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Abstract

The prevalence of select substructures is an indicator of network effects in applications
such as social network analysis and systems biology. Moreover, subgraph statistics are
pervasive in stochastic network models, and they need to be assessed repeatedly in
MCMC sampling and estimation algorithms. We present a new approach to count all
induced and non-induced four-node subgraphs (the quad census) on a per-node and
per-edge basis, complete with a separation into their non-automorphic roles in these
subgraphs. It is the first approach to do so in a unified manner, and is based on only a
clique-listing subroutine. Computational experiments indicate that, despite its
simplicity, the approach outperforms previous, less general approaches.
By way of the more presentable triad census, we additionally show how to extend the
quad census to directed graphs. As a byproduct we obtain the asymptotically fastest
triad census algorithm to date.

Keywords: Graphlets, Motifs, Subgraph census, Graph statistics

Introduction
The F-census of a graph is the frequency distribution of subgraphs from a family F of
non-isomorphic graphs in an input graph. In this work we focus on four-node subgraphs,
i.e. quads.
Discrimination of graphs by a subgraph census was proposed already by Holland and

Leinhardt (1970; 1976) in the context of social networks and it is of utmost importance
for the effects of exponential random graph models (Robins et al. 2007). While there
is extensive work on determining the subgraph census for varying subgraph sizes (Kloks
et al. 2000; Kowaluk et al. 2011; Lin et al. 2012) and also for directed graphs (Eppstein et
al. 2010), the focus is almost always on the global distribution, i.e. the number of triangles
a graph contains, but not on how often a given node is part of a triangle. For many proper-
ties characterizing nodes and edges it is however necessary to know the subgraph census
on the node or edge level. For example, to calculate a node’s clustering coefficient we need
to know in howmany triangles it is contained. The same holds for the Jaccard index com-
puted with respect to an edge. Although for these two examples it is not necessary to
calculate the frequencies of all non-isomorphic induced 3-node subgraphs, i.e. the triad
census, there exist edge weights that take different subgraph configurations into account
(Auber et al. 2003) and the running time for most edge metrics (Melançon and Sallaberry
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2008) is dominated by calculating the frequencies of particular subgraphs. Using the k-
subgraph census on an edge level finds application in the context of extracting sparse
graph representations that amplify group cohesion (Auber et al. 2003; Nick et al. 2013;
Nocaj et al. 2015). While the approach by Nick et al. relies on the triad census, Nocaj
et al. (2015) show that using a weighted quad census instead results in a superior sparsi-
fier, as quads are more encompassing in reflecting local density. A further scenario where
the quad census is of vital importance is in the evaluation of graph models with respect
to the accuracy by which they resemble observed graphs (Pržulj et al. 2004).
While k-subgraph censuses specific for nodes and edges are not used widely in social

network analysis, it is different for bioinformatics. So far, however, even here the use is
restricted to connected k-node subgraphs, so called graphlets (Pržulj et al. 2004) ormotifs
(Milo et al. 2002).
A further differentiation of subgraph censuses consist in the distinction of node

and edge automorphism classes (orbits) in each graphlet. For example, in a diamond
(i.e. a complete four-node graph minus one edge), there are two node and edge orbits
as shown in Fig. 1. The node orbits are defined by the nodes with degree 2 and 3,
respectively. The edge orbits are determined by the edge connecting the nodes with
degree 3 and all remaining edges, respectively. This differentiation by orbits is par-
ticularly interesting for the distinction of roles nodes and edges respectively fill in a
quad. For example two nodes might have the same number of occurrences in a claw,
cf. Fig. 1, which would lead to the assumption that they are similar, however by distin-
guishing the orbits we might see that the one node is always in orbit 11, and therefore
in control of e.g. the information flow, while the other is always in orbit 12. That is
the reason why the orbit-aware subgraph census has been used to mine central role

