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Abstract

Buyer—seller relationships among firms can be regarded as a longitudinal network in
which the connectivity pattern evolves as each firm receives productivity shocks. Based
on a data set describing the evolution of buyer—seller links among 55,608 firms over a
decade and structural equation modeling, we find some evidence that interfirm
networks evolve reflecting a firm’s local decisions to mitigate adverse effects from
neighbor firms through interfirm linkage, while enjoying positive effects from them. As
a result, link renewal tends to have a positive impact on the growth rates of firms. We
also investigate the role of networks in aggregate fluctuations.

Keywords: Interfirm buyer—seller networks, Aggregate fluctuations, Link renewal,
Firm growth

Introduction

The interfirm buyer—seller network is important from both the macroeconomic and the
microeconomic perspectives. From the macroeconomic perspective, this network rep-
resents a form of interconnectedness in an economy that allows firm-level idiosyncratic
shocks to be propagated to other firms!. Previous studies has suggested that this propaga-
tion mechanism interferes with the averaging-out process of shocks, and possibly has an
impact on macroeconomic variables such as aggregate fluctuations (Acemoglu et al. 2011;
Acemoglu et al. 2012; Carvalho 2014; 2007; Shea 2002; Foerster et al. 2011; Malysheva
and Sarte 2011). From the microeconomic perspective, a network at a particular point of
time is a result of each firms link renewal decisions in order to avoid (or share) negative
(or positive) shocks with its neighboring firms. These two views of a network is related by
the fact that both concerns propagation of shocks. The former view stresses the fact that
idiosyncratic shocks propagates through a static network while the latter provides a more
dynamic view where firms have the choice of renewing its link structure in order to share
or avoid shocks. The question here is that it is not clear how the latter view affects the
former view. Does link renewal increase aggregate fluctuation due to firms forming new
links that conveys positive shocks or does it decrease aggregate fluctuation due to firms
severing links that conveys negative shocks or does it have a different effect?

It is important to stress the fact that previous research, in macroeconomics as listed
above, has implicitly assumed a static link structure where link renewal does not take
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place. However, anecdotal evidence suggest that firms may renew their link structure in
order to avoid negative shocks and share positive shocks with their neighboring firms.
For instance, in the financial crisis of 2008 many banks were reported to sever its links
with bad performing firms while forming new links to better performing firms. If these
decisions took place broadly then shocks would not propagate as the previous papers have
suggested.

To investigate the trade—off between the propagation of shocks and link renewal,
we conduct an empirical analysis on the effect of link renewal on the overall growth
rate of an economy. Our analysis is novel in the sense that we take the link renewal
aspect of the network explicitly into account. This is performed by employing a firm
level data instead of sectoral level data. Due to data availability, we use a firm-level
dataset from Japan where we have both network data as well as log growth rate
of each firms over a decade. We hope that similar results holds for other countries
as well.

Using the unique dataset, we take structural equation modeling to estimate the
effect of link renewal on the overall growth rate of a network. Our model can be
seen as a firm-level variant of the multi-sector model of (Long and Plosser 1983),
which is canonical in the business-cycle literature. After estimation of the struc-
tural parameters, wherein we discuss the results and identification issues, the effect
of link renewal is estimated by performing a counterfactual analysis of the prop-
agation of shocks. Specifically, the analysis is performed by first estimating the
individual shocks using the estimated structural model and then propagating the
shocks back using networks from different years and comparing the consequences.
From this excercise our first result shows that the current network is often the best net-
work configuration, which optimizes both the propagation of positive shocks and the
avoidance of negative shocks compared with previous networks. Furthermore, we show
that for positive shocks, the future network is often better than the current network in the
sense that it propagates positive shocks better than the current network. This is explained
by the asymmetry in cost between severing a link and link formation. It is easier to sever
an existing link when one’s neighbor faces negative shocks than to form a new link, or
a new path to distant targeted nodes, in the opposite case. We then provide some evi-
dence that link renewal has a positive effect of increasing the average growth rate of firms,
thereby answering to the main question of the paper. Finally, by comparing the aver-
age log growth rate for each year and the average individual shocks estimated from our
model, we show that at least 37% of the aggregate fluctuations can be explained by the
network effect.

