
Applied Network ScienceMelo et al. Applied Network Science  (2017) 2:32 
DOI 10.1007/s41109-017-0052-1

RESEARCH Open Access

Categorisation of polyphonic musical
signals by using modularity community
detection in audio-associated visibility network
Dirceu de Freitas Piedade Melo1* , Inacio de Sousa Fadigas2 and Hernane Borges de Barros Pereira3

*Correspondence:
dirceumelo@ymail.com
1Department of Mathematics
(DEMAT), Nucleus of Studies of
Mathematics, Statistics and
Education (NEMEE), Federal
Institute of Education Science and
Technology of Bahia (IFBA),
Salvador, Bahia, Brazil
Full list of author information is
available at the end of the article

Abstract
This article proposes a method to numerically characterise the homogeneity of
polyphonic musical signals through community detection in audio-associated visibility
networks and to detect patterns that allow the categorisation of these signals into two
types of grouping based on this numerical characterization. To implement this
methodology, we first calculate the variance fluctuation series in fixed-size windows of
an audio stretch. Next we map this series onto a visibility graph, where the nodes are
the points of the series, and the edges are defined by the visibility between each pair of
points. Then, we measure the quality of the partitions of the network using the
modularity and Louvain optimisation. We observed that a greater or lesser homogeneity
of the magnitudes of the signal transients is related to a higher or lower modularity of
the audio-associated visibility network. We also note that these differences are related
to musical choices that can establish important differences between musical styles. In
this article, we show that the modularity is able to give relevant information to allow
the categorisation of 120 musical signs labelled in percussive and symphonic music.

Introduction
Owing to the need to develop computational resources for the organisation of large dig-
ital music libraries, the importance of automatic music classification systems has grown
considerably in recent times (Pampalk et al. 2002). Many classification platforms have been
proposed (Costa et al. 2012; Ezzaidi and Rouat 2008; Guaus 2009; Panagakis et al. 2009),
and despite efforts to find a new path (Goulart 2012; Jennings et al. 2004), most
feature extraction tools use knowledge of the audio signal processing field (Eronen 2009; Silla Jr
et al. 2006; Tzanetakis and Cook 2002). The descriptors most commonly used in feature
extraction are Mel Frequency cepstral coefficients (MFCCs), spectral rollof, spectral flux,
zero crossing rate, and low-energy feature. These algorithms carry out their mathematical
operations in the time–frequency domain in order to extract three basic characteristics
of the musical signal: tone texture (timbre), rhythmic content (time, rhythm, pulse), and
tonal content (pitch). In contrast, we propose a way to categorise polyphonic1 signals
using a topological property of complex networks in this paper, and therefore do not use
the same principles traditionally adopted in the analysis of an audio signal. To realise this
idea, we first captured the loudness of the audio signal from a calculation of the average
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intensity of its fluctuations in fixed-size windows (Jennings et al. 2004), creating a series
of variance fluctuations of the original signal. After this, we mapped this series onto a
graph using the geometrical visibility mapping proposed by (Lacasa et al. 2008). In this
mapping, if two points of the series ’see each other’ in the Cartesian plane, an edge is cre-
ated in the Euclidean plane. Thus, if the visibility of a point in the series is higher, it will
have more edges in the graph. At the end of the mapping, the graph inherits the visibility
of all local peaks with their respective neighbourhoods within its structure (Lacasa and
Toral 2010). Consequently, a variance fluctuation series with few local-but very visible-
peaks, will generate graphs with few hubs, with a high degree of connections. On the
other hand, a series with many local peaks with a poor visibility will generate graphs
with many vertices with a lower level of connections. The analysis of the modularity will
identify if the network structure was created from the series with a greater or smaller
local visibility.

