Skip to main content

Table 12 Realism results for the Sampson Monastery social network

From: Heuristic methods for synthesizing realistic social networks based on personality compatibility

Metrics T \( \overline{F} \) |T- \( \overline{F} \) | L1(F) L2(F) \( \overline{P} \) |T-\( \overline{P} \)| L1(P) L2(P) \( \overline{M} \) |T-\( \overline{M} \)| L1(M) L2(M)
Nodes 18.00 18.00 0.00 0.00 0.00 18.00 0.00 0.00 0.00 18.00 0.00 0.00 0.00
Links 41.00 34.07 6.93 208.00 39.19 41.00 0.00 0.00 0.00 41.00 0.00 0.00 0.00
Components 1.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
Network density 0.27 0.22 0.05 1.36 0.26 0.27 0.00 0.00 0.00 0.27 0.00 0.00 0.00
Average degree 4.56 3.79 0.77 23.11 4.36 4.56 0.00 0.00 0.00 4.56 0.00 0.00 0.00
Standard deviation degree 2.09 1.55 0.55 16.35 3.25 2.84 0.75 22.36 4.35 2.99 0.90 26.91 5.12
Global cluster coefficient 0.26 0.20 0.07 2.31 0.50 0.36 0.10 2.93 0.56 0.37 0.11 3.20 0.60
Average cluster coefficient 0.29 0.21 0.07 2.75 0.59 0.63 0.34 10.22 1.92 0.66 0.38 11.36 2.10
Mean path length 1.97 2.15 0.18 5.33 1.06 1.83 0.14 4.07 0.77 1.82 0.15 4.54 0.87
Communities 3.00 3.67 0.67 28.00 7.07 3.60 0.60 22.00 5.10 3.83 0.83 25.00 5.75
Gini coefficient 0.07 0.19 0.12 3.52 0.82 0.18 0.10 3.21 0.66 0.19 0.11 3.46 0.72
Average betweenness 8.22 9.73 1.51 45.33 9.00 7.07 1.15 34.56 6.54 6.94 1.29 38.56 7.39
Maximum betweenness 37.62 36.81 0.81 170.51 39.48 78.27 40.65 1219.35 228.02 82.56 44.94 1348.16 250.19
Average closeness 0.03 0.03 0.00 0.08 0.02 0.03 0.00 0.07 0.01 0.03 0.00 0.08 0.02
Minimum closeness 0.02 0.02 0.00 0.07 0.02 0.03 0.00 0.09 0.02 0.03 0.00 0.10 0.02
Average eigencentrality 0.48 0.50 0.02 1.32 0.31 0.42 0.06 1.89 0.36 0.41 0.07 2.06 0.38
Minimum eigencentrality 0.17 0.16 0.01 1.78 0.40 0.23 0.06 1.79 0.37 0.22 0.05 1.92 0.40
Network radius 2.00 2.80 0.80 24.00 4.90 1.97 0.03 1.00 1.00 1.93 0.07 2.00 1.41
Average eccentricity 3.00 3.40 0.40 12.50 2.56 2.65 0.35 10.50 2.20 2.60 0.40 12.39 2.67
Network diameter 4.00 4.07 0.07 6.00 2.45 3.00 1.00 30.00 5.66 3.07 0.93 28.00 5.66
  1. Boldfaced numbers indicate which algorithm performed better for a particular metric