Staudt et al. Applied Network Science (2017) 2:36

DOI 10.1007/541109-017-0054-z

Applied Network Science

Generating realistic scaled complex @

networks

Christian L. Staudt?, Michael Hamann?", Alexander Gutfraind', llya Safro> ® and Henning Meyerhenke?

*Correspondence:
michael.hamann@kit.edu

?|nstitute of Theoretical Informatics,
Karlsruhe Institute of Technology
(KIT), Karlsruhe, Germany

Full list of author information is
available at the end of the article

@ Springer Open

Abstract

Research on generative models plays a central role in the emerging field of network
science, studying how statistical patterns found in real networks could be generated by
formal rules. Output from these generative models is then the basis for designing and
evaluating computational methods on networks including verification and simulation
studies. During the last two decades, a variety of models has been proposed with an
ultimate goal of achieving comprehensive realism for the generated networks. In this
study, we (a) introduce a new generator, termed ReCoN; (b) explore how ReCoN and
some existing models can be fitted to an original network to produce a structurally
similar replica, (c) use ReCoN to produce networks much larger than the original
exemplar, and finally (d) discuss open problems and promising research directions. In a
comparative experimental study, we find that ReCoN is often superior to many other
state-of-the-art network generation methods. We argue that ReCoN is a scalable and
effective tool for modeling a given network while preserving important properties at
both micro- and macroscopic scales, and for scaling the exemplar data by orders of
magnitude in size.

Keywords: Network generation, Multiscale modeling, Network modeling,
Communities

Introduction

Networks are widely used to represent connections between entities, because they
provide intuitive windows into the function, dynamics, and evolution of natural and
man-made systems. However, high-quality, large-scale network data is often unavailable
because of economic, legal, technological, or other obstacles (Chakrabarti and Faloutsos
2006; Brase and Brown 2009). For example, human contact networks in the context of
infectious disease spread are notoriously difficult to estimate, and thus our understanding
of the dynamics and control of epidemics stems from models that make highly simplifying
assumptions or simulate contact networks from incomplete or proxy data (Eubank et al.
2004; Keeling and Rohani 2008; Meyers et al. 2005). In another domain, the development
of cybersecurity systems requires testing across diverse threat scenarios and validation
across diverse network structures that are not yet known, in anticipation of the computer
networks of the future (Dunlavy et al. 2009). In both examples, the systems of interest
cannot be represented by a single exemplar network, but must instead be modeled as col-
lections of networks in which the variation among them may be just as important as their
© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and

reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1007/s41109-017-0054-z&domain=pdf
http://orcid.org/0000-0001-6284-7408
mailto: michael.hamann@kit.edu
http://creativecommons.org/licenses/by/4.0/

Staudt et al. Applied Network Science (2017) 2:36 Page 2 of 29

common features. Such cases point to the importance of data-driven methods for synthe-
sizing networks that capture both the essential features of a system and realistic variability
in order to use them in such tasks as simulations, analysis, and decision making.

A good network generator must meet two primary criteria: realism and diversity.
The first, realism, needs to consider any properties of the network that govern the
domain-specific processes of interest such as system function, dynamics, and evolu-
tion. Hence, realism may depend on both structural network features and the more
subtle emerging features of the network. Consider the following examples in potential
applications:

® Models of social networks should be able not only to reproduce structural features
such as small-world properties, but also, and perhaps more importantly, to emulate
emergent sociological phenomena such as interactions between individuals in a
community, as driven by their psychological needs and daily routines. That is, the
generated network should show similar interactions by its artificial individuals, as
determined by implicit psychological and social rules.

e Models of connected solar energy collectors of different sizes and capacities should
simulate realistic energy outputs influenced by the weather.

® Models of metabolic interactions should ultimately reflect biochemical properties of
a cell.

Second, a synthetic network should reflect naturally occurring stochasticity in a sys-
tem, without systematic bias that departs from reality. This feature is important for
benchmarking and evaluating the robustness of network-based algorithms, anonymizing
networks, and generating plausible hypothetical scenarios. In particular, when engineer-
ing algorithms, the ability to create good synthetic test data sets is valuable to estimate
effectiveness and scalability of the proposed methods.

In addition, a network generator should be effective in tasks such as obfuscation (replac-
ing restricted real data with similar synthetic data), compression (storing only a generator
and its parameters instead of large graphs), as well as extrapolation and sampling (gener-
ating data at larger or smaller scales). Finally, the running time and memory requirements
of the generator should be acceptable for realistically large datasets - datasets that may
include millions or even billions of nodes and edges.

Problem definition

We envision the following usage scenarios. Given is an original (or real) network O =
(V,E) (n, :== |V|, and m, := |E|) that, for example, cannot be freely shared. We would
like to be able to create a synthetic network R (with 7, nodes) that matches the original
in essential structural properties, so that computational results obtained from processing
this network are representative for what the original network would yield. We refer to R
as a replica. We assume that whoever creates the replica has access to O and can pass it
to a model fitting algorithm which uses it to parametrize a generative model.

More importantly, in addition to producing scale-1 replicas (wWhere n, = n,), in the
second scenario we want to use the generative model for extrapolation, i.e., we would like
to parametrize it to produce a scaled replica R* that has n, = x-n, nodes, where x is called
the scaling factor. The structural properties of R* should be such that they resemble a
later growth stage of the original (also see Section “Realistic replicas”). This should enable

Staudt et al. Applied Network Science (2017) 2:36 Page 3 of 29

users of the replica to extrapolate the behavior of their methods when the network data is
significantly scaled.

Finally, with respect to performance, we would like the generator algorithm and imple-
mentation as well as the fitting scheme to be efficient enough to produce large data sets
(on the order of several millions of nodes and edges) quickly in practice.

Related work

A number of network generation methods have been developed, and these fall into two
classes: generative models and editing methods (see surveys in Goldenberg et al. (2010);
Chakrabarti and Faloutsos (2006); Brase and Brown (2009); Dunlavy et al. (2009)). The
first set of methods produces networks (by using such elementary operations as ran-
domization and replication) from small initial seed networks (sometimes empty). The
goal of such generation is to produce the structure that matches real data in prespec-
ified properties, such as the degree distribution (Albert and Barabési 2002; Newman
2003; Mahadevan et al. 2006), clustering (Bansal et al. 2009), and the number of small
subgraphs. These methods are attractive because they often produce networks with the
desired features and are grounded in well-developed theory (e.g., Erdos and Renyi (1960)).
Some of these graph generators mechanistically model network growth (Barabési and
Albert 1999; Krapivsky and Redner 2001; Leskovec et al. 2008), whereas others incorpo-
rate domain-specific information such as geographic location (Watts and Strogatz 1998)
and cyber networks topological properties (Medina et al. 2000; Dunlavy et al. 2009).

One of the most successful generative strategies is based on Kronecker graphs
(Leskovec et al. 2010) (including stochastic Kronecker graphs; see also related work
(Chakrabarti and Faloutsos 2006; Palla et al. 2010)). Graphs generated by this model
preserve properties such as degree distribution, diameter, and some eigenvalues. Gen-
erative methods often describe an evolutionary process that can potentially lead to
the original network; however, the probability that it will lead to the structure that is
structurally similar (or approximately isomorphic) to the original one at some coarse-
grained resolutions (but not necessarily at finest) is usually negligible. This makes
generative methods ill-suited for studies such as simulations when one may need to
work with systems that are similar to the original. For example, in the context of
supply chain network simulations (Terzi and Cavalieri 2004) (and other engineered
or man-made systems), a realism of a network can be described (though, typically,
not formally) in terms of the supply chain functionality which is in turn related to
the structure of domain specific coarse-grained resolutions. Several generative mod-
els admit fast generators and are thus in our focus. Among those models are R-MAT
(Chakrabarti et al. 2004), BTER (Kolda et al. 2013), and Hyperbolic Unit Disk Graphs
(Krioukov et al. 2010). However, fitting the models’ parameters so as to replicate a wide
range of properties is far from being satisfactory so far. For example, a previous fitting
scheme by Leskovec et al. (2007) for R-MAT graphs is quite time-consuming already for
medium-sized networks (Staudt 2016).

The other class of network generators, graph editing (Mihail and Zegura 2003), starts
with a given (real or empirical) network and randomly changes its components until the
network becomes sufficiently different than the original network. These are designed to
introduce variability while preserving key structural properties. The multiscale network
generator MUSKETEER (Gutfraind et al. 2015) is an editing approach that is able to produce

Staudt et al. Applied Network Science (2017) 2:36 Page 4 of 29

highly realistic synthetic networks by applying a local editing at different coarse-grained
resolutions. The approach is comparable to ReCoN in the quality of generated networks;
however, its implementation (Gutfraind et al. 2012) requires further work to be applicable
on very large networks.

Outline and contribution

In this paper we develop and evaluate a fast generator that focuses on creating realistic
scaled replicas of complex networks. We point out in “Realistic replicas” section which
criteria we consider important for calling a (scaled) replica realistic. In particular we
conceptualize realism in two ways: (i) matching an original graph in a set of important
structural properties, and (ii) matching the running time behavior of various graph algo-
rithms. Typically, being an important applied criteria, the last is not considered by most
existing network generators.

Our new generator ReCoN (short for Replication of Complex Networks) is described in
“The generation algorithm ReCoN” section . It uses and extends ideas of LFR, a generator
used for benchmarking community detection algorithms. Using the original degrees and a
discovered community structure, we are able to capture a much more detailed signature of
the network than a parametrization of the LFR generator. In “Fitting Generative Models to
Input Graphs” section and “Considered models” section we discuss the generative models
that we use for comparison (R-MAT, Hyperbolic Unit Disk Graph, and BTER are among
them) and develop model fitting schemes for them.

Our comparative experimental study in “Computational experiments” section indi-
cates that ReCoN performs overall quite well and usually better than other generators
in terms of realism. We can also conclude that the ReCoN implementation is fast, as it
is capable of creating realistic scaled replicas on the scale of 10® edges in minutes. The
ReCoN code is publicly available in the open-source network analysis package NetworKit
(Staudt et al. 2016). This paper is based on a preliminary conference version (Staudt et al.
2016). It was extended in particular by additional experimental results (including scaling
experiments), revised fitting schemes, and by a detailed discussion of open problems and
promising research directions (“Multi-scale modeling and open problems” section).

