Model Parameters Fitting Fitting scaling by $$x \in \mathbb {N}$$
Erdős–Rényi E R(n ,p) n =n $$p = \frac {2m}{n \cdot (n-1)}$$ n =x·n $$p = \frac {2m}{x \cdot n \cdot (n-1)}$$
Chung-Lu C L(d) d=(deg(u)) uV $$d = \cup _{i=1}^{x} (\deg (u))_{u \in V}$$
Edge-Switching Markov Chain E M C(d) d=(deg(u)) uV $$d = \cup _{i=1}^{x} (\deg (u))_{u \in V}$$
Hyperbolic Unit-Disk $$HUD(n, \bar {d}, \gamma)$$ n=n $$\bar {d} = 2 \cdot (m / n)$$ γ= max{2.1,plfit((deg(u)) uV )} n=x·n $$\bar {d} = 2 \cdot (m / n)$$ γ= max{2.1,plfit((deg(u)) uV )}
BTER B T E R(d,c) $$d = (n_{d})_{d \in (0, \dots, d_{\max })}$$ $$c = (c_{d})_{d \in (0, \dots, d_{\max })}$$ $$d = (n_{d} \cdot x)_{d \in (0, \dots, d_{\max })}$$ $$c = (c_{d})_{d \in (0, \dots, d_{\max })}$$
LFR $$LFR(n',{\newline } \gamma,\bar {d},d_{\max }, {\newline } \beta, c_{\min },c_{\max })$$ n =n γ,d min,d max=plfit((deg(u)) uV ) ζ s ={|C| | CPLM(O)} β,c min,c max=plfit*(ζ s ) n =x·n γ,d min,d max=plfit((deg(u)) uV ) ζ s ={|C| | CPLM(O)} β,c min,c max=plfit*(ζ s )