Fig. 1 All non-isomorphic subgraphs with four nodes (quads). Node and edge labels refer to the orbits and
were enumerated such that each orbit is identified with a single quad
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structures in graphs (Doran 2014), but restricted to triads. Direct applications of the
orbit-aware quad census can for example be found in the context of graph clustering
(Milenković and Pržulj 2008; Solava et al. 2012).
Due to the importance of subgraph enumeration and censuses in bioinformatics, var-

ious computational methods (Hočevar and Demšar 2014; Marcus and Shavitt 2012;
Milenković et al. 2008; Wernicke and Rasche 2006) were proposed.
The general approach to determine a subgraph census on the global level is to solve

a system of equations that relates the non-induced subgraph frequency of each non-
isomorphic k-node subgraph with the number of occurrences in other k-node subgraphs
(Eppstein et al. 2010; Eppstein and Spiro 2009; Kloks et al. 2000; Kowaluk et al. 2011;
Lin et al. 2012). It is known that the time needed to solve the system of equations for
the four-node subgraph census, which we refer to as the quad census, on a global level is
O(a(G)m+i(G)) (Lin et al. 2012), where i(G) is the time needed to calculate the frequency
of a given four-node induced subgraph in G, and a(G) is the arboricity, i.e. the minimum
number of forests needed to cover E. Following the idea of relating non-induced and
induced subgraph counts, Marcus and Shavitt (2012) present a system of equations for the
orbit-aware connected quad census on a node level that runs inO(�(G)m+m2) time with
�(G) denoting the maximum degree of G. Because of the larger number of algorithms
invoked byMarcus and Shavitt’s approach, Hočevar andDemšar (2014) present a different
system of equations, again restricted to connected quads, that requires fewer count-
ing algorithms and runs in O(�(G)2m) time, but does not determine the non-induced
counts.
Contribution: We present the first algorithm to count both induced and non-induced
occurrences of all four-node subgraphs (quads). It is based on a fast algorithm for
listing a single quad type and capable of distinguishing the various roles (orbits)
of nodes and edges. While this simplifies and generalizes previous approaches,
our experimental evaluation indicates that it is also more efficient. Furthermore,
we show using the example of the orbit-aware directed triad census a strategy to
extend the orbit-aware quad census computation to directed graphs and thus obtain
the asymptotically fastest algorithm for graph-level triad census computation along
the way.
In the following section we provide basic notation followed by an introduction of

the system of linear equations and the algorithm utilized in section “Determining the
orbit-aware quad census”. In section “Runtime experiments” we present a running time
comparison on observed and synthetic graphs showing that our approach is more
efficient than related methods. Using the example of the triad census, we present in
section “Triad census” a strategy to calculate the orbit-aware quad census of
directed graphs without changing its asymptotic running time. We finally conclude in
section “Conclusion”.

Preliminaries
We consider finite simple undirected graphs G = (V ,E) and denote the number of nodes
by n = n(G) = |V | and the number of edges by m = m(G) = |E|. The neighborhood
of a node v ∈ V is the set N(v) = {w : {v,w} ∈ E} of all adjacent nodes, its cardinality
d(v) = |N(v)| is called the degree of v, and �(G) = maxv∈V {d(v)} denotes the maximum
degree of G.
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For finite simple directed graphs G = (V ,E) we denote the outgoing neighborhood of a
node v ∈ V by N+(v) = {w : (v,w) ∈ E}. The incoming neighborhood N−(v) is defined
analogously and we call N↔(v) = N+(v) ∩ N−(v) the mutual neighborhood. The under-
lying undirected graph G′ = (V ,E′) of a simple directed graph G = (V ,E) has the edge
set E′ = {{u, v} : (u, v) ∨ (v,u) ∈ E}
A complete graph with k nodes is denoted by Kk , and K3 is also called a triangle. We

use T(u) = (N(u)
2

) ∩ E to refer to the set of node pairs completing a triangle with u and
T({u, v}) = N(u)∩N(v) for the set of nodes completing a triangle with the edge e = {u, v}.
For the cardinality of these sets we write t(u) = |T(u)| and t(e) = |T(e)|. A triad and a
quad are any graphs on exactly three and four nodes.
A subgraph G′ = (V ′,E′) of G = (V ,E), V ′ ⊆ V , is called (node-)induced, if E′ =

(V ′
2
) ∩ E, and it is called non-induced, if E′ ⊆ (V ′

2
) ∩ E.

Two undirected graphs G and G′ are said to be isomorphic, if and only if there exists a
bijection π : V (G) → V (G′) such that {v,w} ∈ E(G) ⇐⇒ {π(v),π(w)} ∈ E(G′). Each
permutation, including identity, of the node set V, such that the resulting graph is isomor-
phic to G is called an automorphism and the groups formed by the set of automorphisms
is denoted automorphism class or orbit.

