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Abstract

Weak ties are thought to facilitate the diffusion of information through social networks
because of their tendency to span otherwise distant subgroups. However, this logic
assumes that weak relationships have the same capacity to transmit information as
those that are strong. I argue that weak ties, especially the kind that span subgroups,
are often also lower-capacity. Due to a lack of trust, an unwillingness to share benefits,
or a limited ability to understand one another, an individual is less likely to share novel
information across these ties. In standard models of diffusion imported from
epidemiology, even reduced-capacity links would still aid diffusion. However,
accounting for reduced capacity in a new model of diffusion that captures realistic
features of information sharing in human groups, I demonstrate that hesitation to share
across weak links substantially impedes overall diffusion. Moreover, I show that the
addition of weak ties to a social network can strictly reduce the extent and speed of
information diffusion. Increasing density by adding weak ties can make diffusion strictly
worse by crowding out the use of higher-capacity ties. I present the results of
simulated information diffusion on both hypothetical networks generated to possess
varying levels of density and homophily, as well as on real social networks in two
Ugandan villages shown to be responsible for face-to-face information sharing.
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Introduction
Interpersonal relationships can vary in intensity; those that are weak are thought to
serve valuable roles in social networks. Because weak ties tend to bridge otherwise
distant subgroups, their presence spreads information originating in one subgroup to
other subgroups, improving diffusion (Granovetter 1973). This logic treats “weakness”
as a property of the interpersonal relationship with no bearing on the tie’s information-
transmitting capacity. Implicitly, the logic assumes that so long as a weak tie has non-zero
capacity, its presence will be beneficial for the reach of information.
This view of information dissemination draws on the standard approach to diffusion

on a network, which uses insights from epidemiology to explain how information might
spread from person to person in a social network (Banerjee et al. 2013; Jackson and
Rogers 2007; Newman 2002; Siegel 2009; Valente 1996; Young 2009). According to these
approaches, nodes “infected” with an idea are “contagious”; network neighbors of the
infected are exposed and hence susceptible to the infection, with variants accounting for
the consequences of exposure tomultiple sources (Centola andMacy 2007; Centola 2013),
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variation in motivation (Granovetter 1978; Chwe 2000), the cumulative effect of repeated
exposures (Dodds and Watts 2004, 2005), and homophily with respect to susceptibility
(Chiang 2007).
While the epidemiological approach has offered valuable insights, ties in a social net-

work function quite differently for the spread of information than ties in a contact
network function for the spread of a disease. In the case of a contact network, a tie by
definition makes an alter susceptible to the disease of the ego. In the case of a social net-
work, a tie does not by definition spread information to an alter. A tie indicates a social
relationship. Whether or not this social relationship results in an ego passing information
to an alter depends on a variety of factors: whether the two happen to encounter each
other while the information is salient, whether they are together for long enough for the
information to come up, whether the ego thinks the information is relevant to the alter,
whether the ego is willing to share with the particular alter, and so on. Moreover, these
factors are likely correlated with the strength of the social relationship between the ego
and the alter.
Considering the type of information that is often the subject of diffusion studies, an ego

may have good reason to prefer to share it with stronger social ties and not weaker ones.
In the case of collective action, the information may be a person’s dissatisfaction with a
regime or her willingness to participate in a protest (Chwe 2000; Centola 2013). Given the
sensitivity of this information, especially in oppressive regimes, a personmay only be will-
ing to pass it to her most trusted social ties. In the case of technology adoption, especially
in the developing world, relevant informationmay be news of a development organization
offering startup loans or handing out new technology like fertilizer. A person may judge
the opportunity to be finite or selectively beneficial and prefer to share information of it
with only her intimate social ties: kin or members of her salient in-group like her tribe
(Larson and Lewis 2017). Crucially, in social networks, a person can choose whether to
share information or whether to withhold it on a tie-by-tie basis.
In this conceptualization of information diffusion, a person in a social network will

only spread information to a particular network neighbor if she (1) is presented with an
opportunity to do so, and (2) is willing to share the information with that neighbor.
I account for these two features in a model in which a person has a finite number of

opportunities to spread information to network neighbors. Individuals in the network
have a type, which could represent ethnicity, tribe, political party, or salient social division.
Ties between individuals of the same type are assumed to be strong, and ties connecting
individuals with different types are assumed to be weak. Given an opportunity, a per-
son always shares information with a same-type neighbor (strong tie) but occasionally
withholds information from a different-type neighbor (weak tie).
I begin by demonstrating that the greater the hesitation to share with a weak tie, the

