Skip to main content

Table 16 Realism results for the Webster Accounting Firm social network

From: Heuristic methods for synthesizing realistic social networks based on personality compatibility

Metrics T \( \overline{F} \) |T- \( \overline{F} \) | L1(F) L2(F) \( \overline{P} \) |T-\( \overline{P} \)| L1(P) L2(P) \( \overline{M} \) |T-\( \overline{M} \)| L1(M) L2(M)
Nodes 24.00 24.00 0.00 0.00 0.00 24.00 0.00 0.00 0.00 24.00 0.00 0.00 0.00
Links 150.0 104.7 45.30 1359.0 249.42 150.0 0.00 0.00 0.00 150.0 0.00 0.00 0.00
Components 2.00 2.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00
Network density 0.54 0.38 0.16 4.92 0.90 0.54 0.00 0.00 0.00 0.54 0.00 0.00 0.00
Average degree 12.50 8.73 3.78 113.25 20.79 12.50 0.00 0.00 0.00 12.50 0.00 0.00 0.00
Standard deviation degree 5.51 3.48 2.03 60.90 11.18 5.20 0.31 9.19 1.88 5.22 0.29 8.81 1.81
Global cluster coefficient 0.81 0.46 0.36 10.67 1.95 0.71 0.10 2.96 0.55 0.72 0.09 2.84 0.52
Average cluster coefficient 0.78 0.47 0.31 9.32 1.72 0.75 0.03 0.96 0.20 0.74 0.04 1.06 0.21
Mean path length 3.48 3.48 0.00 0.54 0.13 3.30 0.19 5.62 1.03 3.29 0.19 5.63 1.03
Communities 5.00 4.70 0.30 37.00 8.78 4.97 0.03 27.00 7.14 5.07 0.07 28.00 7.07
Gini coefficient 0.52 0.41 0.11 3.36 0.72 0.49 0.03 1.29 0.30 0.48 0.04 1.71 0.39
Average betweenness 6.50 6.49 0.01 6.25 1.46 4.35 2.15 64.63 11.80 4.34 2.16 64.79 11.83
Maximum betweenness 26.80 19.42 7.38 228.43 45.64 17.36 9.45 286.41 55.33 18.18 8.63 260.14 51.33
Average closeness 0.03 0.03 0.00 0.02 0.01 0.03 0.00 0.11 0.02 0.03 0.00 0.11 0.02
Minimum closeness 0.02 0.02 0.01 0.15 0.03 0.02 0.01 0.21 0.04 0.02 0.01 0.22 0.04
Average eigencentrality 0.65 0.69 0.03 1.09 0.23 0.71 0.05 1.58 0.31 0.70 0.04 1.31 0.26
Minimum eigencentrality 0.02 0.21 0.19 5.69 1.07 0.18 0.16 4.80 0.90 0.18 0.17 4.98 0.92
Network radius 2.00 2.00 0.00 0.00 0.00 1.93 0.07 2.00 1.41 1.90 0.10 3.00 1.73
Average eccentricity 2.79 2.25 0.54 16.13 2.98 2.00 0.79 23.79 4.36 1.99 0.80 24.08 4.41
Network diameter 4.00 3.00 1.00 30.00 5.48 2.63 1.37 41.00 7.94 2.67 1.33 40.00 7.75
  1. Boldfaced numbers indicate which algorithm performed better for a particular metric