Determining the orbit-aware quad census
The k-node subgraph census is usually computed via a system of linear equations relating
the non-induced and induced k-subgraph frequencies, as the non-induced frequencies
are easier to compute. Lin et al. (2012) show that for k = 4 all non-induced frequencies,
except for K4, can be computed in O(a(G)m) time. This implies that the total running
time to calculate the quad census at the level of the entire graph is in O(a(G)m + i(G)),
where i(G) is the time needed to compute the induced frequencies for some induced
quad-type.
The approach of Lin et al. however, is not suitable to answer questions as to how

often a node or an edge is contained in a K4. Furthermore, the automorphism class of
the node/edge in the quad is sometimes of interest. All non-isomorphic graphs with
four nodes are shown in Fig. 1 and the node/edge labels refer to their automorphism
classes (orbits). For example in a diamond all edges of the C4 belong to the same orbit
while the diagonal edge belongs to another. Analogously the orbits of the nodes can be
distinguished.
As our approach also relies on relating non-induced and induced frequencies we will

start by presenting how the non-induced frequencies for a node/edge in a given orbit
relate to the induced counts. Thereafter, we will present equations to compute the respec-
tive non-induced frequencies and prove that our approach matches the running time of
Lin et al., implying that it is asymptotically as fast as the fastest algorithm to compute the
frequencies on a node and edge level for any induced quad. Note that in the following
when we talk about non-induced frequencies we exclude those of the K4, as it equals the
induced frequency.

Relation of induced and non-induced frequencies

To establish the relation between induced and non-induced frequencies, the number of
times G′ is non-induced in any other graph G with the same number of nodes has to be
known. For instance, let us assume that G′ is a P3 and G a K3 (co-paw and -claw without
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isolated node cf. Fig. 1). Having the definition of the edge set for non-induced subgraphs
in mind, we see that G contains three non-induced P3, as each edge can be removed from
a K3 to create a P3. Consequently, if we know the total number of non-induced P3 and we
subtract three times the number of K3 we obtain the number of induced P3 of the input
graph.
Similarly, we can establish systems of equations relating induced and non-induced

frequencies on a node and edge level distinguishing the orbits for quads, see Figs. 3
and 4.1 Note that both systems of equations are needed since we cannot compute the
node from the edge frequencies and vice versa, but from both we can compute the global
distribution. In the following we show the correctness for ei10(e).
Induced orbit 10 edge census. Let us assume we want to know how often edge e is in

orbit 10 or in other words part of a C4. We know that a C4 is a non-induced subgraph of
a diamond, K4 and of itself, cf. Fig. 2, and that there is no other quad containing a non-
induced C4. Let us first concentrate on the diamond. In a diamond we have two different
edge orbits; orbit 11, i.e. the edges on the C4, and orbit 12, i.e. the diagonal edge. Figure 2
shows that for every diamond where e is in orbit 12 there is no way to remove an edge,
such that this graph becomes a C4, but for each diamond where e is in orbit 11 we can
remove the diagonal edge and end up with a C4. Therefore, the non-induced number of
subgraphs where e is in orbit 10 contains once the number of induced subgraphs where e
is in orbit 11, but not those in orbit 12. As for the case of the C4 in a K4 all edges are in
the same orbit. From a K4 we can construct a C4 containing a specific edge in two ways.
The first is to remove both diagonal edges, cf. Fig. 2; and the second to delete the two
horizontal edges. As a consequence the induced number of e being in orbit 10 is given by
ei10(e) = en10(e) − ei11(e) − 2ei13(e).
Following this concept all other equations can be derived.

Calculating non-induced frequencies

The calculation of the non-induced frequencies is (computationally) easier than for the
corresponding induced counts, except for K4s. This is due to the fact that the non-
induced frequencies can be constructed from smaller, with respect to the number of
nodes, subgraphs cf. Figs. 3 and 4. In the following we show the correctness of nn14(u)

and en4(u, v).
Non-induced orbit 14 node census. To determine nn14(u) we start by enumerating all

triangles containing u. Let v and w form a triangle together with u. As u is in orbit 14 we
know that each neighbor of v and w that is not u, v or w definitely creates a non-induced
paw with u in orbit 14; while this does not necessarily hold for neighbors of u as they
might not be connected to v or w (and, if they are, we already gave credit to this). Note

