Skip to main content

Table 1 Features used in related studies

From: Detecting malicious accounts in permissionless blockchains using temporal graph properties

#

B/C

Used features based on (See Abbreviation section)

ML Algo used

Dataset

Hyperparameters

Performance

AS

iD

oD

Bal

TF

BB

A

CC

IET

Pham and Lee (2016)

B

✓

✓

✓

✓

–

–

–

✓

✓

K-means

100\(\hbox {K}^a\)

\(k \in [1,14]\)

\(k_{opt}=7,8\)

Mahalanobis distance

\(\times\)

0.0256\(^{MDE}\)

\(\nu\)-SVM

\(\nu =0.005\)

0.1441\(^{MDE}\)

Pham and Lee (2017)

B

✓

✓

✓

✓

–

-

–

–

✓

Local outlier factor

6.3\(\hbox {M}^a\)

\(k = 8\)

0.55\(^{MDE}\)

Monamo et al. (2016)

B

–

✓

✓

✓

–

–

–

✓

–

K-means

1\(\hbox {M}^a\)

\(k \in [1,14]\)

\(k_{opt}=8\)

Trimmed K-means

\(k \in [1,15]\), \(\alpha =0.01\)

\(k_{opt}=8\)

Bartoletti et al. (2018)

B

✓

✓

✓

✓

–

–

–

–

✓

RIPPER\(\dagger\)

\(\ddagger\)6432\(^a\)

Cost \(\in [1,40]\)

0.996\(^{ac}\)

Bayes network

\(\times\)

0.983\(^{ac}\)

Random Forest

\(\times\)

0.996\(^{ac}\)

Chen et al. (2018b)

E

–

✓

✓

✓

✓

–

–

–

–

XGBoost

\(\ddagger\)1382\(^{sc}\)

\(\times\)

0.94\(^p\), 0.81\(^r\)

Ostapowicz and Zbikowski (2019)

E

✓

✓

✓

–

✓

–

–

–

–

Random Forest

350\(\hbox {K}^a\)

RFPARAM

0.85\(^{r}\), 0.05\(^{p}\)

SVM

\(Cost=1\), \(\gamma =0.077\)

0.87\(^{r}\), 0.02\(^{p}\)

XGBoost

XGBPARAM

0.8\(^{r}\), 0.07\(^{p}\)

Singh (2019)

E

✓

✓

✓

✓

–

–

–

–

–

Decision Tree

300\(^a\)

\(\times\)

0.93\(^{ac}\)

SVM

\(\times\)

0.83\(^{ac}\)

KNN

\(k=5\)

0.91\(^{ac}\)

MLP

\(\times\)

0.86\(^{ac}\)

NaiveBayes

\(\times\)

0.89\(^{ac}\)

Random Forest

\(\times\)

0.99\(^{ac}\)

Kumar et al. (2020)

E

✓

–

–

✓

✓

–

–

–

–

Decision Tree

9375\(^a\)

\(\times\)

0.92\(^{ac}\)

KNN

\(\times\)

0.92\(^{ac}\)

XGBoost

\(\times\)

0.96\(^{ac}\)

Random Forest

\(\times\)

0.95\(^{ac}\)

Zola et al. (2019)

B

–

✓

✓

✓

✓

–

–

–

–

Adaboost

1000\(\hbox {M}^a\)

\(Estimators=50\), \(rate=1\)

\(>0.2^{r}\)

Random Forest

\(Estimators=10\)

\(>0.85^{r}\)

Gradient boosting

\(estimators=100\), \(rate=0.1\)

\(>0.93^{r}\)

\(Depth=3\)

  1. \({}^{B/C}\) Blockchain, \({}^B\) Bitcoin, \({}^E\) Ethereum, \({}^a\) accounts, \({}^{sc}\) Smart Contracts, \({}^{MDE}\) Dual Evaluation Metric, \({}^{ac}\) accuracy, \({}^p\) Precision, \({}^r\) Recall, \({}^{\dagger }\) it is a propositional rule learner that relies on a sequential covering logic, \({}^{\ddagger }\) Ponzi scheme data, \({}^{RFPARM}\) features = 3, leaf samples = 10, threshold probability = 0.99, \({}^{XGBPARAM}\) depth = 3, child weight = 8, subsample = 1, probability = 0.99, \({}^{\times }\) not provided