Realistic replicas

We consider a generative model realistic if there is high structural similarity between the
synthetic graphs produced and relevant real-world networks. It is neither our goal nor
generally desirable to obtain an exact correspondence between original and replica. First,
this would exclude the use case of obfuscation. Secondly, obtaining an isomorphic graph is
rarely required for typical experiments. Note that we consider a single “realism score” for
each model inappropriately reductionist. Instead, we quantify diverse aspects of realism
in our experimental evaluation and leave it to the reader to decide about their relative
importance.

For scale-1 replicas (with the same size as the original), we measure the similarity in
terms of a set of commonly used metrics: Sparsity (number of edges vs number of nodes);
degree distribution (more precisely its Gini coefficient); maximum degree as a proxy
for the connectedness of hub nodes; average local clustering coefficient to measure the
local presence of triangles; diameter to monitor the small-world effect; number of con-
nected components and number of communities as additional non-local features. These

Staudt et al. Applied Network Science (2017) 2:36 Page 5 of 29

metrics cover both local and global properties and are deemed important characteristics
of networks (Newman 2010).

How can we extend the notion above regarding realism to scaled replicas of a net-
work? To answer this question, let us look at the scaling behavior of a set of 100
Facebook social networks (Traud et al. 2012). These networks were collected in Septem-
ber 2005 at an early stage of the Facebook online social networking service in which
networks were still separated by universities. The nodes of each network are members
of a (single) US university or college. Most of them are students, and the edges repre-
sent friendships on Facebook. Since these networks were formed by the local actions of
a collection of social actors which have essentially similar behavior, the mechanism of
growth by which the networks have assembled themselves is essentially the same. These
networks of different sizes can in a sense be treated as differently scaled versions of “the”
Facebook social network. In Fig. 1 we demonstrate basic structural measures of these
Facebook networks against the number of nodes #, as well as a regression line and con-
fidence intervals (shaded area) to emphasize the trend. While linear regression may not
always seem completely appropriate for these data, the general trend is typically still
captured.

We can observe from Fig. 1 a growth of the number of edges m that is linear in #, an
increase in the skew of the node degree distribution as measured by the Gini coefficient,
a growing maximum node degree, a slightly falling average local clustering coefficient,
a nearly constant small diameter of the largest connected component, and a slightly
growing number of connected components (which can be explained by some small con-
nected components that exist in addition to a giant component). We detect communities
using PLM (Parallel Louvain Method), a modularity-driven community detection heuris-
tic (Staudt and Meyerhenke 2016), and report the number of communities minus the
number of these small connected components. It can be observed that the number of
non-trivial communities grows slightly.

While we do not claim that these scaling laws are universal, the trends represented here
are commonly observed (Caldarelli and Vespignani 2007; Boccaletti et al. 2006; Snijders

le6 n f
0.8 o 3
15 S o 5 Oo4 P
« e @ =
° 206 a =
(%] L3 Q
g 10 (o] S 7
g £ 04 = 3
¥ g 2 S
0.5 bf:f 0.2 O E
= <1
= £ =
0.0 0.0 o o
o 1 2 3 4 0 1 2 3 4 < o0 1 2 3 4
n led n led n led
n
e e g 30 °
& 10 @ g ° é
o € [5 20 o * 5
g : 87 Sg ®e g
S 8 eme (T ° E
[a) 210 S
g 0
1 TS ° 2 (] e *
< o% o
6 e (&) o ®
o 1 2 3 4 o 1 2 3 4 o 1 2 3 4
n le4 n 1e4 n le4
Fig. 1 Scaling behavior of 100 Facebook networks; from left to right and top to bottom: number of edges,
maximum degree, Gini coefficient of degree distribution, average local clustering coefficient, diameter,
number of components, number of communities found by Parallel Louvain Method

Staudt et al. Applied Network Science (2017) 2:36 Page 6 of 29

2001). Thus, we use them to define desired scaling properties for the remainder of the
study as follows: m grows linearly with #; the diameter does not change significantly, pre-
serving the “small world property”; the shape of the degree distribution remains skewed;
the maximum node degree increases; the number of connected components may grow;
the number of communities increases slightly.

Recall that one use case for our generator is testing graph and network analysis algo-
rithms. Since the running time is an essential feature in such tests, we also consider a
realistic replication of running times important. To this end, we select a set of graph algo-
rithms that (i) compute important features of networks and are thus frequently used in
network analysis tasks and that (ii) cover a variety of patterns of computation and data
access, each of which may interact differently with the graph structure. The set con-
sists of algorithms for connected components (essentially breadth-first search), PageRank
(via power iteration), betweenness approximation (according to Geisberger et al. (2008)),
community detection (Parallel Louvain Method, Staudt and Meyerhenke (2016)), parallel
core decomposition (according to Dasari et al. (2014)), parallel triangle counting (accord-
ing to Hamann et al. (2016)), and spanning forest (Kruskal’s algorithm with random
edge weights).

The generation algorithm ReCoN

We introduce ReCoN, a generator for replicating and scaling complex networks. Its input
is a graph and a community structure on it. For fitting a given graph without given
community structure, we use Parallel Louvain Method (PLM) (Staudt and Meyerhenke
2016) in order to detect a community structure first. It is a very fast and effective
greedy algorithm for modularity maximization. The basic idea of ReCoN is to random-
ize the edges inside communities and the edges between communities while keeping the
node degrees. This happens separately such that each community keeps exactly as many
edges as it had before. For scaling a graph, we first create as many disjoint copies of the
graph as desired and then apply the aforementioned steps. During the randomization
of the edges between the communities, the copies usually become connected with each
other.

The idea of randomizing graphs inside and between communities is inspired by
the LFR generator, a benchmark graph generator for community detection algorithms
(Lancichinetti et al. 2008) in which the basic building blocks are also a random subgraph
per community and a global graph. However, in the LFR generator, the degrees and com-
munities are not given but generated using a power law degree distribution and a power
law community size distribution with nodes assigned to communities at random, while
ReCoN uses the given graph as input for them.

For randomizing graphs while preserving the degree sequence, we use random edge
switches where two edges {u, v}, {y, z} chosen uniformly at random are changed into {, z},
{y, v} if the resulting graph is still simple, i.e. does not contain any duplicate edges or
self-loops. Similarly to the edge switching implementation provided by (Viger and Latapy
2005) we use 10 times the number of edges as the number of random edge switches.
Previously performed experiments (e. g., Milo et al. 2003) have shown that this is enough
to expect the resulting graph to be drawn uniformly at random from all graphs with the
given degree sequence.

Staudt et al. Applied Network Science (2017) 2:36 Page 7 of 29

For an original graph O = (V, E) with n, = |V| nodes and a desired scaling factor x,
ReCoN executes the following steps:

1. Detect a community structure C = {Cj, ..., Cx} on O using Parallel Louvain
Method.

2. Generate graph H as the disjoint union of x copies of O. The community structure
is also copied such that the new community structure D = {Dj, ..., Dy} consists
of x - k communities, i.e., each copy of O gets its own copy of the community
structure that is aligned with the structure of the copied graph.

3. For each community D;, 1 <i < x - k, randomize the edges of the subgraph H[D;]
that is induced by the community D; while keeping the degree distribution using
random edge switches.

4. Randomize the remaining edges, i. e., all edges in H that are not part of one of the
subgraphs H|[D;], using random edge switches. Note that afterwards some edges
that were not in one of the H[D;] can now be inside a community. In order to
avoid this, rewiring steps are performed by executing edge switches of such
forbidden edges with random partners. A similar step is also used in the LFR
generator, where it was observed that, in practice, only few rewiring steps are
necessary (Lancichinetti and Fortunato 2009).

Note that it is not necessary to start with the full information of the original graph in
Steps 3 and 4. It is actually sufficient to know a community structure (as opposed to the
whole original graph) and for each node the internal and external degree, i.e, how many
neighbors it has inside and outside its community, respectively. For our implementation
we choose this alternative. Further, we execute Step 3 in parallel for all communities as
the subgraphs are disjoint.

Depending on the domain in which the network generation is required, the Paral-
lel Louvain Method can be replaced with another method and even objective. It is well
known that modularity objective is not necessarily the perfect maximization objective in
some areas, so this method can potentially be replaced with something else in Step 1 that
would not violate the performance requirements of the generator.

In addition to replicating important properties with high fidelity, the randomization in
Steps 3 and 4 naturally produces random variance among the set of replicas.

Fitting generative models to input graphs
Parametrized generative models require learning model input parameters from the
original network. A fitting scheme is an algorithm that takes a network as input and esti-
mates parameters of a generative model. Because, usually, such schemes are not unique,
exploring them would be important future work. For this study, we have chosen one
straightforward scheme per model, parameters of which are summarized in Table 1.
Below we discuss a fitting scheme for power law degree distributions, and briefly describe
the generative models that are compared with ReCoN.

We consider an original graph O = (V,E) with n, = |V|, m, = |E| and maximum
degree dmax. We denote as (a;)iem a sequence of elements a with indices i from an
(ordered) set M, so

Page 8 of 29

Staudt et al. Applied Network Science (2017) 2:36

(), d = xewpruu o
{Owid>oIbl} =%
A\AW:AABVOQUVVMC_Q — xmrch\c,,gxu \\n
u-x= \:

(WP 0)3p(P) = 5

CEEp™0)3p(x - PU) = p
{(A27((mBap))uyd L zxew = A4
wjwy-z=p u-x=u

(O)uon = (p2'q'p)

(59),ayyd = Xew ruwy g
{OW1d2D1 bl =22
(127((n)Bap))y|d = xewp up /A
u=,u

AmeU:iovwwAuuv -5
(2Wp0)3p(py) = p
{(7>0((n)Bap)yd 1 ghxew = 4
(u/w)-z= p u=u

(O)muon = (p2'q'p)

Axm—tw ;,:.EU ;Q ‘meU ‘m ‘\m ‘\Cvm\n:
O'p)yiLg

(4'p'wyanH

d47
4314

3¥s1g-1un dloquadA

fu/wl =2 Lu-x%hol] =5 fu/w] =2 LuZbol] =s ((p2'9'0) 3")y 1VYW-4
A2n((n)bep) SN =p A2n((n)bap) = p (p)ow3 uleYD AOEN BuIyOIMS-26p3
m@n((mbep) SN =p 12n((n)bep) = p (2¥5) n-6uny>

fu/wl] =y u-x=u fu/wl =y u=u [COLIZ| U3q|y-iseqeleg
% =d u-x=u :P% =d u=u d'wy3 1AU9Y-sop.3

N 2 x Ag buijeds bumi4 Bunl4 sia1ouleled [SPOW

edjidas dn-pajeds e aonpoid 03 pue ‘Ydelb UsAID e 0} [9poul B 11} 01 195 sidlaWeled | ajqeL

Staudt et al. Applied Network Science (2017) 2:36 Page 9 of 29

k .
U(<)
) ieM
j=0
denotes the ordered concatenation of k sequences. The clustering coefficient of node u is
denoted by c,. The number of nodes with degree d is denoted by

ng = |Vyl={veV:deg(v) =dj|,
and

Cqi=— Cy

corresponds to the average clustering coefficient for nodes of degree d.
After a brief description of the considered models, we discuss fitting of power-law
distributions, and continue with a discussion of the parametrization of each model.

