nodes of a target domain network (target network). In our
context, source and target networks respectively stand for a network whose nodes have
been already divided into K clusters and a network whose nodes have not been clustered.
Hereafter, this method is called the Transfer Learning (TL) method.

Formally, let V and X be a set of nodes and a set of functional vectors of a target net-
work, and let Z = {z1, ... zx} be a set of medoid vectors in a source network, all of which
were previously selected by K-medoids clustering with a greedy algorithm in the FCE
method. Then the TL method selects K-approximate medoids R' = {r},...,r}.} C V of
the target network as follows:

’ Zy Xy
7}, = arg max , .
vev  \llzZell lIxyll

The TL method extracts K-approximate medoids from the N nodes in the target net-
work by calculating the cosine similarities between the S-dimensional functional vectors
of all pairs of K medoids in the source network and the N-medoid candidates in the target
network. Then the TL method divides the (N — K) remaining nodes in the target network
into K-approximate functional clusters by calculating the cosine similarities between the
S-dimensional functional vectors of all the pairs of the K-approximate medoids and the
(N — K) remaining nodes in the target domain. Therefore the total computational cost
becomes O(KNS).
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Greedy selection of approximate medoids from multiple source networks
When using the TL method, we obtain good approximation results by selecting an appro-
priate network as a source network. But it is difficult to know in advance which network
is suitable. In addition, generally speaking, a network contains regions that resemble mul-
tiple networks rather than a single network. Figure 2 shows an example of the similarities
of the five medoids of a target network and the five medoids of four source networks. In
this example, the first medoid, r1, of the target network is a node of a suburban area and
most resembles the first medoid of source network NW3. Similarly to the above, the sec-
ond medoid, r, of the target network is a node of an agricultural area and most closely
resembles the second medoid of source network NW4. That is, the target network has
similar regions with source networks NW1, NW3, and NW4 rather than a specific source
network.

Based on these considerations, we propose a greedy selection method that selects K-
approximate medoids from multiple networks as source domain rather than a single
network. Hereafter, this method is referred to as the Greedy Selection (GS) method.

Formally, let V and X be a set of nodes and a set of functional vectors of a target net-
work, and let Z" = { zﬁm), .. z;?' )} be a set of medoid vectors in one source network
Gy, where these medoid vectors were previously selected by K-medoids clustering with
a greedy algorithm in the FCE method. When given the medoid vectors of M source net-
works Gy, . . ., Gy, the GS method selects K -approximate medoids R’ = {r’l, e, r}<} cVv
of the target network in the following steps:

1. Select K sets of medoid candidates U (k) C V;
2. Select K-approximate medoids R’ from each set U (k) of medoid candidates.

In the first step, the GS method selects MK nodes as medoid candidates by calculating
the cosine similarity for all the pairs of the K-medoid vectors in the M source networks
and the N vectors:

\\\Source NWs NW1 NW2 NW3 NW4
Target NW ‘\\\ NP3 s | M3 Ts |13/ Ts | T30 Ts
suburban 7 O
Q/M
agricultural

S >= O

mountainous

small village 7 O
(/jOM

Fig. 2 Most similar medoid for each medoid in a target network
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LM
u(k|m) = arg max ]((m) ,— ).
wev \ ™| Il

Then for each k, we define U (k) = {u(k|1),...,u(k|M)} as a set of the medoid can-
didates of k. In the second step, the GS method selects the K-approximate medoids
by maximizing the objective function in Eq. (1) with respect to the set of approximate
medoids R" C U, where U is a union of the set of medoid candidates, U/ = Ullle Uuk).
To maximize the objective function, we employ a greedy algorithm similarly to the K-
medoids method in the original FCE method, where we select approximate medoid r; of
the k step as follows:

1, = arg maxg (u4; R') = arg max Z max{p (v,u) — u (v;R'),0}, (4)
uel (k) uel (k) VEV\R'

where p(-) and u(-), which are used in Eq. (4), are the same as those defined in Section 3.
The difference between the greedy K-medoids method in the original FCE method
(Eqg. (3)) and the GS method (Eq. (4)) is the size of the search space of the marginal gain,
and the former is the total number of nodes N = |V/|, and the latter is the number of
source networks M = |U (k)| < N.

The GS method extracts MK-medoid candidates from the N nodes in the target net-
work by calculating the cosine similarities between the S-dimensional functional vectors
of all the pairs of the MK-medoids in the source networks and the N nodes in the tar-
get network. Next it extracts the K-approximate medoids from the M candidates at each
of the K-greedy steps by calculating the cosine similarities between the S-dimensional
functional vectors of all the pairs of M candidates and N nodes. Therefore, the total com-
putational cost becomes O(MKNS), which is slightly larger than that of the TL method
O(KNS) but much smaller than that of the original FCE method (KN 2S).