Related works
Researchers in the computer music field have used the structural features of complex
networks to solve various problems related to music information retrieval, such as musi-
cal taste in Internet communities (Buldú et al. 2007), algorithmic composition (Tse et al.
2008), collaborative networks between composers (Park et al. 2015) and music genre clas-
sification (Correa et al. 2010). The authors of (Tse et al. 2008) built a network based on a
pattern analysis of Bach, Chopin, and Mozart compositions, linking the duration of two
notes in a Musical Instrument Digital Interface (MIDI) format that co-occur in a melodic
phrase, using universal properties found in these networks to propose rules for algorith-
mic composition. To analyse the musical tastes of users from their playlists, the authors of
(Buldú et al. 2007) used the basic features of networks, where the nodes are the song titles,
and edges occur between two song titles, if the title appears in more than one playlist.
The authors of (Correa et al. 2010) dealt with music genre classification using the rhythms
extracted from MIDI database, transforming it into complex networks. In (Correa et al.
2010), each rhythmic cell is a node, while the sequences of notes define the links between
nodes according to a Markov model. The authors of (Jacobson et al. 2008) combined an
audio analysis and a network structures to identify communities of artists on theMyspace
website, establishing links between two artists who have similar tags on social networks,
and audio-based similarity using theMFCCs and entropy. The authors of (Park et al. 2015)
studied the topology and evolution of networks of western classical music composers,
building links between two composers who co-occur on the same compact disc, linking
information about the author, period, and style extracted from the audio file metadata. A
characteristic that can be noticed in most scientific papers that use the mapping of com-
plex networks to understand music audio phenomena is the absence of structures formed
by links, where the nodes are non-symbolic elements. With the exception of (Jacobson
et al. 2008), which used audio data in the network vertex in the first of two phases of the
mapping, we have not found another study whose network is formed by the relationship
between audio signal points. Considering the survey by (Schedl et al. 2014) that shows
various approaches for music content analysis, we also note the lack of methodologies
that use complex network properties to perform feature extraction from audio signals. In
order to reduce this gap, we propose the modularity of complex networks as a parameter
to measure the homogeneity of the onsets of a musical signal in this paper, and with this
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measure, obtain relevant information that can be used to classify these signals according
to a given taxonomy.

Visibility graphs
Visibility graphs have created bridges between time series analysis and complex network
analysis, opening possibilities in the time series field by using a set of new tools. One
of these bridges has been used to study long-term correlations, fractal properties, and
self-similarity structures (Lacasa et al. 2009; Nunez et al. 2012) that have found appli-
cations in temporal observations such as the Nasdaq and S&P500 daily stock indices
(Stephen et al. 2015) and the traffic of information packet series (Andjelković et al. 2015).
These studies show that visibility graphs have the ability to capture local trends in time
series and measure them through a network analysis. Motivated by these studies, we
chose the same type of mapping, seeking to identify howmuch the persistence of an audio
signal time series is associated with the changes in the dynamics influenced by the per-
cussive activity of its musical content. This article will show that the modularity is able to
capture the reflections of the self-similarity and the patterns of the persistence of loud-
ness embedded in the network but will not establish a direct relationship with power laws
or Hurst exponent calculations, as in (Lacasa et al. 2009).

Materials andmethods
In this section, we first present the database; then, we show the methodological approach
to conduct a study of the visibility of an audio signal by using the modularity of com-
plex networks. This methodology was adopted in (Melo et al. 2016). We take a set of
120 audio samples that are 30 s long. Each song is represented by a time series W (i). In
this series, we calculate the subset of variance fluctuations V (j). For each V (j), the ‘vis-
ibility’ in relation to its successors and predecessors is evaluated, according to the slope
comparisons (Lacasa et al. 2008). At the end of the process, the subset V (j) becomes the
graph G(V (n),V (m)), from which the modularity and the number of communities are
estimated.