Considered models

Apart from ReCoN, we include the following models in our experimental study: Erdds—
Rényi random graphs (Erdos and Renyi 1960), Barabasi—Albert (Albert and Barabdsi
2002), Chung-Lu (Aiello et al. 2000), Edge-Switching Markov Chain, Recursive Matrix (R-
MAT) (Chakrabarti et al. 2004), Hyperbolic Unit-Disk Graph (Krioukov et al. 2010), BTER
(Seshadhri et al. 2011), and LFR (Lancichinetti et al. 2008).

Fitting power law degree distribution

Both LFR and Hyperbolic Unit Disk Graph generators produce graphs with a power law
degree distribution. Therefore, at least the power law exponent, and, in the case of the
LER generator, also the minimum and maximum degrees need to be determined such that
the degree distribution fits the real network. In Table 1, plfit refers to our custom power
law fitting scheme.

A practical replication of a network requires preserving the original average (otherwise,
the density will be changed) as well as minimum and maximum degrees (applications can
be sensitive to such fundamental properties as degree-1 nodes and the distribution of
hubs).

In general, it is assumed (and implemented in many algorithms (Clauset et al. 2009))
that a power law degree distribution only holds from a certain degree on and that for
smaller degrees, the distribution might be different. As the LFR generator only generates
a plain power law degree distribution, we cannot apply this assumption. Therefore, we fit
the power law degree distribution exponent such that, with the given minimum and max-
imum degree, the average degree of the real network is expected when a degree sequence
is sampled from this distribution. Using binary search in the range of [—6, —1], we repeat-
edly calculate the expected average degree until the power law exponent is accurate up to
an error of 1073,

Erdés—Rényi, Barabasi-Albert, Chung-Lu and Edge-Switching Markov Chain

Erdds—Rényi random graphs (Erdos and Renyi 1960), while not considered similar to most
real-world graphs, are fundamental and an important baseline. The Erd6s—Rényi model
does not provide many options for parametrization. The edge probability p is set to pro-
duce the same edge-to-node ratio 7 as the original. The Barabasi—Albert model (Albert

Staudt et al. Applied Network Science (2017) 2:36 Page 10 of 29

and Barabasi 2002) implements a preferential attachment process by which a power law
degree distribution emerges, which has been claimed to be a typical feature of real com-
plex networks. In Barabasi—Albert model, we set the number of edges coming with each
new node to fit the original edge-to-node ratio. The Chung-Lu model (Aiello et al. 2000)
recreates a given degree sequence in expectation. The Edge-Switching Markov Chain
model generates a graph that is randomly drawn from all graphs with exactly the given
degree sequence (see e.g. (Milo et al. 2003; Schlauch et al. 2015)). In both Chung-Lu and
Edge-Switching Markov Chain we use the original degree sequence. To generate larger
networks, x copies of this sequence are concatenated, multiplying the number of nodes
by x while keeping the relative frequency of each degree.

R-MAT

The R-MAT model (Chakrabarti et al. 2004) was proposed to recreate various properties
of complex networks, including an optional power-law degree distribution, the small-
world property and self-similarity. The R-MAT model can only generate graphs with 2°
nodes, where s is an integer scaling parameter. In order to target a fixed number of nodes
ny, we calculate s so that 2° > #, and delete 2°—n, random nodes. We sample edges (ignor-
ing self-loops and duplicates) until the average degree of the graph without the deleted
nodes reaches the average degree of the original graph. The choice of the parameters
a, b, ¢, d requires some discussion.

Leskovec et al. (2007) propose a method to “given a large, real graph [...], generate a
synthetic graph that matches its properties’, using stochastic Kronecker graphs: Starting
with a 2-by-2 stochastic initiator matrix 7, Kronecker products are calculated so that I*
is a stochastic matrix of dimension 2° that yields edge probabilities of a graph. This is
equivalent to the R-MAT model as it yields the same edge probabilities. They attempt to
fit model parameters so that the likelihood that a given original graph O was generated
starting from an initiator matrix / is maximized, and propose the kronfit gradient descent
algorithm that iteratively estimates I in O(m) time. They do not explicitly mention the
case of creating a scaled replica, but it is clear that the method is capable of producing
graphs for arbitrary exponents s. We use an implementation of kronfit which is distributed
with the SNAP network analysis tool suite (Leskovec and Sosi¢ 2014).

The high running times of kronfit (see Fig. 2) mean that running kronfit on every net-
work to be replicated is not practical if the collection of networks is large. For example,
in our experiments with 100 Facebook networks, we estimate the R-MAT parameters
as follows: We assume that the 100 Facebook networks constitute a class with essential
structural commonalities, and run the recommended 50 iterations of kronfit on one typi-
cal network, fb-Caltech36. The resulting initiator is applied to replicate all Facebook
networks. For other sets of networks, the assumption of structural similarity cannot be
made, so we run the recommended 50 iterations of kronfit for each of them.

Hyperbolic unit disk graphs

The random hyperbolic graph model embeds nodes into hyperbolic geometry and con-
nects close nodes with higher probability (Krioukov et al. 2010). The unit-disk variant of
Hyperbolic Unit Disk Graphs we use in this paper connects only nodes whose distance
is below a certain threshold. We are focusing on the unit-disk variant to be able to use a
very fast generator for this model (von Looz et al. 2015). The model has been shown to

Staudt et al. Applied Network Science (2017) 2:36 Page 11 of 29

2500

2000

1500

1000

running time [s]

500

0
0.0 02 04 06 08 1.0 12 14 16
m le5
Fig. 2 Running time of 50 iterations of the kronfit algorithm in relation to the number of edges m of the
input network

replicate some properties observed in real networks, such as a power-law degree distribu-
tion. This method receives as parameters the desired number of nodes, the average degree
of the original network and a power law exponent which is fitted as described above. As
the given power law exponent must be larger than 2, we supply at least an exponent of 2.1.

BTER

The BTER model (Seshadhri et al. 2011) receives a degree distribution and the desired
clustering coefficient per degree, i.e., for each degree to be realized the number of occur-
rences and the average clustering coefficient per degree. For scaled replicas we scale the
occurrences of all degrees by the scaling factor. This leads to the target number of nodes
while also preserving the general shape of the degree distribution. In order to retain the
distribution of the clustering coefficients, we leave them unchanged while scaling the

network.

LFR

The LER was designed as a benchmark graph generator for community detection algo-
rithms (Lancichinetti et al. 2008). It generates graphs with a power law degree distribution
and a community structure with community sizes that follow a power law distribution.
Apart from the number of nodes, it requires parameters for power law distributions of
the node degrees and the community sizes, and a mixing parameter that determines the
ratio between intra- and inter-cluster edges.

We detect communities using Parallel Louvain Method (Staudt and Meyerhenke 2016)
and fit the parameters for the two power law distributions as described above using the
original degree sequence and the found community sizes. The mixing parameter is set
to the ratio between intra- and inter-cluster edges of the found communities. As many
networks in our set of real-world networks contain a few small connected components,
the smallest communities usually only contain just two nodes while all other communi-
ties are much larger. Therefore, frequently our minimum power law exponent 1 is chosen
and the expected average community size is still too low. In these cases we also fit the
minimum community size using binary search until the expected average community
size is the real average community size. Further, if the maximum community size is too
small for the largest internal degree, we increase also the maximum community size to

Staudt et al. Applied Network Science (2017) 2:36 Page 12 of 29

be 5% larger than the maximum internal degree. Even with these extra 5% we need sev-
eral attempts for some of the graphs until random numbers are drawn that actually lead
to fitting community sizes and node degrees. In Table 1 this is denoted by plfit*. For the
scaling, we simply append copies of the same values.

Computational experiments

Our implementations of ReCoN and the various fitting methods are based on NetworKit
(Staudt et al. 2016), a publicly available tool suite for scalable network analysis. It also
contains many of the generators we use for comparison and provides a large set of graph
algorithms we use for our experiments. NetworKit combines C++ kernels with an inter-
active Python shell to achieve both high performance and interactivity, a concept we use
for our implementations as well. All implementations are freely available as part of the
package at https://networkit.iti.kit.edu. This also includes a faster and parallel implemen-
tation of the LFR generator (see below). Our experimental platform is a shared-memory
server with 64 GB RAM and 2x8 Intel(R) Xeon(R) E5-2670 cores at 2.6 GHz; it runs on
openSUSE Leap 42.2. We use the GCC 5.3.1 compiler for our C++ code. As described in
Section Realistic replicas, we are interested in how well the different generators replicate
certain structural features of the original networks as well as the running times of various
graph algorithms. The results are described subsequently.

Implementation details

A reference implementation of the LFR generator by Fortunato et al. is available online
(Fortunato 2017). We created a custom implementation of LFR in NetworKit, which is
also the first parallelized implementation. Figure 3 illustrates the speedup that we achieve
with a new implementation of the LFR generator based on NetworKit. It yields speedup
factors of 18 to 70 (with an outlier of 167) for the test set of 100 Facebook social networks,
and the factor grows superlinearly with the size of the network to be generated. The run-
ning time difference can be partially traced back to implementation differences: The LFR
reference implementation relies on std: : set to store and test for graph adjacencies,
while our implementation uses a simple but apparently more efficient sequential scan on

104 10° 108

Fig. 3 Speedup of NetworKit implementation of LFR compared to the reference implementation (Fortunato
2017) when replicating the set of 100 Facebook networks with m edges. Each point represents one network.
The curve represents a linear regression model fit with its confidence interval (shaded area)

https://networkit.iti.kit.edu

Staudt et al. Applied Network Science (2017) 2:36

a simple array. Further, as mentioned already, the community graphs are generated in
parallel, which gives an additional speedup.