The rest of the paper is organized as follows. In “Introduction” section, we sum-
marize the basic notation used throughout the paper. We also offer a brief descrip-
tion of the dataset used in the paper and provide a basic descriptive analysis.
“Data and notation” section presents the structural model. “Model” section illustrates
our inference procedure and presents the estimation results. We also discuss identi-
fication issues. In “Estimation” section, we use the model to perform counterfactual
analysis of the propagation of shocks and address the gradual evolution of the network.
“Counterfactual analysis of propagation of shocks” section addresses the impact of the
interfirm buyer—seller network on aggregate fluctuations. “Network effect on aggregate
fluctuations” section concludes.
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Data and notation

The network and financial data used in this paper are from the Teikoku Data Bank?. These
data are based on questionnaires completed by more than 100,000 firms in Japan for the
accounting years 2003 to 2012. We use a subset of this data where we have both network
and financial information throughout the 10-year period (i.e., 55,608 firms). In the ques-
tionnaires, firms are asked to name several (up to five) upstream and downstream firms
with which they trade. This scheme is akin to the fixed rank nomination scheme used in
social network analysis (Hoff et al. 2013).

We define two types of adjacency matrix: downstream and upstream. We denote by G
the adjacency matrix describing the downstream network, where the downstream firms
are listed in each row. Thus, it is reported by firm i that firm j buys from firm i if
and only if G;j = 1. H is defined similarly for the upstream adjacency matrix. When
necessary, we use subscripts to indicate time points, so the buyer network for account-
ing year 2012 is denoted by Gao12. We could combine these two adjacency matrices
and create matrices such that H = G” holds using interpolation of links. However,
because the data do not include the weight (i.e. transaction volume) spurious links
might be formed using this interpolation. To elaborate on this point, suppose that a
stationery store sells a considerable number of pencils to firm A, which manufactures
cars. From the stationery store’s point of view, firm A is a major buyer that deter-
mines its sales revenue. However, from firm A’s point of view, the stationery store is
far less important than the upstream firm from which it purchases automobile parts
for use in production. Because in this paper we focus on links that have strong rela-
tionships, we focus on the raw form without performing any interpolation of relations.
It is worth noting that thus G does not equal its transpose of H. Table 1 summa-
rizes some basic descriptive statistics concerning the log growth rate of firms during

the period 2003-2012. Log growth rate is measured by log S(St(_t)l) where S(¢) describes

sales reported in each firms financial statement. It can be seen that the average log
growth rate of firms fluctuates around 0, showing a moderate cycle. As stated previ-
ously, because we are using a subset of the data, 55,608 firms were used to calculate
the average log growth each year. Table 2 summarizes the number of nonzero ele-
ments in the two adjacency matrices, as well as their evolution. It can be seen that,
except for 2008, the numbers of links formed and severed have shown a steady evo-
lution. It can also be seen that the overall number of links appears to be stable

over time.

Table 1 Average log growth rate of firms and standard deviation

Year Mean log growth Standard deviation
2003 0.008 0.182
2004 0.021 0.174
2005 0.022 0.161
2006 0.022 0172
2007 0.017 0.175
2008 0.001 0.196
2009 -0.076 0.220
2010 -0.059 0.227
2011 0.009 0.206

2012 0.004 0.188
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Table 2 Number of nonzero elements in the two adjacency matrices and the number of new links
(nonzero elements) formed and severed in the two matrices

Year G Form G Sever G H Form H Sever H
2003 105,238 - - 116,980 - -

2004 106,230 16,789 17,781 118,534 16,270 17,824
2005 106,425 16,862 17,057 119,228 16,736 17,430
2006 106,758 16,056 16,389 119,571 16,318 16,661
2007 106,732 15,924 15,898 119,625 16,110 16,164
2008 109,073 20,375 22,716 122,075 20,699 23,149
2009 109,881 16,680 17,488 122,898 16,519 17,342
2010 109,721 15,861 15,701 122,049 16,167 15,318
2011 109,546 15,404 15,229 122,021 14,675 14,647
2012 109,928 14,618 15,000 122,844 13,982 14,805