greater is the reduction in diffusion. This result is straightforward, and leaves open the
possibility that weak ties are at least better than nothing. I further show that in some
cases, the presence of weak ties is strictly worse than having no ties at all in their place.
The intuition is that, given a limited number of encounters, since weak ties transmit infor-
mation at a lower rate than strong ties, the presence of weak ties can crowd out the use of
stronger ties that are more conducive to diffusion.
I demonstrate these results by simulating diffusion on both hypothetical networks gen-

erated to possess properties of interest, as well as on two real social networks measured
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among Ugandan villagers (from Larson and Lewis 2017). These networks were shown
to be sets of interpersonal relationships that can serve to pass information in in-person
exchanges.
An implication of the present approach is that not all ties that could be added to a net-

work are beneficial for information diffusion. Although the virtue of rewiring or adding
random ties has been widely demonstrated (Newman 2000; Kleinberg 2002; Valente and
Davis 1999; Pastor-Satorras and Vespignani 2001; Newman 2002; López-Pintado 2008),
this article demonstrates that the presumption of full-capacity ties and perfect opportu-
nity to transmit which underlies earlier approaches is necessary for random ties to be
beneficial. By accounting for limited opportunities and varying capacity, the findings here
help qualify these results. The findings presented here are consistent with those revealing
that network modularity can improve information dissemination via social reinforce-
ment (Centola 2010; Nematzadeh et al. 2014). The results here suggest that modularity
is helpful for another reason: insofar as modularity is indicative of strong ties within the
communities and weak ties across them, the presence of too many weak ties spanning
communities can inhibit information spread within the communities as well.

An opportunity model of information diffusion
Consider a social network g with a finite number of nodes. Suppose every node i has one
of n types τi ∈ {τ 1, . . . , τn}. A type is a descriptive feature of a node and is used to separate
an in-group from out-groups, like membership in a certain tribe, political party, or salient
social circle. Call a network homogeneous if n = 1; that is, if all nodes have the same type.
A network is heterogeneous if n > 1.
A link, or “tie”, between nodes i and j in network g has a capacity pij = pji ∈ [0, 1] such

that when i (j) has information and encounters j (i), j (i) receives the information with
probability pij.
Let the capacity of a link be a function of the types of the nodes it connects. Specifically,

let pij > pkl when τi = τj and τk �= τl. Links have higher capacity when they connect
nodes of the same type. This could be because a person trusts someone, is more interested
in the wellbeing of someone, or is better able to communicate with someone when the
two share a type. Call links between nodes of the same type “strong” and links between
nodes of different types “weak”.
Now consider a simple model of information diffusion over time in which individuals

may pass along new information to some network neighbors when presented with the
opportunity. Call i’s neighbors in g Ni(g). For simplicity, assume that all strong links have
capacity pstrong and all weak links have capacity pweak . The diffusion process proceeds
as follows:

t = 0 One node i is randomly selected and endowed with information.
t = 1 Seed i randomly encounters x of her network neighbors, Ni(g). In each encounter,

she passes information to the neighbor with probability pstrong if she and the neigh-
bor are both the same type, and probability pweak < pstrong if they are different
types.

t = 2 All j who learned information in t = 1 randomly encounter x of their neighbors,
Nj(g), passing information with probabilities pstrong and pweak .

... Repeats for all who learned information in the previous period until the information
has reached everyone in the network or the spread halts.
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In the model, an individual’s willingness to share information depends on the strength
of a tie: she is more willing to share information along a strong tie (i.e. with same-type
nodes) than along a weak tie (i.e. with different-type nodes). Her opportunity to share
is determined by x. That x is fixed and not set to #Ni(g) captures the realistic feature
that although people may have many people whom they consider social contacts, and
with whom they might share information if they had the chance, time is finite and so
opportunities may be limited. Links in a social network do not guarantee the opportunity
to spread information along them at any one point in time.1