For the tested generative models, NetworKit includes efficient implementations, such
as implementations of linear-time algorithms for the Erdés—Rényi and Barabasi-Albert
models (Batagelj and Brandes 2005) and a subquadratic time algorithm for Hyperbolic
Unit Disk Graph model (von Looz et al. 2015). We have not implemented the BTER
model; instead we use the FEASTPACK implementation by Kolda et al. (2014) with a
“blowup” of 10 for a more accurate number of degree-1 nodes. NetworKit implements an
adapter class that performs the model fitting and transparently calls the MATLAB-based
FEASTPACK scripts using GNU Octave.

Scaling behavior of the generators

The following experiments consider the scaling behavior of generative models. Given the
parametrization discussed before, we look at the evolution of structural features with
growing scale factor (x) up to x = 32. We consider the same basic scalar features as for
the real networks in “Realistic replicas” section.

In Fig. 4, we show the results of the scaling experiments for the fb-Caltech36 net-
work. The number of edges of the replicas is increased almost linearly by all generators
to & 5 - 10° edges, which approximately corresponds to 32 times the edges of the orig-
inal network. Therefore, all generators seem to keep the average degree of the original
network, which is expected as it is a parameter of all considered generators. Surprisingly,
the maximum degree strongly increases up to 15 or 20 thousand with the Barabasi-Albert
and the Hyperbolic Unit Disk Graph generators, respectively. The original maximum
degree is 248, so that the new value is even significantly higher than the scaled maxi-
mum degree (i. e. 248 - 32). Actually, from the scaling study in “Realistic replicas” section,
we could expect an increase, but rather in a lower range, so the degree distribution of
the Barabasi-Albert and Hyperbolic Unit Disk Graph generators are not realistic in this
regard. Concerning the Gini coefficient, one can clearly see that Erd6s—Rényi model does
not generate a skewed degree distribution at all (which does not come as a surprise, of

t

g\

o
=)

» (=]
\—4
= N
(52 o

#Edges
T
Maximum Degree
N
o

I

Avg. Local Clustering Coeff.
o
< IS

o

(%]
o o
o N

Gini Coeff. of Degrees
=] =}
N -

0 0.0
0 10000 20000 0 10000 20000 0 10000 20000 0 10000 20000
n n n n
%) 125
£ 600 Model
é 2 100 I Erdos-Renyi
Q g 400 b= 75 Barabasi-Albert
£ © 2 RMAT
g E g 50 —F~ Chung-Lu
g 200 3 - Esmc
E * 25 —F— Hyperbolic Unit Disk
g o e o (== —— BTER
0 10000 20000 0 10000 20000 0 10000 20000 LFR
n n n ReCon

Fig. 4 Scaling behavior of the different generators on the £b-Caltech36 network. From left to right and
top to bottom: number of edges, max. degree, Gini coefficient of the degree distribution, average local
clustering coefficient, diameter, number of components, number of communities. Each data point is the
average over ten runs, the error bars show the standard deviation

Page 13 of 29

Staudt et al. Applied Network Science (2017) 2:36 Page 14 of 29

course). All generators that get the exact degree sequence as input keep the Gini coef-
ficient constant, which is expected and also relatively realistic from our scaling study.
R-MAT shows a close fit of the Gini coefficient, too. LFR and Hyperbolic Unit Disk Graph
have more skewed degree distributions while Barabasi-Albert has a less skewed degree
distribution according to the Gini coefficient.

The original average local clustering coefficient of 0.43 is almost exactly reproduced
by BTER, in which it is an input parameter. The Hyperbolic Unit Disk Graph method
increases it to 0.8, most others obtain very small values. Only LFR and our new ReCoN
generator are less far off with 0.25 and a slightly decreasing clustering coefficient; the lat-
ter is actually realistic as we saw in “Realistic replicas” section. Other generators produce
much lower clustering coefficients.

The original diameter of 6 is closely replicated by many generators including ReCoN.
BTER produces networks whose diameter is almost twice bigger. Barabasi-Albert and
Hyperbolic Unit Disk Graph produce networks with lower diameters, this can be
explained by their high-degree nodes that connect large parts of the network. All gen-
erators show a slight increase of the diameter when the networks are larger, which is
consistent with our scaling study. But one should keep in mind that shrinking diameters
have also been observed for some classes of complex networks (Leskovec et al. 2005).

While most generators produce networks with just a single connected component,
Chung-Lu and BTER generate a large number, R-MAT and ReCoN a moderate number
of connected components. In the case of Chung-Lu, BTER and R-MAT, this is proba-
bly due to a large number of degree-0 nodes. The original network consists of a giant
component and three small components; ReCoN scales them linearly, which is due to its
parametrization.

The original network is split into eight non-trivial communities, that number should
increase slowly according to “Realistic replicas” section. Only in the networks generated
by BTER, ReCoN and LFR, Parallel Louvain Method can find a significant and increas-
ing amount of communities. While Parallel Louvain Method finds over 100 non-trivial
communities in the network generated by BTER, there are fewer communities detectable
in the networks generated by ReCoN and even less in the ones generated by LFR. Some
deviation effects may certainly be due to the Parallel Louvain Method itself; but drastic
differences do point to a strongly varying community structure.

Overall, ReCoN is the only generator that keeps the degree distribution, and produces
a realistic clustering coefficient and a small diameter while keeping the graph connected
and preserving a moderate number of communities. All other generators are either unable
to keep the diameter or the connectivity or the number of communities. It is part of future
work to investigate whether the full hyperbolic random graph model can alleviate the
weaknesses of the unit-disk case.

In Appendix A we present results of further experiments on the preservation of differ-
ent network properties both for scale-1 and for scale-4 replicas. The conclusion there is
similar: for some properties, ReCoN is outperformed by other generators but overall it is
able to produce the most similar replicas.

In Appendix B we present a scaling study similar to the one of the Facebook networks
but using the DBLP co-authorship network. Its increasing average degree over time is not
captured by our current fitting methods. A further characteristic of the network, a high
average local clustering coefficient combined with a low average degree is only captured

Staudt et al. Applied Network Science (2017) 2:36

by BTER, which is explicitly fitted with both properties. Both results show areas where
ReCoN could be further improved.

Realism in the running times of graph algorithms

Synthetic graphs are frequently used in algorithm engineering to estimate the running
time of an algorithm assuming that this time will be similar on real networks. We examine
if this is indeed the case with the generative models we consider. Using the previously
described generators and fitting schemes, we generate replicas of 100 Facebook networks
and test a variety of graph algorithms (see “Realistic replicas” section) on both the original
and replica sets.

Our experiments demonstrate (see Fig. 5) that the running times on the replica sets
often do not match those on the original set. The gray segments of the box plots represent
the distribution of running times measured on the set of original networks. Ideally, the
distribution on the synthetic networks would be identical. The difference is statistically
nontrivial, though. Small variance between the models exists for connected components
and spanning forest computations, since their running time is nearly constant per edge.
Other algorithms exemplify how much running time can depend on network structure,
especially community detection, core decomposition, triangle counting and PageRank. In
general, the running time measurements obtained on ReCoN match the originals closely in
most cases. An exception is community detection, where Parallel Louvain Method seems
to profit from ReCoN’s explicit model of communities. BTER shows close matches, too.

Generator running times

In Fig. 6, we show the running times of parameter fitting and generating a replica for
all methods. Processing speed is given in the number of edges per second, a com-
mon measure for benchmarking graph algorithms that sets graph size and execution
time in relation. The entire set of Facebook networks was used to produce the mea-
surements, so generated replicas range from about 15000 to 1.5 million edges. For all
models, generating the graph takes up the vast majority of time. The Edge-Switching
Markov Chain model is the slowest on average, while the Erdés—Rényi and Hyperbolic
Unit Disk Graph generators are the fastest. Our implementations of LFR and ReCoN

-
- orgina %#L

e t
Barabasi-Albert
RMAT

Chung-Lu

ESMC

Hyperbolic Unit Disk
BTER

LFR
ReCoN

?é{ﬂ# setuneiiEy

107

Edges per Second

100

punnnnnnn

Connected Components PageRank Betweenness (ap.) Community Detection ~ Core Decomposition

algorithm

Triangle Counting Spanning Forest

Fig. 5 Running time replication of a set of network analysis algorithms. Running times are in edges per
second, i.e, higher is faster

Page 15 of 29

Staudt et al. Applied Network Science (2017) 2:36

==
R

10° T

Edges per Second

$ & & > \© S & S
S PSS RO/ <Y
& 5 ¢ & < § &
& & (@) ©
< @ N
& N
&'
=
model

Fig. 6 Fitting and generating: processing speed measured in edges per second (size of replica graph/total
running time, measured on 100 Facebook graphs)

are not among the fastest generators, but fast enough to produce millions of edges

in minutes.

Social network: example replication |

As part of the realism evaluation, we replicate a small example network with each of the
models. The input graph is a social network of Bottlenose dolphins. We use graph draw-
ing with the ForceAtlas2 layout algorithm implemented in Gephi to inspect the network
structure. Node sizes are proportional to degree within one drawing. Figure 7a shows a
layout of the original network. Consider its basic structure: The graph is connected, with
two distinct communities separated by an edge bottleneck. We also layouted replicas with
scaling factors of 1 and 2 for each model, finding that the ReCoN replicas (e.g. Fig. 7d) are
the only ones commonly recognized as resembling the original. BTER (Fig. 7c) is able to
generate a similar community structure, though not matching the original as closely. All
other replicas (e.g. those created by R-MAT after applying kronfit, Fig. 7b) lose the dis-
tinctive community structure of the original. While some effects may be due to the layout
algorithm itself, we think that the results are clear enough to make the conclusions above.

Epidemiological network: example replication Il
An epidemiological network frequently used in studies on the transmission of HIV is
based on data collected in Colorado Springs by Potterat et al. (2002). It contains 250

o o P
0 /0 8 %C%ho"
o O%O 2 oog % 8 °

> o

e} 000 g °

O, 4 o} ° g}o)
(9 » ° C§° 830800 ;?Ocr;o o 4 ¢ S
c& °So oo 000 5 1y 2. o
G 0%, 8000

o (% ° &° 6’°<°b6° @ °§ » O(%Oo,ﬁ
° Qo oiigee
(6] o 4

°

P o ® 00

[gl

a b c d

Fig. 7 A small social network and its scale-2 replicas produced by different models. ReCoN is the model that
best reproduces a set of essential properties, including degree distributions, clustering and community
structure. a Original, b R-MAT with kronfit, ¢ BTER, d ReCoN

Page 16 of 29

Staudt et al. Applied Network Science (2017) 2:36 Page 17 of 29

individuals who were in contact in the 1980s through sex or injection drug use. Figure 8a
shows a force-directed layout of the network’s graph. Characteristic for this network is its
tree-like structure and the presence of high-degree hubs with attached “satellite” nodes
of degree 1. The Colorado Springs network is an instance of network data that cannot be
shared freely due to legal restrictions, but no such restrictions apply to a synthetic replica.
A replica made by the ReCoN generator reproduces structural features of the original
with the highest accuracy among the considered models. More importantly, scaled repli-
cas retain these essential properties, including the hub-and-satellite structure. Figure 8b
shows the network replicated with a scaling factor of 2, which is remarkably close to
the original. Like several other generators, ReCoN generates additional small connected
components as an artifact. If this is undesirable, a postprocessing step could prune the
network down to its giant connected component containing a large majority of nodes.
(Interestingly, the original data set contained many singletons and isolated dyads that
were removed from the graph in a preprocessing step).