Database

In this study we used 120 music files from the Symphonic and Percussive categories, each
with 60 songs. For the Symphonic music, pieces by string quartet and full orchestra were
selected. The compositions included Bach concertos, Mozart symphonies, and quartets
by Debussy, Dutileux, and Ravel. The Percussive category is composed of songs equally
taken from six genres with a strong influence and persistent execution of acoustic and
electronic percussion instruments: Samba, Forró, Axé, Mangue Beat, Disco, and Trance
music. The Samba tracks are songs composed for the celebration of the Rio de Janeiro
carnival from 2005 to 2014. In Mangue Beat, there is an influence of electronic pop-
rock music mixed with a traditional Afro-Brazilian rhythm calledMaracatú. The tracks of
Discomusic provide a good overview of themusical scene of the 80s. Axémusic and Forró
are Brazilian rhythms and dances traditionally used in popular festivals such as carnival
and rural parties in the northeastern region of the country. Trance represents electronic
music with an intense and dancing beat, universally and especially used in youthful enter-
tainment events. The Symphonic and Disco music are chosen from GTZAN2 database,
and Samba, Axé, Mangue Beat, Trance and Forró tracks are from the author’s personal
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collection. The Percussive tracks are labelled as Percussive 1 . . . Percussive 60 (P1–P60),
distributed as follows: Disco (P1– P10); Samba (P11–P20); Mangue Beat (P21–P30),
Trance (P31–P40), Forró (P41–P50), and Axé (P51–P60). The Symphonic networks are
labelled as Symphonic 1 . . . Symphonic 60 (S1–S60).

Transforming audio samples in a variance fluctuation series

In this section, we first calculate the variance fluctuations of a musical signal with the
same methodology used in (Jennings et al. 2004; Melo 2013). Consider an audio music
signal represented by the W (i) series, with i = 1 · · ·N . The total number of points N is
a function N = SR.t, where the sampling rate is SR = 11, 025 Hz and the duration is
t = 30 s. In this work, we delimitN at 330,000 points to avoid non-integer values in future
calculations. The set W (i) = W (1), · · · ,W (N) is segmented into m non-overlapping
boxes λ= 110 (or 0.01 s). Each box j = 1 · · ·m is calculated by the standard deviation. In
the jth box, we have:

V (j) =

√
√
√
√
√
√

jλ
∑

(j−1)λ+1
(W (i) − W (j))2

λ − 1
, (1)

Where the average is given by:

W (j) =

jλ
∑

(j−1)λ+1
(W (i))

λ
(2)

This creates the variance fluctuation subseries V (j) = V1,V2, · · · ,Vm , with 3000
samples.
It is worth noting that the W (i) signal is calculated with a sampling rate considered

to be low for some purposes. However, according to the test done in (Melo et al. 2016),
the 11,025 Hz showed better computational performance in the network modelling stage,
without loss of information for comparative analysis.

Transforming variance fluctuations in graphs

Each variance fluctuation point V (j), j = 1 · · · 3000, is considered to be a vertex of the
network. To apply the visibility criterion to the series, we will consider each point of V (j)
as an ordered pair (xj,Vj), where xj is the point position in the series. Two vertices (xa,Va)

and (xb,Vb) are connected if there is a point (xc,Vc) between them such that

Vb − Vc
xb − xc

>
Vb − Va
xb − xa

(3)

Equation 3 (Lacasa et al. 2008) provides a comparison between the αbc slope (left side of
the equation) and the αba slope (right side of the equation). Whenever αbc > αba, there is
visibility between Va and Vb, and their corresponding nodes are connected in the graph.
Otherwise, it does not constitute an edge in the graph. After Eq. 3 is applied to all points
of the series following the order j = 1 . . . 3000, we have the visibility of each point of
a subset V (j) mapped onto the graph G (V (m),V (n)). This means that, from this stage,
each song is represented by a visibility graph.
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Visibility mapping

In this section, we present an example of mapping using visibility graphs to transform an
eight-point series into a network.
We utilise the series V = {0.865, 0.396, 0.449, 0.770, 0.631, 0.113, 0.190, 0.003}, whose

representation in the Cartesian plane is given in Fig. 1a. Each point j of the series V corre-
sponds to a vertex of the network with the same numbering j. The edges between vertices
1 and 2, 2 and 3, 3 and 4, . . . , 7 and 8 occur because of the trivial visibility between the
consecutive points in V. This creates a Hamiltonian path (Fig. 1b).
To determine if there is visibility between non-consecutive points such asV1 andV4 we

calculate the slope value α(1,4) = −0.032 and compare it with α(2,4) = 0.187 and α(3.4) =
−0.321 according to Eq. 3. We obtain α(1,4) < α(2,4) and α(1,4) < α(3,4), meaning that
there is visibility between V1 and V4, and consequently a connection between vertices

