Skip to main content

Table 1 Parameters set to fit a model to a given graph, and to produce a scaled-up replica

From: Generating realistic scaled complex networks

Model

Parameters

Fitting

Fitting scaling by \(x \in \mathbb {N}\)

Erdős–Rényi

E R(n ′,p)

n ′=n \(p = \frac {2m}{n \cdot (n-1)}\)

n ′=x·n \(p = \frac {2m}{x \cdot n \cdot (n-1)}\)

Barabasi-Albert

B A(n ′,k)

n ′=n k=⌊m/n⌋

n ′=x·n k=⌊m/n⌋

Chung-Lu

C L(d)

d=(deg(u)) u∈V

\(d = \cup _{i=1}^{x} (\deg (u))_{u \in V}\)

Edge-Switching Markov Chain

E M C(d)

d=(deg(u)) u∈V

\(d = \cup _{i=1}^{x} (\deg (u))_{u \in V}\)

R-MAT

R M(s,e,(a,b,c,d))

s=⌈log2n⌉ e=⌊m/n⌋ (a,b,c,d)=kronfit(O)

s=⌈log2x·n⌉ e=⌊m/n⌋ (a,b,c,d)=kronfit(O)

Hyperbolic Unit-Disk

\(HUD(n, \bar {d}, \gamma)\)

n=n \(\bar {d} = 2 \cdot (m / n)\) γ= max{2.1,plfit((deg(u)) u∈V )}

n=x·n \(\bar {d} = 2 \cdot (m / n)\) γ= max{2.1,plfit((deg(u)) u∈V )}

BTER

B T E R(d,c)

\(d = (n_{d})_{d \in (0, \dots, d_{\max })}\) \(c = (c_{d})_{d \in (0, \dots, d_{\max })} \)

\(d = (n_{d} \cdot x)_{d \in (0, \dots, d_{\max })}\) \(c = (c_{d})_{d \in (0, \dots, d_{\max })} \)

LFR

\(LFR(n',{\newline } \gamma,\bar {d},d_{\max }, {\newline } \beta, c_{\min },c_{\max })\)

n ′=n γ,d min,d max=plfit((deg(u)) u∈V ) ζ s ={|C| | C∈PLM(O)} β,c min,c max=plfit*(ζ s )

n ′=x·n γ,d min,d max=plfit((deg(u)) u∈V ) ζ s ={|C| | C∈PLM(O)} β,c min,c max=plfit*(ζ s )