Real epidemiological contact network data is difficult to collect, further complicated in
the case of HIV by sex and drugs being tabu subjects. This makes obtaining such a net-
work on the scale of an entire population impractical. In such a scenario, the ability to
create realistic large synthetic replicas of smaller real networks may be highly relevant. As
an explorative case study, we let ReCoN generate a replica of the Colorado Springs net-
work with 50 million nodes, which corresponds to a scaling factor of 200, 000. Figure 8c
shows a sample from a 5 - 107 node replica. This network’s structure is quite different
from the clustered “friendship networks” of dolphins and humans (Facebook). Remark-
ably, ReCoN also replicates many aspects of the original’s structure very closely, such as a
tree-like structure with hubs and attached satellites. These aspects are retained even for
huge scaling factors. This makes ReCoN a promising candidate to deliver large data sets in
cases where large amounts of real data are likely unobtainable. Further domain-specific
validation of the suitability of such replicas would be interesting.

Multi-scale modeling and open problems

The ReCoN algorithm introduced above belongs to the class of single-scale generators
in which the network structure is replicated in breadth in order to achieve an increased
size synthetic network without considering structural properties at coarse-grained
resolutions of the network. That is, the community structure is replicated multiple

a b c

Fig. 8 Colorado Springs epidemiological contact network. a original network, b scale-2 replica and ¢ sample
from a scale-200000 replica

Staudt et al. Applied Network Science (2017) 2:36 Page 18 of 29

times, and connections are randomized while preserving key properties of the original
network. The approach allows us to extrapolate from a given network to the next level
up; however, it is clear that, as a network grows, its structure evolves new coarse-grained
resolutions (or hierarchical levels) on top of those that were already present.

Progress in modeling such multiscale networks has been reported in (Gutfraind et
al. 2015), which introduced a multiscale network generation approach, MUSKETEER.
Briefly, starting from a single known or hypothesized network from any domain, MUS-
KETEER synthesizes ensembles of networks that preserve, on average, a diverse set of
structural features at multiple coarse-grained scales, including degree, other measures
of centrality, degree assortativity, path lengths, clustering, and modularity, while intro-
ducing unbiased variability across the ensemble in many of these properties. The core
method is inspired by applications of the theory of multiscale methods (Brandt 2001;
Briggs et al. 2000; Trottenberg et al. 2001) to combinatorial optimization (Brandt and
Ron 2003; Meyerhenke et al. 2015; Ron et al. 2011). The original computational mul-
tiscale method starts with an optimization problem in connection with a network. It
then (i) constructs a hierarchy of networks Gy = O, Gj, ..., Gy that decrease in size via
a coarsening procedure (Ron et al. 2011), (ii) solves a small optimization problem at
the coarsest scale, and (iii) then iteratively uncoarsens the solution by gradual prolonga-
tions and local refinements from the coarse to next-finer scales. Similarly, in MUSKETEER
a hierarchy of coarse networks is created; but, in contrast to the multiscale methods
for computational optimization, nothing is optimized but the network is edited at all
scales of coarseness. During the editing process only local changes are allowed, which
are the results of local decisions only. In other words, the problem of network edit-
ing/replication/randomization is formulated and solved at all scales, where primitives at
the coarse scale (such as coarse nodes and edges) represent aggregates of primitives at
previous finer scale. Analogous to multiscale methods for computational optimization
problems (Brandt 2001; Brandt and Ron 2003), by using appropriate coarsening, we are
able to detect and use the “geometry” behind the original network at multiple scales,
which can be interpreted as an additional property that is not captured by other network
generation methods customized to replicate a small number of well known properties
of O such as degree distribution. Moreover, it is known that the topology of many com-
plex networks is hierarchical and thus might be produced through iterations of generative
laws at multiple scales. In general, such generative laws often can be different at different
scales, as evidenced by the finding that complex networks are self-dissimilar across scales
(Carlson and Doyle 2002; Itzkovitz et al. 2005; Palla et al. 2005; Wolpert and Macready
2007; Binder 2008; Mones et al. 2012). These differences can naturally be reflected in the
multiscale frameworks.

We believe that multiscale network modeling methods are particularly promising for
addressing open problems we outline below. Some of the largest open problems are in the
areas of statistical network hypothesis testing, network anonymization and compression,
multiscale network decomposition and comparison, and understanding the fundamental

limitations of network modeling.

Statistical network hypothesis testing
One of the biggest unsolved problems in network science is the problem of hypothesis
testing. This is a problem of high significance in fields such as infectious diseases as well

Staudt et al. Applied Network Science (2017) 2:36 Page 19 of 29

as other research and its application. Given a network, the problem is to determine if
the given network has statistically significant differences with a background network. For
example, given a security problem on a network, could we say that a given network is
significantly more “robust” (or any macroscopic property) than what would be expected
by chance, where “chance” is defined realistically? The only existing approach, which
is unsuitable for most applications, is to fit a parametric model such as an exponential
random graph model (ERGM) to the network, and then test for the parameters being dif-
ferent from 0. This ERGM approach cannot be used in the vast majority of applications,
because the network cannot usually be represented realistically using an ERGM, nor could
most properties be represented easily using a generative parameter.

However, given the high realism and versatility achieved by multiscale network mod-
eling methods, we believe that they, and non-parametric models more generally, could
significantly advance statistical network hypothesis testing. The non-parametric method
promises to provide a much more realistic permutational test, and therefore identify
anomalous structures in a given network at a much lower level of false positives.

Network anonymization and compression

A critical barrier towards advances in network science is the difficulty of sharing valuable
real-world network data, which is often confidential and sensitive. This is the prob-
lem of network anonymization and compression. The multiscale strategy promises to
address this gap through a powerful non-parametric data synthesis strategy, because,
as we previously demonstrated, the strategy can generate networks that can model
network structures with a high level of realism across a large spectral range. Ini-
tial success with such methods is possible already with the ReCoN and MUSKETEER
strategies, but much work remains to be done addressing the spectrum of anonymiza-
tion needs and developing versatile algorithms. Current algorithms operate with com-
plete network exemplars or replicas, but it could be beneficial for anonymization to
operate with only small-size descriptions of the network such as motifs or possibly
global parameters.

The multiscale network modeling-based anonymization could be either non-
parametric or parametric, allowing the user to limit the amount of data released to the
public. In the parametric version, the data owner shares a controlled amount of network
information, while the recipient is able to obtain a realistic representation of the data by
using a multiscale algorithm.

Such a system would offer major advances in areas such as public health, cybersecu-
rity and counter-terrorism. Data in these areas is often very difficult to collect and/or
locked by privacy laws. Anonymization would compress the sensitive datasets and gener-
ate non-sensitive data, and in this form they could be shared with researchers in multiple
institutions and even the public. This would vastly expand the number of people who can
perform research in critical areas of scientific and practical interest.

Multiscale decomposition and comparison of networks arising from real-world complex
systems

The complexity of real network data suggests that its structure would be generally
self-dissimilar when comparing several scales (or coarse-grained resolutions). However,
existing network generators generally fail to address the problem of self-dissimilarity.

Staudt et al. Applied Network Science (2017) 2:36 Page 20 of 29

For example, the degree distribution or the clustering coefficient of a communication
network are not necessarily the same as those at its backbone at macro- and meso-scopic
scales. Moreover, in the vast majority of practical cases, the coarse-grained structure is
not given (or can be found) explicitly, which makes the attempts to generate realistic syn-
thetic networks even more complicated. To address this problem, some of us and others
have investigated a variety of multilevel optimization solvers for such problems, includ-
ing graph partitioning (Bulug et al. 2016; Glantz et al. 2016; Meyerhenke et al. 2016),
linear ordering (Ron et al. 2011), graph drawing (Meyerhenke et al. 2015), and node
immunization (Leyffer and Safro 2013) in which the multiscale organization of a graph is
expressed via low-energy cuts. However, other advanced approaches are needed when a
decomposition into scales is not cut-based.

A related open problem has to do with the comparison of networks with self-dissimilar
properties. In the existing multiscale algorithms like ReCoN and MUSKETEER, the com-
parison of the original and synthetic networks is done at the finest scale only. Whereas in
some applications this can be acceptable, clearly, there are areas in which the multiscale
structure is considered, and, thus, a multiscale comparison is much more beneficial and
illuminating. However, to the best of our knowledge, there is no comprehensive concept
of similarity that takes into account a comparison of properties at different scales.

Fundamental limitation of network modeling algorithms

Despite many studies of network modeling, we appear to lack a fundamental theory to
understand the limitations of these algorithms. There are at least three related problems.
First, we lack a theoretical understanding for many of the most popular generating algo-
rithms, including multiscale strategies such as MUSKETEER. Second, we lack a sense in
which we can describe a network model or generator as in some sense “optimal” or “most
realistic” Perhaps it is possible to give an information-theoretic basis to understand the
maximal realism a given generator can achieve given its parameter space. Third, com-
plex networks are typically associated with a variety of different processes running on or
creating them. Nearly all network generation models focus on rules that are structuring
the network, overlooking the close dependence between the structure-forming processes
and the processes on the network. Indeed, in many domains, the realism of a network is
closely tied to the dynamics on the network. A domain expert (i.e., a potential user of net-
work generation methods) cannot consider a synthetic graph realistic unless it becomes
obvious that the processes that are supposed to co-exist with the network are also realis-
tic (an issue we examined in the context of ReCoN). It is hoped that future studies in this
field would examine this and earlier gaps in detail.