(a)

(b)

(c)

Fig. 1 Example of a series transformed into a visibility graph. Source: Author. a Series V containing eight
points b Visibility mapping of consecutive points in V - Hamiltonian path c Visibility mapping of V
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1 and 4 in the network. On the other hand, there is no visibility between points V1 and
V5, since the criterion is not satisfied for the intermediate point j = 4 (α(1,5) > α(4,5)). As
a result, there is no connection between vertices 1 and 5 in the network. Figure 1c shows
the results of the complete mapping of V.

Detecting communities using the modularity

After mapping the variance fluctuations of the audio sample onto a visibility graph, the
modularity defined in (Newman 2004) is calculated using as follows:

Q = 1
2m

∑

(i,j)

(

Aij − kikj
2m

)

δ(ci, cj), (4)

were i and j are the nodes of the network, Aij represents the number of edges between i
and j, ki and kj are the sum of the the edges attached to i and j,m is the sum of all edges in
the graph, and (ci, cj) is a Kronecker delta function (0 for ci = cj and 1 for ci �= cj); where
ci and cj are the communities of the nodes.
The calculation of the modularity can be interpreted as a comparison between the den-

sity of local connections and the density of connections taken at random with the same
local nodes. The systematic deviations given by Eq. 4 allow us to define the quality of the
partition through the quantification of the modularity.
To maximise the modularity efficiently, the Louvain method (Blondel et al. 2008) uses

two iterative stages:

• Each node is attributed to its own community. Therefore, the change in the
modularity is calculated for each node i, removing this node from its own community
C and moving it to the community of each neighbour i. The gain of the modularity is
calculated by

�Q =
[∑

in +ki,in
2m

−
(∑

tot +ki
2m

)2
]

−
[∑

in
2m

−
(∑

tot
2m

)2
−

(
ki
2m

)2
]

, (5)

where
∑

in is the sum of the links inside C,
∑

tot is the sum of the links incident to
nodes in C, ki,in is the sum of the links incident to node i, m is the sum of the links
from i to nodes in C and m is the sum of the weights of all the links in the network.

• Nodes belonging to the same community are grouped together, forming ’supernodes’
of a new network.

These steps are repeated until the maximum modularity is achieved and a community
hierarchy is produced.

Experimental results
Variance fluctuations of musical audio samples

One hundred and twenty variance fluctuation series were calculated by reducing the orig-
inal signal to 3000 points. Figure 2 illustrates the variance fluctuation series of two audio
samples. The first represents the Percussive group and the second the Symphonic group.
In Fig. 2a, we have a numerical series generated from a song with a strong beat generated
by a drum set used in Brazilian Samba, and Fig. 2b shows a portion of aMozart symphony
performed by the string section of an orchestra without percussion instruments. We can
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(a)

(b)

Fig. 2 Variance fluctuation series with 3,000 points obtained from 30 s audio files: a Unidos da Tijuca’s
Samba-Theme - Rio de Janeiro Carnival Party - year 2012 and b J. S. Bach - Cantate BWV 156 - Ich Steh Mit
Einem Fuss. Source: Author a Percussive series b Symphonic series

notice, by visual inspection, that the first series (percussive series) has a greater homo-
geneity in relation to the magnitude of the transients than the second series (Symphonic
series).

