Skip to main content

Table 2 Characteristics of networks gX corresponding to distinct periods X = i,...,vi and GX of aggregated periods X = I,...,IV

From: Correction to: Network cartography of university students’ knowledge landscapes about the history of science: landmarks and thematic communities

Netw. Sizes Fitted parameters Correlations Global invariants Fragility
N M γ σ R 2 τ B C C C L Q A Φ
gi 239 356 1.0 ± 0.3 1.23 ± 0.07 0.90 0.51 0.24 0.10 0.66 −0.09 0.04
gii 311 392 1.5 ± 0.4 1.17 ± 0.07 0.74 0.45 0.18 0.08 0.80 −0.10 0.10
giii 326 424 1.5 ± 0.2 1.13 ± 0.07 0.75 0.34 0.16 0.09 0.80 −0.09 0.18
giv 158 190 0.9 ± 0.6 1.13 ± 0.07 0.77 0.57 0.18 0.07 0.78 −0.12 0.17
gv 208 254 1.6 ± 0.3 1.13 ± 0.07 0.77 0.51 0.16 0.07 0.79 −0.12 0.14
gvi 308 375 0.7 ± 0.3 1.16 ± 0.07 0.77 0.44 0.19 0.08 0.80 −0.11 0.20
GI 826 1212 1.7 ± 0.2 1.27 ± 0.05 0.71 0.51 0.18 0.09 0.78 −0.06 0.03
GII 858 1149 2.0 ± 0.2 1.26 ± 0.04 0.75 0.42 0.16 0.09 0.83 −0.08 0.03
GIII 796 1053 2.3 ± 0.2 1.26 ± 0.03 0.69 0.46 0.15 0.08 0.84 −0.08 0.07
GIV 757 992 1.6 ± 0.2 1.27 ± 0.05 0.76 0.48 0.17 0.07 0.83 −0.09 0.16
GTOT 1613 2306 2.1 ± 0.1 1.60 ± 0.04 0.62 0.53 0.16 0.08 0.83 −0.07 0.03
  1. Power γ is for fitted inverse power law distributions fitted to degree (D) centrality distributions. The (logarithmic) width σ is for lognormal distributions fitted to Katz (K) centrality distributions. The relative errors of fits are estimated from the standard deviation of residuals. The correlations between values D and K are for Pearson (R2) and Kendall-τB ranking (τB) correlations. The summarised global invariants are average values of Closeness centrality (CC), Local Clustering coefficient (CL), Modularity (Q) and Assortativity (A). For each network, the number of nodes N and links M are provided, as well as the fragility Φ