In Fig. 1, we present a contour plot showing the log growth rate of the following year
(contour) to the current log growth rate (x-axis) and current size (y-axis) for each firm
where the contour was estimated using two-dimensional splines. It can be seen that above
8.1 billion yen (i.e., exp(9)), there is a clear persistent pattern whereby a positive growth
rate tends to be repeated, and vice versa.

One reason which could explain the irregular pattern among the small and medium
sized firms (i.e. middle left and middle right area) is subisidiary firms, which are affected
by decisions made by their parent company (e.g., participating in an absorption-type
merger, corporate group restructuring). However, even ignoring this part of the data, it
can be seen that overall, there seems to be a persistent pattern in the log growth rate of
firms.

In Table 3, we show the proportions of positive and negative log growth rates of firms
around newly formed and severed links. First-order, second-order, and third-order nodes
are defined by the steps needed to reach the node from the newly formed or severed link.

15+

0.2
0.1
0.0
-0.1

Log Sales
=

5
Log Growth Sales

Fig. 1 (Coloronline) Contour plot showing the log growth rate of the following year to the current log
growth rate and the current size for each firm. The contour was estimated using two-dimensional splines
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Table 3 Proportions of positive and negative log growth rates of firms around a newly formed or

severed link

Year Type 1st Pos 1st Neg 2nd Pos 2nd Neg 3rd Pos 3rd Neg
2004 Sever 0.558 0.423 0.576 0.421 0.565 0.432
2004 Form 0.598 0.388 0.593 0.404 0.579 0.419
2005 Sever 0.643 0.333 0.743 0.25 0.76 0.233
2005 Form 0.668 0.315 0.757 0.235 0.762 0.231
2006 Sever 0.649 0.324 0.751 0.244 0.755 0.241
2006 Form 0.666 0.316 0.75 0.245 0.757 0.238
2007 Sever 0.651 0.319 0.741 0.252 0.754 0.241
2007 Form 0.664 0.317 0.753 0.242 0.753 0.241
2008 Sever 0.577 0.396 0.736 0.258 0.766 0.229
2008 Form 0.59 0.393 0.745 0.249 0.771 0.225
2009 Sever 0.266 0.713 0.293 0.704 0.294 0.704
2009 Form 0.284 0.702 0.293 0.704 0.286 0.712
2010 Sever 0.267 0.705 0.179 0.812 0.153 0.836
2010 Form 0.297 0.687 0.178 0813 0.159 0.832
2011 Sever 0.567 0.407 0.683 0.312 0.716 0.28
2011 Form 0.597 0.387 0.703 0.292 0.731 0.265
2012 Sever 0.549 0.416 0.563 0.427 0.568 0423
2012 Form 0.585 0.393 0.566 0.424 0.558 0433

First-order, second-order, and third-order nodes are defined by the length of the newly formed or severed link. Bold font indicates
the cases where (i) the proportion of positive log growth rate of nodes is higher for newly formed links than severed links or (ii)
the proportion of negative log growth rate of nodes is higher for severed links than newly formed links in a given year

For the sake of clarity, a schematic diagram showing the first-order, second-order, and
third-order nodes is provided in Fig. 2. Bold font in Table 3 indicates the cases where (i)
the proportion of positive log growth rate of nodes is higher for newly formed links than
severed links or (ii) the proportion of negative log growth rate of nodes is higher for sev-
ered links than newly formed links in a given year. It can be seen that for all years, the
network tends to form links between nodes experiencing a positive firm-specific idiosyn-
cratic shock (and vice versa). This provides our first insight into the connection between
the log growth rate of firms and the link renewal process of the network.