Conclusion

We have presented a new generator, ReCoN, for replicating and scaling existing networks.
In an extensive experimental evaluation we have shown that ReCoN is capable of generat-
ing networks which are (i) similar to the original network in terms of important structural
measures and (ii) lead to similar running times of many graph and network analysis algo-
rithms. Using ReCoN it is possible to realistically replicate an existing network, and to
scale the synthetic version by orders of magnitude, e.g., in order to test algorithms on
larger data sets where they are not available. Furthermore, it allows to create anonymized
copies of such networks that can be distributed freely and allow to conduct representative

Staudt et al. Applied Network Science (2017) 2:36 Page 21 of 29

experiments on them. While other generators sometimes perform better concerning cer-
tain criteria, none of the other generators is capable of approximately reproducing such a
wide range of properties and running times.

We identified a better replication of local clustering coefficients as one of the areas
where ReCoN could still be improved. Further, for certain types of networks such as co-
authorship networks, fitting schemes for increasing average degrees could be investigated.

Appendix A: replicating structural properties

In the existing literature on generative models, claims of realism are typically substan-
tiated by showing that a set of structural properties is similar for real and synthetic
networks. The large palette of properties to choose from and the question which of those
properties are essential features makes this a complex problem. An often used approach
is to describe a network by a feature vector, a set of scalar properties. These are often
maxima, minima or averages of node properties (cf. the structural profiles published by
the KONECT project (Kunegis 2013)). This can be reductionist, since these summary val-
ues may not give enough information about how the node properties are distributed. We
therefore demonstrate how well the different models replicate networks with two types
of plots. The first plot type shows scalar properties of the replicas, relative to those of the
original. Let x, and x, denote scalar properties of the original and the replica, respectively.
The relative value x,/x, is computed for each replica. Box plots depict the distribution
of these relative values over the entire set of replicas. Scalar properties included are: the
number of edges, the number of connected components, the effective diameter (for 90%
of node pairs) of the largest connected component, and the number of communities. The
effective diameter is approximated using the ANF algorithm (Palmer et al. 2002). Commu-
nities are detected using the modularity-maximizing algorithm Parallel Louvain Method
(Staudt and Meyerhenke 2016). This set of properties was chosen so that it could be
quickly computed for a large set of networks. The second type of plot covers centrality
measures, and is designed to show how the shape of the distributions of node centrality
scores of the originals compares to those of the replicas. Each segment of the plot depicts
the centrality values of all nodes of all networks in the considered data set or the repli-
cas of a certain algorithm. Since centrality measures from this selection can have very
different scales, all centrality scores are normalized to the interval [0, 1].

Describing the results on 100 Facebook networks (Fig. 9a) from left to right, we observe
the following results for the measured scalar properties: All models were parametrized
to produce exactly # = n nodes, while some degree of freedom exists in the number
of edges. However, all generators replicate the number of edges with a narrow variance,
which is largest for LFR. ReCoN is the only model that matches the number of components
with high accuracy, while it is lower for Erd6s—Rényi, Barabasi-Albert, Edge-Switching
Markov Chain, Hyperbolic Unit Disk Graph and LER models, and significantly higher for
Chung-Lu and BTER. The latter can probably be explained by the generation of isolated
nodes instead of degree-1 nodes, which we have already seen in the visualizations before.
There is no extreme deviation in terms of the effective diameter, but note that for small
world networks, relatively small differences in the effective diameter may indicate signifi-
cant structural differences. The Barabasi-Albert and Hyperbolic Unit Disk Graph models
deviate the most and produce lower diameters. ReCoN, which receives a partition of the
original into communities as input, replicates it closely, but all yield different numbers of

Staudt et al. Applied Network Science (2017) 2:36 Page 22 of 29

@ Erdos-Renyi
BB Barabasi-Albert

B RMAT
B Chung-Lu
B ESMC
10! @ Hyperbolic Unit Disk
B BTER
B LFR
3 @ ReCoN
s
o
B p
3 100 —y——é—@— - WT%‘H #
2
edges components eff. diameter communities
measure
a
10°
10 model
W original
Erdos-Renyi 10!
N Barabasi-Albert
08 I RMAT
mmm Chung-Lu 10-2
EEN ESMC
EEE Hyperbolic Unit Disk
0s == 8fer 10-2

=

score

REY T & bk

Degree Closeness Clustering Core Number PageF
centrality centrality

b
Fig. 9 Structure replication of Facebook networks a Relative deviation of scalar network properties, b Distribution
of centrality scores

communities. The Chung-Lu and BTER generators increase the number of communities
by a factor of around 10, which is due to the larger number of connected components.
Overall, ReCoN emerges with the most accurate replicas from this experiment.

The distributions of node centralities (Fig. 9b) compare as follows: All models except
Erdés—Rényi are capable of producing skewed degree distributions, with Chung-Lu,
Edge-Switching Markov Chain, BTER, R-MAT and ReCoN matching the original closely.
Closeness is approximately matched by most models, but Barabasi-Albert and Hyper-
bolic Unit Disk Graph deviate significantly. The original networks feature a wide range
of clustering coefficients, and only the BTER model, which receives explicitly this distri-
bution, matches them exactly. For Hyperbolic Unit Disk Graph, clustering is extremely
artificially high with a median close to 0.9, while LFR produces an unrealistically large
variance. For the k-core numbers, random graphs are clearly outliers. R-MAT, Chung-
Lu, Edge-Switching Markov Chain, BTER and ReCoN match well, while the very narrow
distributions of the others point to a lack of differentiated k-core structure. Only small
variations exist with respect to PageRank, and Hyperbolic Unit Disk Graph and LFR
have strong deviations in terms of betweenness centrality, but interpretation is not
straightforward in this case. In summary, extreme deviations in centrality score distribu-

tions clearly give away the artificiality of some synthetic graphs, such as the clustering

Staudt et al. Applied Network Science (2017) 2:36 Page 23 of 29

Table 2 Additional networks used

Network Type n m
Email-Enron Email communication 36,692 183,831
PGPgiantcompo PGP web of trust 10,680 24,316
As-22july06 Internet topology 22,963 48,436
Hep-th Scientific coauthorship 8361 15,751
CoAuthorsDBLP Scientific coauthorship 299,067 977,676
Dolphins Animal social network 62 159
Power Power grid 4941 6594
Cnr-2000 Web graph 325,557 2,738,969

The network email-Enron has been taken from the Stanford Large Network Dataset Collection (Leskovec and Krevl 2014), all
other networks are from the clustering instances of the 10th DIMACS implementation challenge (Bader et al. 2014)

coefficient for Hyperbolic Unit Disk Graph or the degree distribution for Erdés—Rényi.
Other differences are more subtle, but possibly relevant. BTER replicates centralities most
accurately.

The results on a different set of networks (Table 2) are presented in Fig. 10. A notable
difference is the extreme variance of clustering coefficients in the original set, which
ReCoN cannot replicate. Again ReCoN performs well for the majority of properties.

Figures 11 and 12 show results of a repetition of the experiment on the Facebook
networks and the diverse set of networks with a scaling factor of 4. For the Facebook
networks, the results for the scalar network properties in Fig. 11a can be summarized as

B Erdos-Renyi
B Barabasi-Albert
10 g RMAT

= ChungLu
103 ' ESMC
R Hyperbolic Unit Disk
B BTER
102 | EEE LFR
s @ ReCoN
g
2 100
=
]
10!
102
edges components eff. diameter communities
measure
a
10°
10 model
= original
B Erdos-Renyi 10-1
BB BarabasiAlbert
08 = RMAT
B Chunglu 10-2
B ESMC
mm Hyperbolic Unit Disk
06 B BTER 10-?
@ = LR @
s s
2 @ ReCoN 8

02
10-¢

00 ladsh ik [i
107

Degree Closeness Clustering Core Number PageRank Betweenness
centrality centrality

b

Fig. 10 Structure replication of diverse set of networks (Table 2). a Relative deviation of scalar network
properties, b Distribution of centrality scores

Staudt et al. Applied Network Science (2017) 2:36 Page 24 of 29

BN Erdos-Renyi

B Barabasi-Albert
B RMAT

= Chung-Lu

. ESMC

B Hyperbolic Unit Disk
m BTER

B LR

BN ReCoN

.
R T _H@* iy
el L}

edges components eff. diameter communities
measure

102

relative value
o
&

-
2

10°
10 maodel
= original
B Erdos-Renyi 10!
BN Barabasi-Abert
W RMAT
B Chung-Lu 102
B ESMC
BN Hyperoiic Unit Disk

l
T = I
04 M%L | TO 104
IV L 10-
o L \

j 10-%
B b bk
107

Degree Closeness Clustering Core Number PageRank Betweenness
centrality centrality

b

Fig. 11 Structure replication of Facebook networks with scaling factor 4. a Relative deviation of scalar
network properties, b Distribution of centrality scores

08

06

score
score

0.0

follows: All models achieve the targeted edge factor of m’ = 4 - m. Chung-Lu and BTER
have again an increased number of connected components. R-MAT and ReCoN show a
slight increase in the number of connected components that corresponds approximately
to the scaling factor of 4. For the effective diameter, small relative deviations matter:
Barabasi-Albert and Hyperbolic Unit Disk Graph model tend to create smaller worlds
than reality. ReCoN produces a remarkably exact match, considering that the generator
does not explicitly target the diameter. It does, however, target a higher number of com-
munities, which is desired and achieved. LFR keeps the number of communities constant
on average, while many other models produce fewer communities than the originals. The
relative deviations in the distributions of centralities are qualitatively equivalent to those
in Fig. 9b. For the diverse set of networks, the properties of the scale-4 replicas in Fig. 12
are very similar to those of the scale-1 replicas in Fig. 10. The main differences are the
scaled number of edges and also a larger number of communities for all networks.

Appendix B: DBLP scaling experiment

In this section we examine the scaling behavior of the considered generators on a co-
authorship network. For this, we use the DBLP co-authorship network as of July 3rd 2017,
extracted using the tools provided by KONECT (Kunegis 2013). From this network, we
consider annual snapshots starting with 1990 that contain data from all papers published
until the end of that year. Of each of these snapshots, we only consider the largest con-
nected component. We replicate the 1990 network using our set of generators up to a

scaling factor of 29.