These features differentiate this model from existing ones. Standard approaches to
modeling diffusion on a network can be grouped into two main categories: threshold
models (Granovetter 1978; Schelling 1978) (and variants (Berger 2001; Macy 1991; Macy
and Willer 2002; Morris 2000; Valente 1996; Watts 2002; Young 2006)) and cascade
models (Goldenberg et al. 2001a,b) (and variants (Carnes et al. 2007; Bharathi et al. 2007;
Kempe et al. 2003; Kostka et al. 2008)). In the basic threshold model, each node has an
exogenously-determined threshold which indicates the (possibly-weighted) proportion
of her neighbors which must have heard the information in order for her to hear it too.
The diffusion process typically unfolds by a few nodes selected at random to first receive
the news, then in each subsequent period, all nodes whose thresholds are met become
informed too.
In the basic independent cascade model, each node who recently learned information

has a single chance to inform each neighbor, which succeeds with some exogenously-
determined probability. These models proceed by endowing one or a few randomly
chosen nodes with information, who inform each of their neighbors independently
according to the exogenous success probabilities; those who receive information then
inform each of their neighbors independently according to the success probabilities, and
so on. Variants have largely focused on the dynamics of competing cascades, capturing
the relative success of different rumors simultaneously spreading (Bharathi et al. 2007;
Kostka et al. 2008).
The present approach is most similar to an independent cascade model, modified in

two ways. First, here nodes have an exogenously given type, and the probability of suc-
cessful transmission is a function of whether the types of the linked nodes match. Doing
so builds a natural difference between weak and strong ties into the independent cascade
model. Second, here nodes only have the chance to influence a possibly strict subset of
their neighbors. The maximum number of neighbors that each node will encounter and
possibly inform is an exogenous parameter, and captures the notion that a tie in a social
network does not guarantee an opportunity to pass information to the tied node for any
single piece of information.

The downside to weak ties

I begin by demonstrating that the reduced capacity of weak ties inhibits diffusion through-
out a community. To demonstrate the point, I simulate the spread of information via
the process described above on two real social networks measured in rural Ugandan vil-
lages (from Larson and Lewis 2017). Nodes are villagers, links are measured social ties
among the villagers, and node type is the villager’s ethnic group. In one of the two villages,
Abalang, 94% of the 216 nodes belong to the same ethnic group, and 93% of the 660 links
present in the network are between co-ethnics. In the other, Mugana, the largest ethnic
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group comprises only 62% of the 234 nodes, and 61% of the 965 links present in the net-
work are among co-ethnics. Taking links between non-coethnics to be weak ties, 6% of
ties in Abalang are weak, compared to 39% in Mugana.
Figure 1 shows the results of the simulated information spread. Each plot displays the

proportion of the network that has not yet received the information by each timestep
for different values of pweak . As the capacity of weak ties decreases, the likelihood that a
node withholds information from her other-type neighbors increases, and this recurrence
throughout the network dramatically slows the spread of information in the network with
many weak ties. In the extreme case where nodes never share with different-type nodes,
almost 80% of Mugana’s network is still uninformed by the 14th timestep, when, if these
ties had the same capacity as strong ties, approximately no one would be uninformed.
Even when the capacity of weak ties is non-zero, the rate of diffusion is substantially
reduced in Mugana. While naturally, since Abalang has few weak ties, reducing their
capacity does little to slow information diffusion there, in Mugana where weak ties are
prevalent, even small reductions in capacity have large consequences for the reach of
information.
The lower the capacity of weak ties, the worse information diffusion would be in net-

works with many weak ties. While this does suggest that accounting for tie capacity may
be important for correctly predicting the rate and extent of information spread, it could
still be case that the presence of weak ties is better than their absence. In the next section,
I explore the consequences of adding new ties to networks, and show that there are plausi-
ble conditions under which the addition of a weak tie makes information diffusion strictly
slower.

Consequences of added links
The information diffusion process stipulated above has implications for links that are
added to a network, which can affect overall diffusion. First, consider the consequences

Fig. 1 Proportion of network that remains uninformed by each timestep in simulated information spread on
two real social networks, taking ethnic group as the relevant type. Simulation parameters set to x = 2,
pstrong = 1, and pweak = {0, .2, .4, .6, .8, 1}. Legend displays Distrust= 1−pweak . The lower the capacity of weak
ties (i.e. the greater the distrust), the more slowly information spreads throughout the whole community
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of a link randomly added to a network. Existing work consistently finds that ran-
domly added or rewired ties improve information diffusion in homogeneous networks
because random ties allow information to “jump” to distant network locations
(Newman 2000; Kleinberg 2002). However, the diffusion process specified above intro-
duces a second, potentially-competing effect in heterogeneous networks (and hence net-
works that may contain weak ties). Randomly added ties can change the composition of
nodes’ neighborhoods. If neighborhoods are comprised of more ties to other-type nodes
after the addition of ties, the expected number of neighbors who receive the information
declines.