Model
The model that we use in this paper is
(I — BcGr — BrHY) yt = (BLcGr—1 + BruHi—1) ye—1 + Yye—1 + €1, (1)
3rd 2nd 1st Ist 2nd 3rd
0.1 0.03 0.03
-0.01 0.1
0.1 0-06 -0.1
0.02 -0.05

Fig. 2 Schematic diagram showing first-order, second-order, and third-order nodes of formed and severed
links. Dashed lines indicate newly formed or severed links. The numbers represent the log growth rate of each
firm
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where y; denotes the growth rate of sales of each firm® and ¢, denotes the normal firm-
specific idiosyncratic shock characterized by  and . The intuition behind the model is
that log growth rate of a firm could be broken down into three parts: economy—wide plus
firm—level idiosyncratic shocks, lagged effect from previous year, and propagation effect
from the interfirm buyer—seller network (both simultaneous and lagged). There are seven
unknown parameters in total.

Our model can be seen as a firm-level variant of the multi-sector model of (Long
and Plosser 1983), which is canonical in the business-cycle literature. In (Long and
Plosser 1983), each sector (i.e., firm) is explicitly assumed to use materials produced
by other sectors (i.e., firms), and these sectoral linkages represent interconnected-
ness in the economy, propagating idiosyncratic sector-specific shocks to other sectors.
Previous works have used the multi-sector business cycle model to break down aggre-
gate fluctuations down into aggregate economy—wide common shocks and sectoral
shocks (Abe 2004; Foerster et al. 2011). These models have been used to shed light
on aspects of sectoral growth and business cycles. The goal in this paper is to
bring this model to the firm level studying the propagation of firm-level idiosyn-
cratic shocks. The difference between (Long and Plosser 1983)’s sectoral-level and
firm-level linkages lies in the link renewal process among firms. In a sectoral-level
setting, if the total demand for goods from other sectors is kept the same, then the
strength of the links with other sectors does not change. However, even in this case,
the interfirm network structure might differ due to link renewal behaviors at the firm
level. Our main goal in this is paper is to take this link renewal behavior explicitly
into account.

The general consensus in macroeconomics has been that sector-specific shocks should
average out over the entire economy based on Lucas’s “diversification argument” (Lucas
1977). However, this view has recently been challenged from the network perspective by
several authors (Shea 2002; Acemoglu et al. 2012; Acemoglu et al. 2011; Carvalho 2007)
suggesting that in the presence of certain sectoral network structures, this argument may
not apply. In particular, (Acemoglu et al. 2012) has shown that the rate of decay in aggre-
gate fluctuations depends on the network structure governing interdependency among
sectors. Our model is closely related to (Acemoglu et al. 2012), but much closer to (Shea
2002) in that we model effects from both upstream and downstream linkages. Our work
is also related in spirit to (Foerster et al. 2011; Malysheva and Sarte 2011) in providing
a systematic econometric analysis of the propagation of shocks and the relationship to
aggregate fluctuations. The difference is that while (Foerster et al. 2011; Malysheva and
Sarte 2011) focus on sectorial linkages, we focus more on micro connections in interfirm

networks.

Estimation

Parameter estimation

Inference of parameters is most easily performed using Bayesian inference
(Westveld and Hoff 2011; Goldsmith-Pinkham and Imbens 2013). In our case, this
is also due to the heavy computation involved in handling large amounts of net-
work data. Using Eq. (1) and placing conjugate normal priors on Bg, BH, BrG, BLH> V>
and po, and a scaled inverse gamma prior on op, y; obeys a multivariate normal
distribution with
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= (- PG — BrH) " (1o + (BLcGi—1 + BruHe—1 + v y:-1), )
’ ’ _1
=~ PG —puH) " (I- oG —puH)  of. 3)

To perform maximum likelihood in this setting, it is necessary to calculate the deter-
minant ||, where ¥ has size 55, 6082 even when focusing our attention on just one year.
The time complexity of calculating this determinant is cubic, making it impractical to
evaluate when optimizing the likelihood*. The other term that involves heavy computa-
tion is the inverse matrix. We approximated the inverse matrix using the first 30 terms of
the Neumann series (or power series) as in (Bramoulle et al. 2009).