Spatial network dataset
In our experiments, we used the following 15 cities extracted from Open Street Map
(OSM)! and Digital Road Map (DRM) data. We extracted all the intersections and the
roads of each city and constructed a spatial network with intersections as nodes and the
roads between them as links. To simplify our analyses, we deleted nodes that represent
the curved segments of highways by directly connecting both sides of the deleted ones.
Table 1 shows the basic statistics of the networks for the 15 cities, where C and L respec-
tively denote the averages of the clustering coefficients and the shortest path length over
each network. Although the numbers of nodes and links |V| and |E| are substantially dif-
ferent, the degree distributions defined by p; as well as C and L are quite similar as the
common characteristics of these spatial networks.

Evaluation of computation time

We experimentally evaluated the efficiency of our proposed method, the GS method, in
terms of its computation time by comparing the following three baseline methods includ-
ing our previous methods: the first method, which only employs the Lazy Evaluation (LE)
technique (Leskovec et al. 2007), is referred to as the (a) LE method; the second method,
which employs LE, medoid pruning, and outlier pivot pruning techniques (Fushimi et al.
2016b), is called the (b) Pivot Pruning (PP) method, where we set the number of outlier
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Table 1 Basic network statistics

City Vi IEl p1 p2 p3 pa p>4 C L

Aichi 259915 402465 065 070 574 285 006 004 9871
Barcelona 66,790 99387 103 031 659 201 006 006 5307
Brasilia 95811 136955 133 025 694 146 002 004 9294
Chiba 227,791 335564 116 003 703 177 002 004 9973
Ibaraki 172,892 263075 083 002 708 205 003 004 111.02
Kanagawa 295151 402576 192 051 597 155 005 004 12917
Kyoto 88800 128601 099 090 633 174 004 007 10343
New York 325962 466510 159 033 600 204 004 004 10314
Osaka 261939 375750 133 066 606 .190 006 005 9132
Saitama 230408 351,811 084 001 695 217 003 004 8104
San Francisco 110700 156821 173 037 583 .199 009 005 7943
Seoul 103444 150,822 111 078 605 198 008 004 43.99
Shizuoka 110925 162322 121 070 576 228 005 005 83.09
Tokyo 340919 485858 163 034 599 197 006 003 126.19

Washington D.C. 24,564 38,053 09 028 571 293 012 005 5189

pivots to 10; and the third method, based on the Transfer Learning (TL) technique men-
tioned in Section 4, is called the (c) TL method (Fushimi et al. 2017c¢). In our experiments,
we changed the number of medoids, K, from 2 to 10, the number of dimensionalities of
the functional vectors, S, to 10, 100, 1000, and 10,000, and set the number of source net-
works, M = 14, in the GS method. We performed our experiments on a computer system
equipped with an Xeon processor E5-2697 2.7 GHz and 256-GB main memory.

Figure 3 shows the computation times of the above methods, where TL is the average
computation times that used each of the 14 networks as a source network. We show the
results of eight randomly selected networks from Table 1 by setting the number of dimen-
sionalities of each functional vector as S = 10, 000, where the horizontal and vertical axes
respectively stand for the number of medoids (clusters) and the computation times with
a logarithmic scale. Note that we only show the computation time of the clustering phase
without including the calculations of the functional vectors. From Fig. 3, for all the net-
works, the methods with the approximate medoids, TL and GS, worked extraordinarily

Fig. 3 Computation time w.r.t. number of medoids K (S = 10,000) a Barcelona b Kanagawa ¢ Kyoto d New
York e San Francisco f Seoul g Shizuoka h Washington D. C
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faster than the LE and PP methods. Furthermore, the computation times of the former
two methods barely changed as the number of medoids K becomes larger.

Figure 4 shows the computation times of the four methods for the eight networks (as
in Fig. 3) by setting the number of medoids to K = 10, where the horizontal axis stands
for the number of dimensionalities of the functional vectors. From Fig. 4, for all the net-
works, the TL and GS methods returned clustering results much faster than the LE and
PP methods, regardless of the number of dimensionalities of vectors.

Evaluation of clustering accuracy

Since the GS and TL methods select approximate medoids based on medoids of other
networks, the clustering results somewhat differ from the original FCE method, unlike the
LE and PP methods. Thus, in this section, we evaluated the GS method’s performance in
terms of clustering accuracy and compared it to the TL method’s average accuracy. In the
FCE method, since the meaning of the extracted order of the functional medoids (clusters)
is important, we employ an accuracy measure widely used in multiclass classification,
ACC = ﬁ Zle Mk, calculated by the sum of the diagonal elements of confusion matrix
My and the total number of classifications, M = Zle fozl Mjy,. In our experiments,
we regard the class obtained by the FCE method as the actual one and the one obtained
by the TL and GS methods as the estimated one.

First, we show the accuracy of the TL methods for each pair of target and source net-
works in Fig. 5, where the horizontal and vertical axes stand for the target and source
networks, respectively.

From Fig. 5, for each target network, the accuracy shows various values from low to
high. For example, for the Aichi network at K = 5, the highest accuracy (ACC = 0.92) can
be obtained using Chiba as a source network, and on the other hand, the lowest accuracy
(ACC = 0.23) can be obtained using Tokyo. These results indicate that high accuracy can
only be obtained when selecting the appropriate network as the source network.