Dual effects of random ties in heterogeneous networks In networks comprised of
nodes of varying types, the addition of a random tie can have two effects.
Jump effect: random ties allow information to jump across distant network locations,

improving information dissemination. Composition effect: random ties change the
composition of a node’s neighborhood, potentially impeding information dissemination.
In a heterogeneous network, which effect dominates– the jump effect which improves

dissemination or the composition effect which hinders dissemination– depends on the
relationship between homophily and the distribution of types in the network.
Node i’s network neighborhood Ni(g) can be decomposed into Nsame

i (g), the subset
of his network neighbors that are the same type as i, and Ndif

i (g), the subset that are
different. The expected number of nodes who receive information from i can then be
written

x
#Ni(g)

(
#Nsame

i (g)pstrong + #Ndif
i (g)pweak

)
, (1)

where # indicates the cardinality of a set.
The consequences of an additional tie added at random will depend on the proportion

of the nodes in g that are the same type as i. Call qτ k the proportion of nodes in g that are
type τ k . For simplicity, from any node i’s perspective, call qsame

i the proportion of nodes
of i’s type in g. Now a random link added to Ni(g) will, on average, reduce the value of (1)
whenever

#Nsame
i (g)
#Ni(g)

− qsame
i > 0. (2)

That is, when the network is homophilous with respect to type so that a larger propor-
tion of a node’s neighbors are his same type relative to the frequency of his type in the
overall network, the addition of random ties will strictly reduce the expected number of
people that that node informs.
The extent to which the expected number of nodes who receive information from i

declines depends on the magnitude of the left hand side of (2). The greater the type
homophily, the bigger the impact that random ties will have on reducing the expected
number of people that a node informs.
Put another way, when new ties are likely to be weak, adding them to nodes with strong

ties can reduce the expected number of people to whom those nodes pass information in
their limited opportunities to do so. And of course, if ties are not added at random but
we instead consider adding only weak ties (ties between people of different types), the
reduction in the expected number of people informed by a node grows.
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When this relationship is prevalent enough throughout a network, network-wide infor-
mation dissemination can be strictly impeded by the addition of random ties, and by the
addition of weak ties in particular. The next section demonstrates the aggregate results by
simulating the above information diffusion process on hypothetical networks generated
to isolate the relevant properties of interest.

Simulated information spread
In this section I simulate the information diffusion process presented above on simple
networks generated with varying levels of homophily and random tie additions.

The downside to randomly added links

I begin by generating four hypothetical heterogeneous networks, each with two types of
nodes. The networks have 234 nodes, half of which are each type, and 864 links. The
numbers of nodes and links are the same as in the observed Mugana network described
above. Each network is generated by randomly adding links according to a specified prob-
ability of attaching to a same-type node. One network is generated for each same-type
node probability {.5, .65, .8, .95}. Let the difference between the proportion of same-type
links present and the proportion of same-type links that would be observed by uniformly
random link formation be called the network’s “homophily.” With two groups of equal
size, the expected proportion of random same-type links is .5, yielding networks with
homophily values {0, .15, .3, .45}.
I consider the consequences of increases in density for information diffusion by ran-

domly adding links to the network. For each value of homophily, I add links such that the
total number of links increases by a factor of 1, 2, 3, and 10.
Table 1 summarizes the interpretation of the model parameters and the values to which

they are set in the simulations reported below.
Figure 2 shows the results of the simulated information diffusion process on each of

these networks, grouped by homophily value. In each quadrant, the curves plot the aver-
age proportion of the network that is informed by the timestep on the horizontal axis over
a set of 500 simulations for a particular value of density increase. Since the population is
finite, pstrong > 0, and pweak > 0, diffusion follows the characteristic s-shape. The lower
the curve, the slower the diffusion.2

Table 1Model parameters

Parameter Definition Set to

x Number of network neighbors a newly-informed
node encounters in a period

2

pstrong Probability pass news to an encountered neighbor
if neighbor is same type

1

pweak Probability pass news to an encountered neighbor
if neighbor is different type