Fig. 2 The three quads containing a non-induced C4. Dashed lines indicate that their removal creates a C4.
Edge label correspond to orbits
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Fig. 3 System of equations for orbit-aware quad census on an edge level. ei refers to induced and en to
non-induced counts

that even if a neighbor of either v or w is a neighbor of u as well there is no additional paw
with u in orbit 14 and therefore nn14(u) = ∑

{v,w}∈T(u)(d(v) + d(w) − 4).
Non-induced orbit 4 edge census. Edge e = {u, v} is non-induced in orbit 4 for each P3

starting at u or v which neither contains e nor closes a K3 with e. The number of P3s
starting at u not containing e equals

∑
w∈N(u)\v(d(w)−1). However, the node vmight be a

neighbor of w and therefore there is a path of length two (via w) connecting u and v. Since
this creates a three-node subgraph, more precisely a triangle, and not a quad we have to
adjust for this by subtracting twice the number of triangles containing e. Consequently,
en4(u, v) = ∑

w∈N(u) d(w) + ∑
w∈N(v) d(w) − 2(d(u) + d(v)) + 2 − 2t(u, v).

In the following, we focus on the algorithm calculating all required frequencies to solve
the systems of equations.

Fig. 4 System of equations for orbit-aware quad census on a node level. ni refers to induced and nn to
non-induced counts
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Listing complete quads

In order to be able to solve the systems of equations we need to compute the non-induced
quad counts as well as any of the induced frequencies. This requires an algorithm that is
capable of solving the following tasks on a node and edge level:

1. Counting and listing all K3
2. Calculating non-induced C4 frequencies
3. Determine induced counts of any quad

We chose to calculate the induced counts for K4 to fulfill requirement 3. The reasons
are a) to our knowledge there are no algorithms calculating induced counts on a node and
edge level for any other quad more efficiently than the algorithm we are presenting here;
b) a K4 has the property that all nodes and edges lie in the same orbit; c) all non-induced
C4 can be counted during the execution of our algorithm. Since listing, also known as
enumerating, all K4 has to solve the subproblem of listing all K3, we will start explaining
our algorithm by presenting how K3s can be listed efficiently. Note that this algorithm
satisfies requirement 1.
Listing all triangles in a graph is a well studied topic (Ortmann and Brandes 2014). We

show in our previous work (Ortmann and Brandes 2014) that one of the oldest triangle
listing algorithms, namely K3 by Chiba and Nishizeki (1985) is in practice the fastest. This
algorithm is based on neighborhood intersection computations. To achieve the running
time of O(a(G)m), Chiba and Nishizeki process the graph in a way such that for each
intersection only the neighborhood of the smaller degree node has to be scanned. This
is done by processing the nodes sequentially in decreasing order of their degree. The
currently processed node marks all its neighbors and is removed from the graph. Then
the number of marked neighbors of a marked node is calculated.
Let us think of this algorithm differently. When we process node u and remove it from

the graph then every triangle that contains u is an edge where both endpoints are marked,
cf. Fig. 5. This perception of the algorithm directly points us to a solution for the second
and third requirement. As shown in Fig. 5, when node u is removed from the graph, every
K4 that contains u becomes a K3 where all nodes are marked, implying that K3 can be
easily adapted to list all K4s. Chiba and Nishizeki call this extension COMPLETE. Further-
more, only nodes that are connected to a neighbor of u can create a non-induced C4 and
each C4 contains at least two marked nodes. Since all these nodes are processed already
during the execution of algorithm K3 counting non-induced C4 on a node and edge level

Fig. 5 Top: Configurations that have to be found by our algorithm. Bottom: Resulting patterns to be detected
when processing node u. Filled nodes are marked as neighbors of u
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can be also done in O(a(G)m) time. The corresponding algorithm is called C4 in (Chiba
and Nishizeki 1985) and the combination of these different algorithms is presented in
Algorithm 1. It runs in O(a(G)2m) (Chiba and Nishizeki 1985), and its novelty is that it
follows the idea of directing the graph acyclic as we already proposed in the context of
triangle listing (Ortmann and Brandes 2014). Furthermore, this acyclic orientation allows
omitting node removals, and given the proper node ordering, it has the property that the
maximum outdegree is bounded byO(a(G)). Therefore, unlike for algorithm COMPLETE

and C4 (Chiba andNishizeki 1985), no amortized running time analysis is needed to prove
that the running time is inO(a(G)2m) andO(a(G)m), respectively, as we will show next.
Runtime We will first show that the running time bound of our variant implementa-

tion of algorithm C4 is in O(a(G)m), therefore we ignore Lines 4, 6, 8, 12–19 and 27 of
Algorithm 1 for now.