Staudt et al. Applied Network Science (2017) 2:36 Page 25 of 29

N Erdos-Renyi
10° g Barabasi-Albert
B RMAT
104 @ Chung-Lu
BN ESMC
B Hyperbolic Unit Disk
10° @ BTER
" @ LFR
3 102 B ReCoN
.%
® 10t
10t
10-2
edges components eff. diameter communities
measure
a
10°
10 model
B original
B Erdos-Renyi 10!
B Barabasi-Albert
08 B RMAT
EEm Chung-Lu 102
B ESMC
B Hyperbolic Unit Disk
0g B BTER 10-3
@ B LFR [
E B ReCoN §
4
04 10
10-5
0.2
10-%
00 slossdele sl [
1077
Degree Closeness Clustering Core Number a1
centrality centrality
Fig. 12 Structure replication of the diverse set of networks (Table 2) with scaling factor 4. a Relative deviation
of scalar network properties. b Distribution of centrality scores

1le7 .
=
0.8 @ 08 PSP 3
8 g S
06 s - SN I — -
g g 8 ——— &
Foe 5 e .
= £ & 302
0.2 3 O 04 e g
= = o}
e ———
0.0 °© - 5 00 ———
00 05 10 15 00 05 10 15 00 05 10 15
n 1le6 n 1le6 n 1e6
@ Model
S —F— original
5 0 —f— Erdos-Renyi
5 g :% —f— Barabasi-Albert
E. 8 g —I— RMAT
8 B £ —- Chung-Lu
o 2 3 - ESMC
15 * —F— Hyperbolic Unit Disk
(é — BTER
00 05 10 15 00 05 10 15 00 05 10 15 I LR
n 16 n 1e6 n 1e6 —E~ ReCon
Fig. 13 Scaling behavior of the different generators on the DBLP co-authorship network compared to the
behavior of the original network over time. From left to right and top to bottom: number of edges, max.
degree, Gini coefficient of the degree distribution, average local clustering coefficient, diameter, number of
connected components, number of communities

Staudt et al. Applied Network Science (2017) 2:36 Page 26 of 29

In Fig. 13, we demonstrate the properties of both the original network and the repli-
cas. Concerning the number of edges, one can clearly see that the average degree of the
DBLP graph increases over time while our fitting schemes assume a constant degree.
The maximum degree is dominated by Hyperbolic Unit Disk Graph generator that pro-
duces very high maximum degrees. The Gini coefficient of the degree distribution of the
original network is increased over time; this is also not modeled by most generators. R-
MAT, however, actually produces graphs with increasing Gini coefficient. The average
local clustering coefficient of the original network is very high compared to the low aver-
age degree, which is between 4.4 and 9.7. This is easily explained by the small clique
that is formed by each paper. Only BTER, which explicitly replicates the local clustering
coefficients, can replicate the high local clustering coefficient of the first snapshot. Even
the Hyperbolic Unit Disk Graph generator does not reach such high clustering coeffi-
cients. The diameter of the DBLP graph is decreasing over time, which is not replicated by
any of the generators. However, BTER and ReCoN produce graphs with similar diameter
values. The graphs generated by Barabasi-Albert and Hyperbolic Unit Disk Graph have
again lower diameter values. The number of connected components of the original is 1 as
we selected only the largest connected components. As we have already seen for several
other graphs, some of the generators produce a high number of connected components.
Due to the low average degree, this is particularly dominant here. The number of com-
munities found by Parallel Louvain Method on the original network is varying over time.
ReCoN, but also LFR and BTER, generate community structures that have an increasing
number of communities over time. However, none of them matches exactly the develop-
ment of the original network, which also cannot really be expected. All in all, for this class
of graphs BTER seems to be the generator that achieves the best replication results as
it is the only generator that matches the average local clustering coefficient. Apart from
the average local clustering coefficients, ReCoN is also able to reproduce all measured
properties.

Many of the generators we consider could easily be adapted to support a non-linear
edge scaling function. Also for ReCoN, scaling degrees is possible, though further work
is needed to see how to deal with nodes whose scaled internal degree is larger than the
number of available possible neighbors inside its community. Further, for this particular
type of graph, fitting local clustering coefficients as it is done by BTER seems to be
necessary in order to accurately replicate them. A possible extension of ReCoN could
therefore be to take care of clustering coefficients while generating intra-community or

inter-community graphs.

Acknowledgment

We would like to thank two anonymous referees for their comments and suggestions.

This work is partially supported by the DFG under grants ME 3619/3-1 and WA 654/22-2 within the Priority Program 1736
Algorithms for Big Data, and by the NSF awards #1522751 and #1647361. Funding was also provided by Karlsruhe House of
Young Scientists via the International Collaboration Package. A preliminary version of the paper was presented at the 5th
International Workshop on Complex Networks and their Applications (Staudt et al. 2016). We acknowledge support by
Deutsche Forschungsgemeinschaft and Open Access Publishing Fund of Karlsruhe Institute of Technology.

Authors’ contributions

We use the following notation for different types of contribution: AD - algorithm design and discussions, | -
implementation, P - paper writing, E - experimental evaluation. The authors contributed as follows: MH (AD, I, P, E), AG
(AD, P), HM (AD, |, P, E), IS (AD, P), CS (AD, I, P, E). All authors read and approved the final manuscript.

Ethics approval and consent to participate
No research involving human subjects, human material, or human data has been performed.

Staudt et al. Applied Network Science (2017) 2:36 Page 27 of 29

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details

'Laboratory for Mathematical Analysis of Complexity and Conflicts, University of lllinois at Chicago, Chicago, IL, USA.
2|nstitute of Theoretical Informatics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany. 3School of Computing,
Clemson University, Clemson, SC, USA.

Received: 6 March 2017 Accepted: 5 September 2017
Published online: 13 October 2017

References

Aiello W, Chung F, Lu L (2000) A random graph model for massive graphs. In: Proceedings of the thirty-second annual
ACM symposium on Theory of computing. ACM. pp 171-180

Albert R, Barabdsi A (2002) Statistical mechanics of complex networks. Rev Mod Phys 74(1):47

Bader DA, Meyerhenke H, Sanders P, Schulz C, Kappes A, Wagner D (2014) Benchmarking for graph clustering and
partitioning. In: Encyclopedia of Social Network Analysis and Mining. Springer. pp 73-82

Bansal S, Khandelwal S, Meyers L (2009) Exploring biological network structure with clustered random networks. BMC
Bioinforma 10(1):405

Barabdsi AL, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509-512. http://view.ncbi.nim.
nih.gov/pubmed/10521342

Batagelj V, Brandes U (2005) Efficient generation of large random networks. Phys Rev E 71(3):036-113

Binder PM (2008) Frustration in complexity. Science 322:323

Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang DU (2006) Complex networks: Structure and dynamics. Phys Reports
424(4):175-308

Brandt A (2001) Multiscale scientific computation: Review 2001. In: Barth T, Haimes R, Chan T (eds). Multiscale and
Multiresolution Methods (Proceedings of the Yosemite Educational Symposium, October 2000). Springer-Verlag

Brandt A, Ron D (2003) Chapter 1: Multigrid solvers and multilevel optimization strategies. In: Cong J, Shinnerl JR (eds).
Multilevel Optimization and VLSICAD. Kluwer

Brase JM, Brown DL (2009) Modeling, simulation and analysis of complex networked systems - a program plan. Lawrence
Livermore National Laboratory

Briggs WL, Henson V, McCormick SF (2000) A multigrid tutorial: second edition. Society for Industrial and Applied
Mathematics, Philadelphia

Bulug A, Meyerhenke H, Safro |, Sanders P, Schulz C (2016) Recent advances in graph partitioning. In: Algorithm
Engineering. Springer. pp 117-158

Caldarelli G, Vespignani A (2007) Large scale structure and dynamics of complex networks. World Scientific 2017

Carlson J, Doyle J (2002) Complexity and robustness. Proc Natl Acad Sci U S A 99(Suppl 1):2538

Chakrabarti D, Faloutsos C (2006) Graph mining: Laws, generators, and algorithms. ACM Comput Surv (CSUR) 38(1):2

Chakrabarti D, Zhan Y, Faloutsos C (2004) R-MAT: A recursive model for graph mining. In: Berry MW, Dayal U, Kamath C,
Skillicorn DB (eds). Proceedings of the Fourth SIAM International Conference on Data Mining, Lake Buena Vista,
Florida, USA, April 22-24, 2004. SIAM. pp 442-446. doi:10.1137/1.9781611972740.43. https://doi.org/10.1137/1.
9781611972740.43

Clauset A, Shalizi CR, Newman ME (2009) Power-law distributions in empirical data. SIAM Rev 51(4):661-703

Dasari NS, Ranjan D, Zubair M (2014) ParK: An efficient algorithm for k-core decomposition on multicore processors. In:
2014 IEEE International Conference on Big Data, Big Data 2014, Washington, DC, USA, October 27-30 2014. IEEE.
pp 9-16

Dunlavy D, Hendrickson B, Kolda T (2009) Mathematical challenges in cybersecurity. Tech. rep. Sandia National Laboratory

Erdos P, Renyi A (1960) On the evolution of random graphs. Publ Math Inst Hung Acad Sci 5:17-61

Eubank S, Guclu H, Kumar V, Marathe M, Srinivasan A, Toroczkai Z, Wang N (2004) Modelling disease outbreaks in realistic
urban social networks. Nature 429(6988):180-184

Fortunato S (2017) Benchmark graphs to test community detection algorithms. https:/sites.google.com/site/
santofortunato/inthepress2. Accessed 30 July 2017

Geisberger R, Sanders P, Schultes D (2008) Better approximation of betweenness centrality. In: Proceedings of the Tenth
Workshop on Algorithm Engineering and Experiments, ALENEX. SIAM. pp 90-100

Glantz R, Meyerhenke H, Schulz C (2016) Tree-based coarsening and partitioning of complex networks. J Exper
Algorithmics (JEA) 21(1):1-6

Goldenberg A, Zheng AX, Fienberg SE, Airoldi EM (2010) A survey of statistical network models. Found Trends® Mach
Learn 2(2):129-233

Gutfraind A, Meyers L, Safro | (2012) MUSKETEER: Multiscale entropic network generator. https://people.cs.clemson.edu/~
isafro/musketeer/index.html. Accessed 30 July 2017

Gutfraind A, Safro |, Meyers LA (2015) Multiscale network generation. In: Information Fusion (Fusion), 2015 18th
International Conference on. IEEE. pp 158-165

Hamann M, Lindner G, Meyerhenke H, Staudt CL, Wagner D (2016) Structure-preserving sparsification methods for social
networks. Soc Netw Anal Mining 6(1):22:1-22:22

ltzkovitz S, Levitt R, Kashta N, Milo R, Itzkovitz M, Alon U (2005) Coarse-graining and self-dissimilarity of complex networks.
Phys Rev E 71(1):016-127