{.25, .5}

τ = {τ 1, . . . , τ n} Set of types {τ 1, τ 2},
qτ k Proportion of type τ k ∈ τ = {τ 1, . . . , τ n} present

in the network

1
2

Homophily Prop. same-type ties in network minus prop.
same-type ties expected under random tie formation

{0, .15, .3, .45}

Diversity Number of types, or “groups,” present in network 2
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Fig. 2 Proportion of network informed by each timestep in simulated information spread on a network with
τ = {τ 1, τ 2}, and qτ 1 = qτ 2 = 1

2 . Simulation parameters set to x = 2, pstrong = 1, and pweak = .5. When
homophily = 0, random ties will not change neighborhood compositions on average, so the jump effect
dominates and increasing density strictly improves information diffusion. At greater values of homophily,
increasing density does change neighborhood compositions and strictly impedes information diffusion

When the network exhibits no homophily (top left), randomly adding links can improve
information dissemination. In this case, since the composition of the population matches
the composition of neighborhoods on average, randomly adding links has no composition
effect. In expectation, neighborhoods retain the same proportion of weak ties. The jump
effect dominates, improving information dissemination on net.
When network neighborhoods contain more same-type links than would be expected

based on the overall network composition (exhibit positive homophily), the composition
effect is present alongside the jump effect. In the cases of positive homophily shown in
Fig. 2, the composition effect dominates: an increase in density actually impedes informa-
tion diffusion. Additional ties result in neighborhoods with more weak ties than before
the addition. The greater the number of links added, the worse the diffusion.
Note that the number of randomly-added ties is large in these simulations, in some cases

increasing the number of links in the network many-fold. Under standard epidemiolog-
ical models of information diffusion, the improvement in diffusion would be vast. Here,
these large additions actually reduce the spread of information. Moreover, these simula-
tions assume that individuals share with other types half of the time (pdif = .5). When
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people are more hesitant to share with other types so that pweak is smaller, the reduction
in information spread is even greater.
Figure 3 reproduces the simulations from Fig. 2 with lower-capacity weak ties. Here

pweak is set to .25. Comparing the two figuresmakes clear that when a person is less willing
to share along weak ties, the addition of ties, many of which will be weak, has an even
stronger negative effect on diffusion.

Adding weak ties to Mugana
The last section showed that adding ties at random to a network can impede informa-
tion diffusion. The impediment is due to the additional ties that are weak and so are
lower capacity. Now I show that adding only weak ties– only ties that connect nodes with
different types– would impede information diffusion in the real network from Mugana.
Mugana has nodes with different types (ethnicities), so there are many possible weak links
that can be added. Figure 4 compares the rate of diffusion for different numbers of weak
ties added at random to the network.
Adding a larger and larger number of weak ties to the existing network increases the

total number of links present, but actually reduces the rate of information spread through-
out the village. The reason is that although the weak ties added at random are allowing

Fig. 3 Proportion of network informed by each timestep in simulated information spread on a network with
τ = {τ 1, τ 2}, and qτ 1 = qτ 2 = 1

2 . Simulation parameters set to x = 2, pstrong = 1, and pweak = .25. When
homophily is positive, increasing density changes neighborhood compositions and strictly impedes
information diffusion; at this lower value of pweak , the impediment is even greater



Larson Applied Network Science  (2017) 2:14 Page 10 of 15

Fig. 4 Proportion of network informed by each timestep in simulated information spread in Mugana with
new weak ties added to the network. Simulation parameters set to x = 2, psame = 1, and pweak = .4. Adding
weak ties makes diffusion strictly slower

information to possibly jump to new regions of the network (to non-coethnics), nodes
with strong ties who received new weak ties have changed neighborhoods. That change
results in a different option set for spreading information. These nodes, like all nodes, will
encounter x of their neighbors. The more that the neighborhood is comprised of non-
coethnics, the more likely these opportunities will include those to whom information
does not flow as freely. Adding weak ties effectively crowds out the use of the strong ties
which transmit information more readily.
For reference, Fig. 5 shows the results of the equivalent simulations in which strong

instead of weak ties are added. In contrast to the consequences of adding weak ties shown
in Fig. 4, increasing density by adding only strong ties– ties that connect coethnics–
strictly improves diffusion.

