Skip to main content

Table 1 Specific parametrization of label-based error matrix \(\Omega\) used for numerical experiments

From: Simulating systematic bias in attributed social networks and its effect on rankings of minority nodes

Noise type Intra Inter Majority Minority
\(\Omega\) \(\begin{pmatrix} \rho &{} 0.9\\ 0.9 &{} \rho \end{pmatrix}\) \(\begin{pmatrix} 0.9 &{} \rho \\ \rho &{} 0.9 \end{pmatrix}\) \(\begin{pmatrix} \rho &{} \rho \\ \rho &{} 0.9 \end{pmatrix}\) \(\begin{pmatrix} 0.9 &{} \rho \\ \rho &{} \rho \end{pmatrix}\)
  1. We model four different noise types. We use the retain parameter \(\rho\) to control the noise probability of edges. For inter-group noise, e.g., we retain an edge that connects the two classes with probability \(\rho\), while we retain edges within a class with 90% probability