Algorithm 1: K3 / C4 / COMPLETE (Chiba and Nishizeki 1985)

1 initializemark with 0;
2 order nodes by successively removing the node of min. degree from the graph;
3 orient G and sort adjacencies according node ordering;
4 calculate t(u) and t(e) using K3; // line 5-8 & 13-16

5 for u = v2, . . . , vn do
6 for v ∈ N−(u) do mark(v) ← mark(v) + 1;
7 for v ∈ N−(u) do
8 mark(v) ← mark(v) − 1;
9 for w ∈ {w ∈ N(v) : w < u} do

10 visited(w) ← visited(w) + 1;
11 processed(w) ← processed(w) + 1;

12 for w ∈ {w ∈ N+(v) : w < u} do mark(w) ← mark(w) + 2;
13 for w ∈ {w ∈ N+(v) : w < u} do
14 mark(w) ← mark(w) − 2;
15 ifmark(w) �= 0 then
16 increment K3 related non-induced counts;
17 for x ∈ {x ∈ N+(w) : x < u} do
18 ifmark(x) = 3 then
19 increment induced K4 count;

20 for v ∈ N−(u) do
21 for w ∈ {w ∈ N(v) : w < u} do
22 processed(w) ← processed(w) − 1;
23 if processed(w) = 0 then
24 increment non-induced C4 of u and w by

(visited(w)
2

)
;

25 visited(w) ← 0;

26 increment non-induced C4 of {u, v}, {v,w} and v by visited(w) − 1;

27 solve system of linear equations (Figs. 3 and 4);
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The running time of the remaining algorithm is given by the following equation:

t(C4) ≤
∑

u∈V
d−(u) + 2

∑

v∈N−(u)

d−(v) + d+(v)

= m + 2
∑

v∈V
d+(v)(d−(v) + d+(v))

≤ m + 4m�+(G)

As we order the nodes by successively removing the node of minimum degree from the
graph, which can be computed inO(m) using a slightly modified version of the algorithm
presented in (Batagelj and Zaveršnik 2003), it holds that �+(G) < 2a(G) (Zhou and
Nishizeki 1994). The time required to initialize all marks is in O(n), orienting the graph
is inO(n + m), and consequently the total running time is inO(a(G)m).
Let us now focus on the time required for calculating all K4s and therefore ignore

Lines 9–11 and 20–27 of Algorithm 1 that is given by the following equation:

t(COMPLETE) ≤
∑

u∈V
d−(u) +

∑

v∈N−(u)

2d+(v) +
∑

w∈N+(v)

d+(w)

≤ m + �+(G)
∑

v∈V
2d+(v) +

∑

w∈N+(v)

d+(w)

≤ m + 2m�+(G) + �+(G)
∑

v∈V
d−(v)�+(G)

= m + 2m�+(G) + m�+(G)2

By the same arguments it follows that our variant implementation of COMPLETE runs
inO(a(G)2m). Since Line 4 is inO(a(G)m) (Ortmann and Brandes 2014) and solving the
systems of equations requiresO(n + m) time, the overall complexity of Algorithm 1 is in
O(a(G)2m).
Before we give experimental evidence that our algorithm is not just asymptotically,

but also in practice, superior to the currently fastest orbit-aware quad census algorithm,
we want to give a more detailed explanation as to why algorithm C4 runs in O(a(G)m)

instead of O(a(G)2m), although every K4 contains three non-induced C4. The reason
lies in the fact that COMPLETE belongs to the class of listing algorithms, while C4 is a
counting algorithm. Since a listing algorithm has to enumerate every single occurrence of
the subgraph of interest, its running time cannot be asymptotically faster than the num-
ber of subgraphs it has to list. For example every algorithm for listing all triangles in
a graph cannot be asymptotically faster than �(n3), since the complete graph contains
(n
3
)
triangles. However, as counting does not require to enumerate every single triangle

there exist algorithms with a lower worst-case complexity, e.g. via matrix multiplication
(Coppersmith and Winograd 1990). This difference and the fact that in the non-induced
scenario we can ignore the existence of some edges, explain the asymptotical differences
between the two algorithms.