Discussion

The downside of weak ties depends on two features of the information spread: the limited
number of opportunities to share a piece of information (x) and the lower capacity of the
weak ties (pweak < pstrong ). As pweak and x grow, the downside becomes less severe, and
can be overwhelmed by the jump effect.
In the simulations, the number of opportunities to share, x, is set to 2. When x is larger,

information dissemination occurs more rapidly. Whether weak ties hinder the process
of information dissemination relative to their absence depends on the size of x relative
to the number of social contacts nodes have in the network.3 In the case of Mugana,
on average, people have just over 7 social ties. The above simulation then assumes that
people encounter under a third of their complete set of social contacts when they have
a piece of news to share. In the original study of Abalang and Mugana, surveys revealed
that villagers in fact had the opportunity to share a new piece of news with approximately
one third of their social contacts on average (Larson and Lewis 2017, footnote 18).
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Fig. 5 Proportion of network informed by each timestep in simulated information spread in Mugana with
new strong ties added to the network. Simulation parameters set to x = 2, psame = 1, and pweak = .4. In
contrast to the addition of weak ties in Fig. 4, adding strong ties improves diffusion

Just how constrained a person’s opportunities to share information are– the true value
of x– surely depends on the context being studied. Two features of the context that likely
bear on opportunities to share are the type of information that can be passed along, and
the environment in which people interact and possibly share information with others. For
instance, information that is potentially sensitive, like news of an indiscretion or revela-
tions of a desire to protest against an oppressive regime, may only be passed in private,
face-to-face encounters with others. Even if a person finds herself in a large group with all
of her social contacts present, she may refrain from broadcasting the news there, instead
waiting for private encounters to more delicately share the information. Since private
encounters themselves take time, and finding times when others are not present may be
difficult, a person may find herself with a low x– few opportunities to share relative to the
size of her whole set of social contacts.
For information that is less sensitive, certain environments may be more conducive to

plentiful opportunities to share it than others. If communities regularly hold town hall
meetings, or organize into large gatherings that include many social contacts at once,
people may be able to share news of the day with a larger number of their social contacts
(and may feel free to do so if the news is not sensitive). To capture information diffusion
throughout such a group, x could be set higher. On the other hand, in an environment of
very busy people who are engaged in tasks that keep them away from their social contacts
for long stretches– people who farm ormine for long stretches at a time, say– small values
of x relative to neighborhood size may reasonably capture the limited opportunities to
pass information along.
Note that constraining the number of opportunities to be less than a node’s neighbor-

hood size drives the net downside to weak ties. If everyone encountered every one of
their social contacts when they had new information, the presence of weak ties would not
have a net negative effect on diffusion. Weak ties would be less effective channels through
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which information spreads; their presence would not be harmful, but would simply not
add as much to the speed and reach of information as strong ties. If, however, a per-
son’s opportunities are constrained to be less than her full set of social contacts, then the
presence of weak ties can have a net negative effect. Just how small x is relative to a per-
son’s total number of social contacts determines just how damaging the presence of weak
ties is.

Conclusion
The common approach to the study of information diffusion assumes that any tie is better
than no tie. So long as weak ties can transmit some information, their presence should be
favorable to diffusion, and since their presence tends to connect people of different types
(in different subgroups or communities), weak ties should be especially conducive to the
rapid diffusion of information throughout a group.
However, this intuition relies on models of diffusion imported from fields such as epi-

demiology which fail to capture two features of real groups of people deciding whether or
not to share information with ties in their social network. First, people may not have the
opportunity to share information with every social tie they have at any particularmoment.
Links in a social network indicate a relationship through which information could travel,
but the existence of a social relationship by no means guarantees that one person will cer-
tainly and immediately share any information she has with the other. Second, even given
the opportunity, a personmay prefer to withhold information rather than share it, and she
may do so selectively based on the potential recipient. This preference may arise because
she does not trust the recipient, does not want to share the benefit the information offers
with the recipient, or may be less able to make the recipient understand.
Accounting for these features reveals that, while the well-understood “jump effect” can

in fact be helpful, a second “composition effect” can result in random ties impeding the
spread of information, even on net. These dual effects call into question the logic that a
tie with non-zero capacity must be better than no tie at all. In fact, weak ties may actually
reduce diffusion on net, even relative to a network in which no ties were present in their
place. Moreover, the common finding that the addition of random ties to a network will
improve diffusion overall may not hold for heterogeneous social networks. In heteroge-
neous groups, especially ones with high homophily, greater density can actually strictly
reduce the speed with which information spreads throughout a network.
To demonstrate these points, I use real networks and node types to show that the lower

