Skip to main content

Table 6 Basic topological properties of the significant small local components (size greater than five airports)

From: Revealing the component structure of the world air transportation network

Location N |E| d L L rand C C rand μ ζ λ η
Canada 60 80 12 5 3.77 0.28 0.05 0.045 0.2 \(-\)0.18 0.18
Canada 25 27 5 2.45 3.38 0.17 0.108 0.09 0.056 \(-\)0.57 0.7
Alaska 29 33 6 2.8 3.20 0.2 0.065 0.08 0.07 \(-\)0.56 0.68
Alaska 27 37 5 2.5 3.2 0.45 0.037 0.11 0.17 \(-\)0.38 0.62
Alaska 27 40 4 2.4 2.80 0.6 0.078 0.11 0.24 \(-\)0.44 0.54
Alaska 14 15 4 2,25 2.74 0.08 0.217 0.16 0.063 \(-\)0.63 0.62
Alaska 8 6 3 0.6 2.35 0.04 0.112 0.21 0 \(-\)0.75 0.5
Norway 25 49 4 2.37 2.37 0.68 0.142 0.16 0.39 \(-\)0.43 0.5
Greenland 10 14 4 2 2.08 0.49 0.229 0.31 0.38 \(-\)0.4 0.67
Scotland 7 11 2 1.47 1.57 0 0.523 0.52 0.5 \(-\)0.47 1
Algeria 9 10 4 2 1.78 0 0.33 0.28 0 \(-\)0.73 0.5
Kenya 6 5 3 1.86 2.06 0 0 0.33 0 \(-\)0.74 0.8
  1. N is the network size. |E| is the number of edges. d is the diameter. L is the average shortest path length. \(L_{rand}\) and \(C_{rand}\) are respectively the average shortest path and the average clustering coefficient of the corresponding random network. \(\mu\) is the density. \(\zeta\) is the transitivity. \(\lambda\) is the assortativity also called degree correlation coefficient. \(\eta\) is the hub dominance