Runtime experiments
We provide experimental evidence that our approach is not only asymptotically faster but
also more efficient in practice than the currently fastest orbit-aware quad census algo-
rithm. Comparison is restricted to the orca software (v1.0) implementing the approach
of Hočevar and Demšar (2014), as the authors show that it is superior to other software
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tools in the context of quad census computation. Additionally, it is the only software we
are aware of which can compute the orbit-aware quad census on an edge level, even if
only for connected quads. To the best of our knowledge, except in the orca code, there is
no other documentation of their approach.

Setup and data

We implemented our approach in C++ using the Standard Template Library and com-
piled the code with the g++ compiler version 4.9.1 set to the highest optimization level.
The orca software is freely available as an R package. To avoid measuring errors due to the
R and C++ interface communication we extracted the C++ code and cleaned it from all R
dependencies.
The tests were carried out on a single 64-bit machine with an 3.60GHz quad-core Intel

Core i7-4790 CPU, 32GB RAM, running Ubuntu 14.10. The times were measured via the
gettimeofday command with a resolution up to 10−6 seconds. We ran the executable
in a single thread and forced it to one single core, which was dedicated only to this process.
Times were averaged over 5 repetitions.
Data We compared both approaches on a number of real world networks. The

Facebook100 dataset (Traud et al. 2011) comprises 100 Facebook friendship networks of
higher educational institutes in the US with network sizes of 762 ≤ n < 41K nodes and
16K < m < 1.6M edges. Although these networks are rather sparse, they feature a small
diameter, thereby implying a high concentration of connected quads. Apart from this we
tested the algorithms on a variety of networks from the Stanford Large Network Set Col-
lection (Leskovec and Krevl 2014). The downloaded data were taken from different areas
to have realistic examples that encompass diverse network structures.
Additionally, we generated synthetic networks from two different models. The one

class of generated graphs are small-worlds, which were created by arranging nodes on
a ring, connecting each one with its r nearest neighbors, and then switching each dyad
with probability p. The other class of graphs was drawn from a preferential attach-
ment like model. Here we added n nodes over time to the initially empty network and
each new node v connects to r existing nodes, each of which either chosen by pref-
erential attachment or with probability p randomly from

⋃
u∈N(v) N(u). We generated

graphs with fixed n = 20000 and varying average degree as well as graphs with n ∈
{50000, 140000, . . . , 500000} and gradually increasing average degree. Four graphs were
generated for each parameter combination.
We refer the reader to (Ortmann and Brandes 2014) for a more detailed description

of the utilized graph models, the tested Stanford graphs, the chosen average degree, and
parameters r and p.

Results

In Fig. 6 we present the results of our experiments. In the top subfigure we plotted the
avg. running time of orca against the avg. time needed by our approach for all but the
largest Standford graphs. Each point that lies below the main diagonal indicates that our
approach is faster. Consequently, the picture makes it clear that our algorithm is faster
than the orca software for each tested network, even though we compute the whole node
and edge orbit-aware quad census. The same findings are obtained for the larger graphs
taken from SNAP.
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Fig. 6 Top: Avg. running time of orca vs. avg. running time of our approach in seconds for all but the largest
SNAP graphs. Dots below the main diagonal indicate that the algorithm on the y-axis is faster. Embedded
plot displays gray area in higher resolution. Bottom: Time comparison for the largest SNAP graphs

The speed-up we achieve lies between 1.6 and 10 for the tested graphs. In gen-
eral, however, the speed-up should be in �(log�(G)) for larger graphs. The reason
is that, once n exceeds 30K , the algorithm implemented in the orca software runs in
O(�(G)2m log�(G)), instead ofO(�(G)2m). The logarithmic factor originates from the
time required for adjacency testing. While the orca software uses an adjacency matrix
for these queries for graphs with n ≤ 30K , it takes log�(G) for larger graphs (binary
search), since no adjacency matrix is constructed. In contrast Algorithm 1 requires only
O(n) additional space to perform adjacency tests in constant time. Note that orca’s algo-
rithm using the adjacency matrix appears to follow the ideas of Chiba and Nishizeki, yet
without exploiting the potential of utilizing a proper node ordering. Besides the faster
K4 algorithm, another important aspect explaining the at least constant speed-up of our
approach is our system of equations. For both the node and edge orbit-aware quad census
Hočevar and Demšar do not calculate the exact non-induced counts. This requires that
each induced subgraph with 3 nodes is listed several times and, more importantly, also
non-cliques, which is not the case in our approach.

