Skip to main content

Table 8 Accuracy (mean and standard deviation over 10 runs) obtained by the proposed methods and competitors, with early-stopping regularization technique

From: Graph convolutional and attention models for entity classification in multilayer networks

Network

ML-GAT

ML-GCN

GrAMME-SG

GrAMME-Fusion

GAT

GCN

Balance

\(0.7642 \pm 0.0416\)

\(\mathbf {0.7759 \pm 0.0244}\)

\(0.5748 \pm 0.1137\)

\(0.6555 \pm 0.0711\)

\(0.6046\pm 0.1117\)

\(0.7282 \pm 0.0451\)

CKM-Social

\(0.8771 \pm 0.0228\)

\(0.7882 \pm 0.0424\)

\(0.7293 \pm 0.0779\)

\(0.8882 \pm 0.0250\)

\(\mathbf {0.9512 \pm 0.0307}\)

\(0.9288 \pm 0.0331\)

Congress

\(0.9111 \pm 0.0271\)

\(\mathbf {0.9370 \pm 0.0114}\)

\({0.8683 \pm 0.0210}\)

\(0.8581\pm 0.0107\)

\(0.6131 \pm 0.0000\)

\(0.6131 \pm 0.0000\)

DKPol

\(0.6234 \pm 0.0566\)

\(0.6055 \pm 0.0343\)

\(0.3345 \pm 0.0587\)

\(0.5392 \pm 0.1015\)

\(0.5992 \pm 0.1034\)

\(\mathbf {0.7789 \pm 0.0421}\)

Leskovec-Ng

\(\mathbf {0.9828 \pm 0.0145}\)

\(0.8918 \pm 0.0376\)

\(0.6673 \pm 0.1151\)

\(0.8110 \pm 0.0861\)

\(0.9724 \pm 0.0190\)

\(0.9746 \pm 0.0223\)

Starwars

\(0.7894 \pm 0.0353\)

\(\mathbf {0.8121 \pm 0.0106}\)

\(0.6156 \pm 0.0109\)

\(0.6656 \pm 0.0650\)

\(0.7500 \pm 0.0464\)

\(0.7318 \pm 0.0982\)

Terrorist-Noordin

\(0.7036 \pm 0.0339\)

\(\mathbf {0.7214 \pm 0.0674}\)

\(0.6473 \pm 0.1009\)

\(0.6618 \pm 0.0419\)

\(0.6625 \pm 0.0586\)

\(0.6893 \pm 0.0620\)

Terrorist-status

\(0.5070 \pm 0.0791\)

\(0.5554\pm 0.0638\)

\(0.4873 \pm 0.1131\)

\(0.4764 \pm 0.0505\)

\(\mathbf {0.5643 \pm 0.0192}\)

\(0.4921 \pm 0.1202\)

Vickers

\(\mathbf {0.9571 \pm 0.0417}\)

\(0.9143 \pm 0.0438\)

\(0.6842 \pm 0.754\)

\(0.7211 \pm 0.1907\)

\(0.6428\pm 0.1510\)

\(0.6714 \pm 0.1132\)

Koumbia-2-mpx

\(\mathbf {0.6540 \pm 0.0258}\)

\(0.6376 \pm 0.0250\)

\({0.5641 \pm 0.0211}\)

\({0.6306 \pm 0.1085}\)

\(0.5662 \pm 0.0394\)

\(0.5784 \pm 0.0110\)

Koumbia-5-mpx

\(\mathbf {0.7585 \pm 0.0501}\)

\(0.6715 \pm 0.0177\)

\(0.5525 \pm 0.0088\)

\(0.7480 \pm 0.0401\)

\(0.6051 \pm 0.0433\)

\(0.6331 \pm 0.0234\)

Koumbia-10-mpx

\(\mathbf {0.8080 \pm 0.0445}\)

\(0.7019 \pm 0.0493\)

na

na

\(0.6613 \pm 0.0620\)

\(0.6681 \pm 0.0305\)

  1. Training, validation and testing set sizes correspond to 5%, 25% and 70% of the entities, respectively
  2. Bold values refer to the best results on each network