Skip to main content

Table 2 Different options for combination functions \( {\mathbf{c}}_{\upomega_{X,Y}}\left({V}_1,{V}_2,W\right) \) for the homophily principle based on a tipping point τ; for the graphs depending on D =  V1 – V2, see Fig. 3

From: Mathematical analysis of the emergence of communities based on coevolution of social contagion and bonding by homophily

Function type

Function name

Numerical representation

Parameters in Fig. 3

Simple Linear

slhomoτ, α(V1, V2, W)

W + α W (1-W) (τ- D)

α = 6

Simple quadratic 1

sq1homoτ, α(V1, V2, W)

W + α W (1- W) (τ2 – D2)

α = 6

Simple quadratic 2

sq2homoτ, α, δ(V1, V2, W)

W + α ((τ + δ)2 - (D + δ)2)

δ = 0.15, α = 10

Cubic

cubehomoτ, α(V1, V2, W)

W + α (1-W) (1-D/τ)3

α = 0.9

Logistic 1

log1homoτ,σ(V1, V2, W)

\( \frac{W}{W+\left(1-W\right)\ {\mathrm{e}}^{\upsigma \left(D-\uptau \right)}} \)

σ = 10

Logistic 2

slog2homoτ,σ,α(V1, V2, W)

\( W+\upalpha\ \frac{W\left(1-W\right)\ }{1+{\mathrm{e}}^{-\upsigma \left(D-\uptau \right)}} \)

σ = 4, α = 5

Sine-based

sinhomoτ,α(V1, V2, W)

W - α (1-W) sin(π (D)/2)

α = 2

Tangent-based

tanhomoτ,α(V1, V2, W)

W- α (1-W) tan(π (D)/2)

α = 2

Exponential

exphomoτ,σ(V1, V2, W)

1 - (1-W) eσ(D)

σ = 10