Triad census
So far we have shown a general framework building on relating non-induced and induced
frequencies to compute the orbit-aware k-subgraph census on a node and edge level basis
using the example of quads. While this approach was restricted to simple undirected
graphs, we show in the following how it can be extended to directed graphs. However,
since the number of non-isomorphic directed quads is already 218 (Davis 1953), we will



Ortmann and Brandes Applied Network Science  (2017) 2:13 Page 12 of 17

introduce this framework in the context of the (directed) triad census. As the required
modifications for node and edge orbit-awareness are the same we will restrict our expla-
nations to the node orbit-aware triad census computation. Note that since solving the
(directed) quad census relies on non-induced frequencies of smaller, i.e. subgraph of size
less than four, the distinctions of directed triads is required in order to solve the quad cen-
sus for directed graphs and therefore some of the following equations are necessary for
its computation.
The triad census of a graph denotes the frequency distribution of all non-isomorphic

directed triads, cf. Fig. 7, in an input graph and finds application, among others, in social
sciences e.g. to compare different graphs (Faust 2007; Wasserman and Faust 1994) or to
extract distinct roles in networks (Doran 2014). The probably first algorithm to compute
the triad census on a graph level is attributed to Moody (1998) with a running time of
O

(
n2.376

)
(Coppersmith and Winograd 1990). While this approach relies on matrix mul-

tiplication, Batagelj and Mrvar (2001) propose a combinatorial algorithm calculating the
triad census in O(�(G)m) time. Like Batagelj and Mrvar’s approach the proposed tech-
nique by Eppstein et al. (2010) requires to enumerate all connected triads. However, using
a proper data structure allows them to further reduce the asymptotical complexity to an
amortizedO(h(G)m) running time where h(G) is the largest integer such that there exist
h nodes of degree at least h (Hirsch 2005). Yet still the algorithm of Eppstein et al. is not
optimal, as we will show in the following, since, as it is the case for the quad census, it is
sufficient to list only all complete triads, which is asymptotically faster.
Following the framework presented in the context of the undirected quad census we

can relate orbit-aware non-induced and induced triad census frequencies via a system of

Fig. 7 All directed non-isomorphic subgraphs with three nodes (triads). The graph labeling is based on the
number of mutual, asymmetric, and null dyads in each triad with an additional indicator where needed
(Wasserman and Faust 1994). Node labels refer to the orbits and were enumerated such that each orbit is
identified with a single triad
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linear equations as presented in Fig. 8. Since deriving this system of linear equations fol-
lows exactly the same strategy we presented earlier we omit the correctness proofs here.
Although the system of linear equations in Fig. 8 requires the computation of several
induced frequencies, compared to only one in the undirected case, cf. Figs. 3 and 4, we
can make the following observation. All the induced orbit frequencies, i.e. 21 to 35, are
triangles in the underlying undirected graph. Since each triangle in the underlying undi-
rected representation G′ of G corresponds to a directed triangle in G, and vice versa, we
can list all triangles, T(G′), inG′ and then calculate the orbits of the nodes in each triangle
t ∈ T(G′) w.r.t. G. This directly implies that, since orbit 0 to 20 can be computed inO(m)

which matches the running time to construct G′, that the total running time of the orbit-
aware triad census on a node level is in O(a(G)m + ∑

t∈T(G) o(t)), since m(G′) ≤ m(G).
The O(a(G)m) factor is the running time of Chiba and Nishizeki’s algorithm K3 to list
all triangles in a graph (Chiba and Nishizeki 1985; Ortmann and Brandes 2014), and o(t)
denotes the complexity to compute the orbit of each node in a triangle. In the following
we will show that o(t) ∈ O(1) and therefore the time complexity for the computation
of the orbit-aware triad census on a node level in O(a(G)m). As the (orbit-aware) triad
census on a graph level can be computed from the node level, and since a(G) ≤ h(G)