Audio-associated visibility networks

We mapped 120 variance fluctuation series into visibility networks: 60 Symphonic and
60 Percussive networks. Figure 3 shows two of these audio-associated visibility networks.
Figure 3a shows the mapping of a Samba song, whose series of variance fluctuations is
shown in Fig. 2a. The second (Fig. 3b) is an audio-associated visibility network of the J. S.
Bach BWV 156 Cantata, shown in Fig. 2b. In these two representations, the modularity
classes appear in different colours, indicating the communities formed by each network.
In the Percussive network (Samba), the qualitative (Q) and quantitative (Nc) superi-
orities of the communities in relation to the Symphonic network is quite remarkable.
“Modularity results” section will present the overall results that allows inference of the
trends presented by each group based on a comparison of the Q and Nc values of the
Percussive and Symphonic network sets.
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(a)

(b)

Fig. 3 Audio–Associated Visibility Networks of the series in Fig. 2a and b. The colours represent the
modularity classes of each network. Q is the modularity, and Nc is the number of communities. Source:
Author. a Percussive network (Q=0.790, Nc=17) b Symphonic network (Q=0.551, Nc=5)

The average number of links of the Symphonic and Percussive networks are, respec-
tively, 67, 754 ± 19, 238 and 22, 426 ± 4, 130. The results show a significant difference
between the mean values of the links generated between the two types of networks. Con-
sidering that series with a great homogeneity of onsets (Fig. 2a) have a lower local visibility
than series with low homogeneity of onsets (Fig. 2b), and that Percussive series tend to
have a greater homogeneity, and therefore lower local visibility than the Symphonic series,
we can infer that the total number of links has a direct relation with the visibility of the
predominant local peaks. This indicates that, on average, Symphonic series have greater
local visibility than Percussive series.
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Modularity results

Q values

Figure 4 shows boxplots and the values of the modularity for each network of the two
categories (inset). The average modularity of the Percussive and Symphonic networks are
respectively < Q >= 0.836 ± 0.074 and < Q >= 0.558 ± 0.111. The Q values of each
network are indicated with the numbers 1–60. The Symphonic networks exhibited a less
compact modularity distribution than the Percussive networks, with a coefficient of varia-
tion of 19.9% against 7.4% of the Percussive Networks. The analysis of variance (ANOVA)
comparison test approved, with 95% confidence, the hypothesis of the significant dif-
ference between the average modularities of the two groups. The smallest Q value was
Q = 0.136 for the visibility network S16 (Mozart’s Symphony 39 in E flat Major - k 54),
and the highest modularity (Q = 0.923) was achieved by four Percussive networks of
Trance (P38), Forró (P43, P44), and Axé (P54).
Using the dispersion graph of the modularity (Q) as a function of the number of edges

(E) shown in Fig. 5, we can infer a correlation with a negative tendency, which in fact is
confirmed by calculating the value of the Pearson coefficient k = -0.78. This means that
for most data, a greater modularity means that there are fewer edges in the network. At
the same time, according to the results in “Audio-associated visibility networks” section,
Percussive networks tend to have higher modularities and fewer edges, unlike Symphonic
networks. This indicates that in Fig. 5, the Percussive networks occupy the rightmost part
along the Q axis and the Symphonic networks the leftmost part. Machine learning with
the J45 decision tree (of the same family as the renowned C4.5) establishes that above
Q = 0.694, networks are classified as Percussive and below this value as Symphonic.
With this criterion, the classification algorithm achieved correctly classified instances at
a rate of 97.5%, with only two Percussive networks below and one Symphonic above the
Q limit used as a rule by the decision algorithm. The same training was done using E as

Fig. 4 Modularity of 60 Percussive (boxplot and dots in black) and Symphonic (boxplot and dots in blue)
visibility networks. Source: Author
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Fig. 5 Dispersion of the modularity (Q) as a function of the number of edges (E) of their respective visibility
networks. Source: Author

classification attribute, and the percentage correct was very close to that achieved by the
modularity.

Number of communities

Globally, the number of network communities follows the same feature found in the cal-
culation of the modularity; there exists a very clear distinction between the two classes,
where the Percussive networks outweigh the Symphonic networks for most Nc values.
The average values obtained were < Nc >= 19.0 ± 5.1 for Percussive, and < Nc >=
8.5 ± 2.1 for Symphonic networks.

A closer look at some percussive and symphonic networks

From Fig. 4, we can see that some points stand out from the rest of the group because they
have reached discrepant or extreme values. In the following, we will discuss the possible
causes of this behavior, behaviour, combining musical and statistics similarities.