the capacity of weak ties, the worse is information diffusion. Next, I isolate the features
of networks that matter for weak ties helping or hurting, generate hypothetical networks
that vary in these properties, and demonstrate that the addition of weak ties can have
a net negative effect on overall diffusion. Finally I return to the real networks and show
that adding weak ties there could strictly reduce the speed and reach of new information
flowing through the social network.
In addition to the implications for information dissemination in general, these results

also speak to the broad study of diversity. If the presence of more groups in an area makes
ties more likely to be weak, then information diffusion may be impeded and the addition
of new weak ties may be especially unhelpful (see Larson 2016). This logic can be infor-
mative for the so-called “curse of diversity” observed in the developing world (Miguel
and Gugerty 2005; Larson 2017). Beyond an explanation for why diversity may hinder the
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spread of information, this framework also suggests a reason why “cross-cutting cleav-
ages”, or membership in overlapping groups, may be particularly beneficial (Lipset and
Rokkan 1967). If the capacity of a tie is higher when it connects two people who share
membership in at least one group, then information may spread better in communi-
ties featuring a large extent of shared membership compared to those featuring stark
separation between groups.
These results also highlight important considerations for future research. The argument

for why weak ties may have a lower capacity pertains to situations in which a node holds
information, and the onus is on her to share it or not. This is most likely to be the case
when the information is novel. In such a supply-driven situation, potential recipients do
not know they do not know something. Contrast this with a demand-driven situation
such as the case of a job-seeker looking for tips about employment opportunities. In this
case, the uninformed node– the person looking for a job– knows there is information she
does not have. Because she knows there may be relevant information available, she may
even more actively seek it out from her weak ties. In this situation, the Granovetter logic
is likely to hold: if she actively approaches her weak ties, she may access information from
far away in the network that she otherwise would have missed.
The situation of truly novel information is likely to be supply-driven. Consider an

international non-governmental organization that arrives in a community and tells a few
people about an opportunity to participate in a new, potentially-profitable program, or a
brand new social movement or rebel group that begins to mobilize in an area. People who
are not initially informed about the program or the movements are also likely unaware
that they are missing information about a program or movements. They do not know
to seek out information; instead, it is those who possess the information who are tasked
with sharing it or not. If weak ties are lower capacity and people have constrained oppor-
tunities to share the information with others, then the Granovetter logic may no longer
hold.
In demand-driven information environments, the fact that a node may specifically

approach her weak ties, and the fact that she may do so with greater persistence, may
overcome the problems of limited capacity and render weak ties beneficial. This article
shows that in supply-driven environments, if opportunities are constrained and people
have reason to selectively share information with some instead of others, then weak ties
may at best be weak for the diffusion of novel information.
Furthermore, the findings here hinge on limited opportunities to share– on a value of

x that is less than a person’s full set of social contacts. While this is very likely to be a
constraint in face-to-face interactions, communications technology may relax this con-
straint in some settings and for some information types. Pinning down exactly when weak
ties are likely to have a net negative effect based on considerations like these will be an
important next step for the theoretical and empirical study of information diffusion.

Endnotes
1 For simplicity, the diffusion process assumes that a node participates in spreading

information in one window of time, and then never tries to spread it again. This assump-
tion is shared by independent cascade models (Goldenberg et al. 2001a,b). While the
results are starkest under this assumption, they continue to hold under a weaker assump-
tion. Even if a node is presented with the opportunity to share information with a



Larson Applied Network Science  (2017) 2:14 Page 14 of 15

randomly chosen set of x of her contacts in one timestep, and then with an independently
drawn set of x of her contacts in the next timestep, and so on over time, the comparisons
below will still hold. This modification would dramatically speed the diffusion process,
but the comparison between networks with weak ties present and those with weak ties
absent would still hold: constrained opportunities admit the possibility that weak ties will
impede the process.

2 This represents an impediment to diffusion in the sense that information reaches peo-
ple more slowly, and also in the sense that by any given point in time, fewer people are
informed.

3 For any node, if x is smaller than the size of that node’s neighborhood, weak ties
incident to that node can crowd out strong ties. The net effect on diffusion depends
on whether the jump effect is overwhelmed by the composition effect; see Section
“Consequences of added links”.
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