(Lin et al. 2012), this implies that our approach is not just easier to implement than the
currently best algorithm for the triad census computation (Eppstein et al. 2010) on a graph
level, but also asymptotically faster.
The idea of working on G′ rather than on G for the computation of the triad census has

already been used by Batagelj and Mrvar (2001). In order to relate the undirected triad

Fig. 8 System of equations for orbit-aware directed triad census on a node level. ni refers to induced and nn
to non-induced counts
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u, v,w ∈ V in G′ with its directed version in G they propose to map a triad to a number
computed by the following formula

code(u, v,w) = l(u, v) + 2l(u,w) + 4l(v,u) + 8l(v,w) + 16l(w,u) + 32l(w, v)

with l(i, j) = 1 if (i, j) ∈ E(G) and 0 otherwise. Since this mapping is unique for each
possible triad each number encodes exactly one of the 16 non-isomorphic triads, cf. Fig. 7.
Furthermore, as we know for each possible triad the orbits of the nodes, we can extend
this mapping to also encode the node orbits, cf. Table 1. Note that Table 1 contains all
codes, yet our approach requires only those entries encoding orbits larger than 20. Since
Table 1 allows us in constant time to map the code of u, v,w to their orbits, it remains
to show that the computation of the encoding can also be done in constant time and
therefore o(t) ∈ O(1).
With minor modifications it is possible to enable algorithm K3 to list, besides all nodes,

also all edges belonging to a triangle in G′, while not changing the algorithms asymptotic
running time. If we further attach during the transformation fromG toG′ to each edge the
information how it is directed inG, we can access l(i, j) in constant time. Consequently, we
can compute code(u, v,w) and therefore o(t) inO(1). Note that if N↔ and d↔(u) are not
part of the input they can also be computed during the construction of G′. Even though
the described algorithm can be directly derived from Algorithm 1, for convenience we
present in Algorithm 2 the orbit-aware triad census on a node level algorithm. Since the
additional work that has to be done compared to plain triangle listing is inO(m), we refer
the reader to the evaluation of triangle listing algorithms in (Ortmann and Brandes 2014)
to get an impression of the practical running times. Note that the presented strategy
can also be used for orbit-awareness on an edge level without changing the asymp-
totic running time and that it can be directly applied to derive the orbit-aware directed
quad census.

Algorithm 2: K3 (Chiba and Nishizeki 1985)

1 transform G to underlying undirected graph G′ containing additional edge
information;

2 calculate n0, . . . , n20;
3 order nodes by successively removing the node of min. degree from the graph;
4 orient G′ and sort adjacencies according node ordering;
5 for v ∈ V (G′) domark(v) ← ∅
6 for u = v2, . . . , vn ∈ V (G′) do
7 for v ∈ N−(u,G′) do mark(v) ← {u, v};
8 for v ∈ N−(u,G′) do
9 mark(v) ← ∅;

10 for w ∈ N+(v,G′) such that w < u do
11 ifmark(w) �= ∅ then
12 calculate encoding using edge information;
13 increment orbits of u, v,w w.r.t. encoding (Table 1)

14 solve system of linear equations (Fig. 8);
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Conclusion
We presented two systems of equations that enable us to efficiently determine the orbit-
aware quad census of a graph down to the level of nodes and edges by applying an efficient
single-subgraph listing algorithm and its subroutine. It was shown how induced and non-
induced frequencies relate to one another and that we can compute the non-induced
frequencies inO(a(G)m) time. This matches the best known running time bound for the
more restricted non-induced quad census on the graph level, i.e. oblivious to the spe-
cific nodes and edges involved in each quad. With Algorithm 1 we showed a routine that
is capable of computing all non-induced frequencies and listing all K4 while running in
O(a(G)2m) time, which is the asymptotically best known running time bound for listing
any induced quad. This implies that the total running time of our approach matches the
best known running time for quad census computation on a graph level in sparse graphs
(Lin et al. 2012). In experiments we were able to show that the simplicity of our system
of equations in combination with this efficient algorithm outperforms the currently best
software to calculate the quad census.
Furthermore, using the example of the orbit-aware directed triad census on the node

level, we outlined a strategy to extend the orbit-aware quad census on both the node
and edge level to directed graphs. As a byproduct, we presented with Algorithm 2 the
asymptotically fastest algorithm for the triad census computation on the graph level. We
note that both algorithms can be parallelized with little effort.

Endnote
1Note that the preliminary version contained several typing errors.
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