Skip to main content

Table 1 Execution of the Jump Zone Analyzer binary search algorithm on the jump zone for the karate club network

From: Exploring the step function distribution of the threshold fraction of adopted neighbors versus minimum fraction of nodes as initial adopters to assess the cascade blocking intra-cluster density of complex real-world networks

It # LI RI |RI—LI|, ≥ 0.001, ? MI \(f_{IA}^{\min ,LI}\) \(f_{IA}^{\min ,RI}\) \(f_{IA}^{\min ,MI}\) \(\left( \begin{gathered} |f_{IA}^{\min ,MI} - f_{IA}^{\min ,LI} | \le \hfill \\ |f_{IA}^{\min ,RI} - f_{IA}^{\min ,MI} | \hfill \\ \end{gathered} \right)\), ? Change
1 0.30 0.35 0.05, Yes 0.325 0.0294 0.4118 0.0294 0 ≤ 0.3824, Yes LI = MI
2 0.325 0.35 0.025, Yes 0.3375 0.0294 0.4118 0.3823 0.3529 ≤ 0.0295, No RI = MI
3 0.325 0.3375 0.0125, Yes 0.3313 0.0294 0.3823 0.0294 0 ≤ 0.3529, Yes LI = MI
4 0.3313 0.3375 0.0062, Yes 0.3344 0.0294 0.3823 0.3823 0.3529 ≤ 0, No RI = MI
5 0.3313 0.3344 0.0031, Yes 0.3329 0.0294 0.3823 0.0294 0 ≤ 0.3529, Yes LI = MI
6 0.3329 0.3344 0.0015, Yes 0.3337 0.0294 0.3823 0.3529 0.3235 ≤ 0.0294, No RI = MI
7 0.3329 0.3337 0.0008, No STOP!! qstep = 0.3329; \(\underline{{f_{IA}^{\min } }}\) = 0.0294; \(\overline{{f_{IA}^{\min } }}\) = 0.3823