In addition, even though we select the Washington D.C. network as a source network,
which is the smallest one used in our experiments, high accuracy can be obtained for
the New York, the Seoul and the Shizuoka networks. These observations suggested that
clustering accuracy does not depend on the scales of source and target networks. However

— L]
| pp

G

Fig. 4 Computation time w.r.t. number of dimensionalities S (K = 10) a Barcelona b Kanagawa ¢ Kyoto d
New York e San Francisco f Seoul g Shizuoka h Washington D. C




Fushimi et al. Applied Network Science (2018) 3:18 Page 11 of 14

@ o o L@ e o oY & o T o e o o
a g e B o T e o e G e e b 0 g s G e e T e P e e e
1 1
Aichi Aichi
Barcelona Barcelona
Brasilia Brasilia
0.8 0.8
Chiba Chiba
Ibaraki Ibaraki
E Kanag E Kanagawa
g 0.6 g 0.6
3 Koo 3 Koo
Q Q
S New York [0 S New York
5] [
E Osaka E Osaka
Q' Saitama 04 Q' Saitama 04
3 saian & saitan
San Fran. San Fran.
Seoul Seoul
0.2 0.2
Shizuoka Shizuoka
Tokyo Tokyo
‘Wash.D.C. ‘Wash.D.C. m
0 0
Target network Target network
Fig.5 Clustering accuracy (S = 10,000)aK=5bK=10

we conjecture that the TL method does not work well in the case that a source network is
too small to contain only uniform functional region such as a lattice.

In Fig. 6, we plotted the GS method’s accuracy as a red line and the the average accuracy
and the range (maximum-minimum) of the TL method as a green error bar, with respect
to the number of medoids. From Fig. 6, for all the networks, the accuracy of the GS meth-
ods is significantly higher than the average accuracy of the TL methods and somewhat
higher than their maximum accuracy at almost all the points. These results confirmed
that by combining the medoids of multiple source networks, clustering results with better
accuracy can be obtained rather than using a specific source network.

Evaluation of objective function value

In this section, we evaluated the GS method in terms of objective function values. When
we select more adequate nodes as medoids, the value of the objective function (Eq. 1)
becomes larger. Therefore, we compare the objective function values of the TL and GS
methods. Furthermore, to improve the quality of the clustering results, we introduce an
update mechanism that is like k-means to the TL and GS methods, which we call Divided
Improvement (DI).
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Formally, let X, R’ = {r’l, R r}<}, and V (k) = {u|c(u) = k} C V be the set of functional
vectors, the set of approximate medoids obtained by the TL or GS methods, and the set
of nodes that belongs to the ;s cluster, respectively, where 1 < c(x) > K stands for the
cluster label of node u. First, for the k-th cluster V' (k), we select the most central node 7y
whose sum of cosine similarity with the other nodes in the cluster is the highest:

Fr = arg max Z o (v, u) = arg max Z (Xy,X,) = arg max< Z iv,iu>,
ueV (k) veV (k) ueV (k) veV (k) ueV (k) veV (k)

where each functional vector is normalized as X,, < x,,/||x,||. If selected central node 7
is different from approximate medoid r;, we update the medoid as r; < 7. This medoid
update takes a computational cost of O(NS). Second, we divide the (N — K) remaining
nodes into K clusters like Voronoi Tessellation with a computational cost of O(KNS).
By repeating these steps until not all of the medoids change, we improve the clustering
quality. Hereafter, the TL and GS methods equipped with the DI technique are called
TL+DI and GS+D], respectively.

Figure 7 shows the ratio of the objective function values of four methods, TL, GS,
TL+DIL, and GS+DI, and that of the original FCE method with respect to the number of
medoids K, where the vertical axis is a logarithmic scale. From Fig. 7, the objective func-
tion values are improved by introducing the DI technique at almost all the number of
medoids.

Conclusion

In this paper, we quickly and accurately extracted functionally similar regions from large-
scale spatial networks, based on a transfer learning technique that utilizes previously
selected representative nodes (medoids) in a different area. With the transfer learning
method developed in our previous study, we proposed the GS method by extending the
source domain from one specific network to multiple networks and greedily selecting
appropriate medoids from these source networks based on the marginal gain of the objec-
tive function. One of the virtues of the GS method is that when using it, we need not to
know in advance which network is adequate as a source domain. From experimental eval-

uations with real spatial networks, we confirmed that our proposed method, GS, outputs
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more accurate clustering results than our existing one, TL, while still maintaining almost
the same calculation speed.

Our proposed method is potentially applicable to some kind of networks other than spa-
tial networks. For instance, functions like president, manager, chief and general employee
commonly exist in employee networks of some companies. To extract these functions
from a target employee network, our method utilizes representative functions of other
companies. However, in order to confirm this claim, we need further experiments in our
future study.

Therefore, in the future, we will conduct further experiments using social or web
networks in addition to spatial networks.

Endnote
https://mapzen.com/data/metro-extracts
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