Keeling MJ, Rohani P (2008) Modeling infectious diseases in humans and animals, vol. 47. Princeton University Press.
http://webcat.warwick.ac.uk/record=b221854251

http://view.ncbi.nlm.nih.gov/pubmed/10521342
http://view.ncbi.nlm.nih.gov/pubmed/10521342
http://dx.doi.org/10.1137/1.9781611972740.43
https://doi.org/10.1137/1.9781611972740.43
https://doi.org/10.1137/1.9781611972740.43
https://sites.google.com/site/santofortunato/inthepress2
https://sites.google.com/site/santofortunato/inthepress2
https://people.cs.clemson.edu/~isafro/musketeer/index.html
https://people.cs.clemson.edu/~isafro/musketeer/index.html
http://webcat.warwick.ac.uk/record=b2218542 S1

Staudt et al. Applied Network Science (2017) 2:36 Page 28 of 29

Kolda TG, Pinar A (2014) SNL: Feastpack. http://www.sandia.gov/~tgkolda/feastpack/. Accessed 30 July 2017

Kolda TG, Pinar A, Plantenga T, Seshadhri C (2013) A scalable generative graph model with community structure. arXiv
preprint arXiv: 1302.6636. SIAM J Sci Comput 36(5):C424-C452. https://doi.org/10.1137/130914218

Krapivsky PL, Redner S (2001) Organization of growing random networks. Phys Rev E 63(066123):066123

Krioukov D, Papadopoulos F, Kitsak M, Vahdat A, Boguna M (2010) Hyperbolic geometry of complex networks. Phys Rev E
82:036-106

Kunegis J (2013) Konect: the koblenz network collection. In: Proceedings of the 22nd international conference on World
Wide Web companion. ACM. pp 1343-1350

Lancichinetti A, Fortunato S (2009) Benchmarks for testing community detection algorithms on directed and weighted
graphs with overlapping communities. Phys Rev E 80(1):016-118

Lancichinetti A, Fortunato S, Radicchi F (2008) Benchmark graphs for testing community detection algorithms. Phys Rev E
78(4):046-110

Leskovec J, Chakrabarti D, Kleinberg J, Faloutsos C, Ghahramani Z (2010) Kronecker graphs: An approach to modeling
networks. J Mach Learn Res 11:985-1042

Leskovec J, Faloutsos C (2007) Scalable modeling of real graphs using kronecker multiplication. In: Proc. 24th Intl.
Conference on Machine learning. ACM. pp 497-504

Leskovec J, Kleinberg J, Faloutsos C (2005) Graphs over time: densification laws, shrinking diameters and possible
explanations. In: Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in
Data Mining. ACM. pp 177-187

Leskovec J, Krevl A (2014) SNAP Datasets: Stanford large network dataset collection. http://snap.stanford.edu/data.
Accessed 30 July 2017

Leskovec J, Lang K, Dasgupta A, Mahoney M (2008) Statistical properties of community structure in large social and
information networks. In: Proceeding of the 17th international conference on World Wide Web. ACM. pp 695-704

Leskovec J, Sosi¢ R (2014) SNAP: A general purpose network analysis and graph mining library in C++. http://snap.
stanford.edu/snap. Accessed 30 July 2017

Leyffer S, Safro | (2013) Fast response to infection spread and cyber attacks on large-scale networks. J Complex Netw
1(2):183-199

Mahadevan P, Krioukov D, Fall K, Vahdat A (2006) Systematic topology analysis and generation using degree correlations.
ACM SIGCOMM Comput Commun Rev 36(4):135-146

Medina A, Matta |, Byers J (2000) On the origin of power laws in internet topologies. Tech. rep. Boston University, Boston,
MA, USA

Meyerhenke H, Nollenburg M, Schulz C (2015) Drawing large graphs by multilevel maxent-stress optimization. In:
Giacomo ED, Lubiw A (eds). Graph, Drawing and Network Visualization - 23rd International Symposium, GD 2015, Los
Angeles, CA, USA, September 24-26 2015, Revised Selected, Papers, Lecture Notes in Computer Science, vol. 9411.
Springer. pp 30-43. doi:10.1007/978-3-319-27261-0_3. http://dx.doi.org/10.1007/978-3-319-27261-0_3

Meyerhenke H, Sanders P, Schulz C (2016) Partitioning (hierarchically clustered) complex networks via size-constrained
graph clustering. J Heuristics 22(5):759-782. doi:10.1007/510732-016-9315-8. http://dx.doi.org/10.1007/510732-016-
9315-8

Meyers L, Pourbohloul B, Newman M, Skowronski D, Brunham R (2005) Network theory and sars: predicting outbreak
diversity. J Theor Biol 232(1):71-81

Mihail C, Zegura E (2003) The markov chain simulation method for generating connected power law random graphs. In:
Proceedings of the Fifth Workshop on Algorithm Engineering and Experiments, vol. 111. Society for Industrial
Mathematics. p 16

Milo R, Kashtan N, Itzkovitz S, Newman MEJ, Alon U (2003) On the uniform generation of random graphs with prescribed
degree sequences. preprint arXiv:cond-mat/0312028

Mones E, Vicsek L, Vicsek T (2012) Hierarchy measure for complex networks. PLoS ONE 7(3):e33-799.
doi:10.1371/journal.pone.0033799. http://dx.doi.org/10.1371

Newman M (2010) Networks: an introduction. Oxford University Press

Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45:167-256

Palla G, Derényi |, Farkas |, Vicsek T (2005) Uncovering the overlapping community structure of complex networks in
nature and society. Nature 435(7043):814-818

Palla G, Lovész L, Vicsek T (2010) Multifractal network generator. Proc Natl Acad Sci 107(17):7640

Palmer CR, Gibbons PB, Faloutsos C (2002) Anf: A fast and scalable tool for data mining in massive graphs. In:
Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining. ACM.
pp 81-90

Potterat JJ, Phillips-Plummer L, Muth SQ, Rothenberg R, Woodhouse D, Maldonado-Long T, Zimmerman H, Muth J (2002)
Risk network structure in the early epidemic phase of hiv transmission in colorado springs. Sexually Transmitted Infect
78(suppl 1):i159-1163

Ron D, Safro |, Brandt A (2011) Relaxation-based coarsening and multiscale graph organization. Multiscale Model Simul
9(1):407-423

Schlauch WE, Horvat EA, Zweig KA (2015) Different flavors of randomness: comparing random graph models with fixed
degree sequences. Soc Netw Anal Mining 5(1):1-14. doi:10.1007/513278-015-0267-z

Seshadhri C, Kolda TG, Pinar A (2011) Community structure and scale-free collections of Erdos-Renyi graphs. http://arxiv.
org/abs/1112.3644. Accessed 30 July 2017

Snijders TA (2001) The statistical evaluation of social network dynamics. Sociol Methodol 31(1):361-395

Staudt CL (2016) Algorithms and software for the analysis of large complex networks. Ph.D. thesis. Karlsruhe Institute of
Technology. doi:10.5445/IR/1000056470

Staudt CL, Hamann M, Safro |, Gutfraind A, Meyerhenke H (2016) Generating scaled replicas of real-world complex
networks. In: International Workshop on Complex Networks and their Applications. Springer. pp 17-28

Staudt CL, Meyerhenke H (2016) Engineering parallel algorithms for community detection in massive networks. IEEE
Trans Parallel Distributed Syst 27(1):171-184

http://www.sandia.gov/~tgkolda/feastpack/
https://doi.org/10.1137/130914218
http://snap.stanford.edu/data
http://snap.stanford.edu/snap
http://snap.stanford.edu/snap
http://dx.doi.org/10.1007/978-3-319-27261-0_3
http://dx.doi.org/10.1007/978-3-319-27261-0_3
http://dx.doi.org/10.1007/s10732-016-9315-8
http://dx.doi.org/10.1007/s10732-016-9315-8
http://dx.doi.org/10.1007/s10732-016-9315-8
http://dx.doi.org/10.1371/journal.pone.0033799
http://dx.doi.org/10.1371
http://dx.doi.org/10.1007/s13278-015-0267-z
http://arxiv.org/abs/1112.3644
http://arxiv.org/abs/1112.3644
http://dx.doi.org/10.5445/IR/1000056470

Staudt et al. Applied Network Science (2017) 2:36 Page 29 of 29

Staudt CL, Sazonovs A, Meyerhenke H (2016) NetworKit: A tool suite for large-scale complex network analysis. Netw Sci
4(4):508-530

Terzi S, Cavalieri S (2004) Simulation in the supply chain context: a survey. Comput Ind 53(1):3-16

Traud AL, Mucha PJ, Porter MA (2012) Social structure of facebook networks. Physica A: Stat Mech Appl 391(16):4165-4180

Trottenberg U, Oosterlee C, Schiller U (2001) Multigrid. Academic Press, Inc

Viger F, Latapy M (2005) Random generation of large connected simple graphs with prescribed degree distribution. In:
11th International Conference on Computing and Combinatorics. Kunming

von Looz M, Meyerhenke H, Prutkin R (2015) Generating random hyperbolic graphs in subquadratic time. In: Algorithms
and Computation - 26th International Symposium, ISAAC 2015, Nagoya, Japan, December 9-11, 2015, Proceedings.
Springer. pp 467-478

Watts DJ, Strogatz SH (1998) Collective dynamics of 'small-world’ networks. Nature 393(6684):440-2. doi:10.1038/30918.
http://dx.doi.org/10.1038/30918

Wolpert D, Macready W (2007) Using self-dissimilarity to quantify complexity. Complexity 12(3):77-85

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

http://dx.doi.org/10.1038/30918
http://dx.doi.org/10.1038/30918

	Abstract
	Keywords

	Introduction
	Problem definition
	Related work
	Outline and contribution

	Realistic replicas
	The generation algorithm ReCoN
	Fitting generative models to input graphs
	Considered models
	Fitting power law degree distribution
	Erdos–Rényi, Barabasi-Albert, Chung-Lu and Edge-Switching Markov Chain
	R-MAT
	Hyperbolic unit disk graphs
	BTER
	LFR

	Computational experiments
	Implementation details
	Scaling behavior of the generators
	Realism in the running times of graph algorithms
	Generator running times
	Social network: example replication I
	Epidemiological network: example replication II

	Multi-scale modeling and open problems
	Statistical network hypothesis testing
	Network anonymization and compression
	Multiscale decomposition and comparison of networks arising from real-world complex systems
	Fundamental limitation of network modeling algorithms

	Conclusion
	A
	B
	Acknowledgment
	Authors' contributions
	Ethics approval and consent to participate
	Competing interests
	Publisher's Note
	Author details
	References