• Networks P1-P10 (Fig. 5 - first 10 white dots) - They achieved a greater magnitude
and shorter variance in modularity (< Q >= 0.897 ± 0.015) compared to P11-P60
(< Q >= 0.767 ± 0.064)) (thirty last white dots) and Symphonic networks (black
dots). Looking at the distributions of vertices per community, of all networks, we
observed higher homogeneity for the P1-P10 distributions. Figure 6d shows one of
these distributions. Musically, the P1-P10 networks represent songs of the 80s, which
is characterised by the same danceable groove in every song. This may have influenced
the results of the modularity, and the distribution of degrees per community.

• Networks S16, S19, and S24 - These networks have a modularity with very low values
(0.141, 0.227, and 0.355). The audio excerpts associated with these networks also have
a common musical feature. In all of them, there is a sudden change in the dynamics,
strongly influenced by the presence or absence of a timpani3. It created a particular
topology in the variance fluctuations of these audio signals with great ’valleys’
followed by high ’peaks’ favoring visibility graphs with large hubs, and nodes per
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(a)

(b)

(c)

(d)

Fig. 6 Variance fluctuations of two audio samples and their respective distributions of nodes per community,
obtained from the visibility networks created by mapping these fluctuations. Source: Author. a Variance
fluctuation series of Symphonic track 24 (Mozart’s Symphony 41 (k 551)). b Distribution of nodes per
community of the Symphonic track 24 visibility network. c Variance fluctuation series of Percussive track 4
(song “Run Back” by Carl Douglas). d Distribution of nodes per community of the Percussive track 4 visibility
network
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community distributions with a very low number of nodes in some communities, and
very hight nodes in few others, forming few clusters and a low modularity (Fig. 6b).

Studying the homogeneity of variance fluctuations

In this section, we will show the results of the distribution of nodes per community. This
distribution will help us to understand the relationship between the homogeneity of the
variance fluctuations and the musical characteristics of the audio track. In fact, variance
fluctuations are a significant representation of the main transients of the audio signal.
The transients that have the greatest magnitude (peaks) are directly related to the attack
of the notes of the instruments present in the polyphonic signal. These attacks mark the
most characteristic times in the music and are also present in the sudden changes in the
dynamics4.
Figure 5a and c show the variance fluctuations of two musical pieces, and Fig. 6b and d

show respective distributions of nodes per community, calculated from their associated
visibility networks. Figure 6a shows an excerpt fromMozart Symphony 41 (k 551), where
two abrupt changes in the dynamics can be noted: the first occurs at the end of the first
initial 1.2 s (j = 0 to j = 120), and the second at 16 s (j = 1603). In this first stretch, the
orchestra performs a tutti in fortissimo and soon follows in pianissimo, from 1.2 to 16 s
(j = 120-1603). From 16 to 30 s (j = 120-3000), the orchestra changes again to fortíssimo
and remains in this way until the end. Owing to this abrupt change in the visibility net-
work associated with this signal, Q = 0.227. We can also observe that in the distribution
of nodes per community, about 50% of the nodes belong to only two communities, and
three of the ten communities have less than 2.5% of the total of nodes. This imbalance
in the distribution is a reflection of the abrupt change that has determined a great valley
within the signal. In this way, the mapping by the visibility created a network where the
influence of the two great peaks near the created valley was determinant in the creation
of the communities, since they assumed the role of network hubs with a very high level of
connections, which resulted in a network with two communities with a very high density
of connections.
The distribution of nodes per community in Fig. 6d shows a situation different from the

previous view. In this case, this distribution represents disco music, where the bass, voice
and percussion instruments, mark the strong tempos of the music with a high homogene-
ity, producing peaks associated to the onsets that favour the creation of visibility graphs
associated with many communities with the same number of nodes, and a fairly homoge-
neous general distribution. At the end this signal has a visibility network with amodularity
Q = 0.915, indicating that within the formed communities, the density of the intrinsic
connections to the communities is much greater than the density of the connections taken
randomly.

