Edges: L
|
\(\mathop \sum \nolimits_{R = 1}^{R} \mathop \sum \nolimits_{P = 1}^{P} M_{RP}\)
|
Number of edges in the bipartite network
|
Two stars:\(S_{R2}\)
|
\(\mathop \sum \nolimits_{R = 1}^{R} \mathop \sum \nolimits_{{P^{\prime } > P}}^{P} M_{RP} M_{{RP^{\prime } }}\)
|
Correspondent to an edge between node set P in the 1-mode network
|
Two stars:\(S_{P2}\)
|
\(\mathop \sum \nolimits_{P = 1}^{P} \mathop \sum \nolimits_{{R^{\prime } > R}}^{R} M_{PR} M_{{PR^{\prime } }}\)
|
Correspondent to an edge between node set R in the 1-mode network
|
Three stars:\(S_{R3}\)
|
\(\mathop \sum \nolimits_{R = 1}^{R} \mathop \sum \nolimits_{{P^{\prime \prime } > P^{\prime } > P}}^{P} M_{RP} M_{{RP^{\prime } }} M_{{RP^{\prime \prime } }}\)
|
Correspondent to a triangle between node set P in the 1-mode network
|
Three stars:\(S_{P3}\)
|
\(\mathop \sum \nolimits_{P = 1}^{P} \mathop \sum \nolimits_{{R^{\prime \prime } > R^{\prime } > R}}^{R} M_{PR} M_{{PR^{\prime } }} M_{{PR^{\prime \prime } }}\)
|
Correspondent to a triangle between node set R in the 1-mode network
|
Three trails:\(L_{3}\)
|
\(\mathop \sum \nolimits_{{P^{\prime } > P}}^{P} \mathop \sum \nolimits_{{R^{\prime } > R}}^{R} M_{PR} M_{{PR^{\prime } }} M_{{P^{\prime } R}} \left( {1 - M_{{P^{\prime } R^{\prime } }} } \right)\)
|
Reflect global connectivity in bipartite networks
|
Cycle:\(C_{4}\)
|
\(\mathop \sum \nolimits_{{P^{\prime } > P}}^{P} \mathop \sum \nolimits_{{R^{\prime } > R}}^{R} M_{PR} M_{{PR^{\prime } }} M_{{P^{\prime } R}} M_{{P^{\prime } R^{\prime } }}\)
|
Local closures in bipartite networks
|