Results of other network properties

In addition to the modularity (Q) and the number of communities (Nc) presented in
Sections Q values and Number of communities, we also calculated the average degree
(〈k〉) and the clustering coefficient (Clust). Table 1 summarises the mean values of these
properties.
Table 1 indicates that the two types of networks reached a clustering coefficient (Clust)

greater than 80%, indicating that in both cases, the mapping using the visibility criterion
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favours the creation of networks with a high triangulation rate. The Percussive networks
exhibited mean values of D and 〈k〉 that are significantly lower than those of the Sym-
phonic networks, suggesting an inverse tendency to that presented for Q and Nc. In
summary: percussive networks show a tendency for high modularity and number of com-
munities, and a low average degree, whereas Symphonic networks tend to exhibit a low
modularity and number of communities and a high average degree. This behaviour can be
explained as follows. Since Symphonic networks tend to display more signals with large
magnitude peaks followed by peaks of a smaller magnitude than the Percussive networks
(Fig. 2a and b), their visibility networks also tend to have more vertices with a very high
degree. This makes Symphonic networks prone to having the upper average degree than
Percussive networks. This will impact the global connectivity for both types of networks.
As a result, Symphonic networks tend to have more hubs, a high local connectivity, and
a low modularity, unlike Percussive networks (Fig. 3a and b). A comparison of the mod-
ularity with the other properties reinforces the idea that the musical choices found in the
musical sections labelled as Percussive tend to exhibit signals with a greater homogeneity
than those in Symphonic networks according to the discussion in Section Studying the
homogeneity of variance fluctuations.

Conclusion and future work
In this article, we transform 120 stretches of audio into visibility graphs and calculate the
modularity of these networks. We realise that a greater or lesser homogeneity of a given
polyphonic signal is related to higher or lower modularity of the his visibility network.
After observing the descriptive statistics of the Q values and the results of the supervised
categorisation of the decision tree, we conclude that the modularity is able to give rele-
vant information for pattern recognition and classification of musical signals according to
the taxonomy used in the experiment presented in this paper. These results also lead us to
conclude that Percussive songs are associated with high values of the modularity, unlike
Symphonic songs, and that these tendencies are strongly linked to the musical choices
that influence the design of signal transients. Specifically, we found that Symphonic songs
use much more variations in the dynamics and less rhythmic persistence than Percussive
songs, resulting in more heterogeneous signals and visibility graphs with lower Q values.
We also found that owing to musical choices, signals from different categories may have
the modularity of their networks within the range of modularity inherent to the others.
This justifies the presence of the rare overlappings and outliers observed in this experi-
ment. In future work, we will perform a comparative study of several music genres with a
large audio database, evaluating the classification performance of the properties of com-
plex networks in relation to several algorithms in the audio signal processing field.We also
intend to apply other optimisation methods to the modularity in the detection of com-
munities in audio-assiciated visibility graphs and to compare the results with the Louvain
method (Additional file 1).

Table 1 Average of topological properties of 60 percussive and symphonic networks

Q Nc 〈k〉 Clust

Percussive net 0.836 ± 0.074 19.0 ± 5.0 15.12 ± 2.37 0.838 ± 0.056

Symphonic net 0.558 ± 0.111 8.5 ± 2.1 46.27 ± 11.53 0.841 ± 0.070
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Endnotes
1A polyphonic signal is a signal that has more than one voice or sound.
2GTZAN Genre Collection is a database widely used in musical information retrieval

research. It was proposed by 8 and is available at http://marsyasweb.appspot.com/
download/data_sets/.

3A set of two or three large drums (called kettledrums) that are played by one performer
in an orchestra http://www.merriam-webster.com/dictionary/timpani.

4 Changes in loudness in a piece of music http://dictionary.cambridge.org/dictionary/
english/dynamics or the varying levels of volume of sound in different parts of a musical
performance https://en.oxforddictionaries.com/definition/dynamics.

Additional file

Additional file 1: Additional information. (PDF 451 kb)
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