The unknown parameters in our model are B, Bx, BrG, BLH> ¥, Lo, and op. Bayesian
inference was performed with diffuse priors (i.e. normal(0,100) for 8s, y and p and
scaled — inverse — gamma(1, 1) for op), using Gibbs sampling of 10 years of data, which
converged quite rapidly. A Markov chain of 10,500 iterations was generated, the first 500
of which were dropped as burn-in steps. We provide a trace plot of B¢ in Fig. 3. Other
paratemers converged similarly. Thinning was performed every 10 steps, resulting in 1000
samples, which we used to approximate the joint posterior.

Table 4 reports the posterior mean of the parameters along with 99% posterior confi-
dence intervals. In general, all the parameters related to network effects are significantly
different from 0, suggesting that the network effect is present as both a lag and a con-
temporaneous effect. The parameter y being significantly positive implies that there is
persistency in firms log growth rate as was expected from Fig. 2. The parameter ;1o being
slightly negative corresponds to the fact the overall Japan was shrinking during the period
of analysis.

Identification issues resulting from measurement errors
Although the use of the log growth rate in analyzing network effects is due to station-

arity concerns log differencing makes each variables noisier. Moreover sloppy reporting

0.06235-

0.06230

beta_G

0.06225 -

0.06220

0 2500 5000 7500 10000
iteration

Fig. 3 Trace plot of Bg
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Table 4 Parameter estimates. Posterior mean and 99% posterior confidence intervals are reported

Parameter Mean Lower Upper
Bs 0.06217 0.06216 0.06218
B 0.05179 0.05178 0.0518
Bic 0.001 0.001 0.001
Bin 0.0088 0.0088 0.0088
y 0.0188 0.0187 0.0188
4o —0.0035 —0.0035 —0.0035
00 0.5365 0.5351 0.5379

by small and medium-sized firms also contaminates the variable with additional mea-
surement errors. Estimation of true regression parameters when all measurements have
additional noise was studied by Frisch in the 1930s under the rubric of statistical conflu-
ence analysis (Frisch 1934; Hendry and Morgan 1989). Similar to its modern descendant,
partial identification (Manski 2009; Tamer 2010), our results show that estimation of the
structural parameters ignoring measurement error provides lower bounds on estimates
of the true structural parameters.

While this argument may seem trivial at first, it is important when we estimate the
effects of the interfirm buyer—seller network on aggregate fluctuations in “Network effect
on aggregate fluctuations” section. As noted in the Introduction, since our interest is in
aggregate fluctuation we are interested not in each firm’s log growth rate, but in the aver-
age log growth rate of all firms in an economy at a particular year. Additional zero mean
measurement errors for each firm disappear when we take the average of these growth
rates, and thus have no impact on the overall dynamics of the average log growth rate.
However, we are trying to estimate these underlying parameters from log growth rates
including additional measurement errors. In this case, our estimated parameters (e.g.,
the parameter estimates reported in Table 4) would be different from the true structural
parameters responsible for generating the aggregate fluctuations in the average log growth
rate of firms.

Taking measurement errors into account, our observed log growth rate of firms is

generated from

( — BcGt — BuHy) zt = (B Ge—1 + BrruHi—1) z¢-1 + Yze—1 + €, (4)

Ve =2zt + N (5)

where the first equation models the network effect as in Eq. (1) and the second one models
additional measurement errors. Assuming that n has mean 0 and a finite first moment,
the law of large numbers guarantees that this additional measurement error cancels out
in the aggregate.

Assuming that both ¢; and 7; are normally distributed random variables, it is obvi-
ous that there is a simple relationship between the parameter estimates ignoring this
additional structure and the true parameters. The relationship is

Oapparent = T * Otrye, (6)

where r is defined as

o var(€s) @

var () + var ()’




Hisano et al. Applied Network Science (2017) 2:9 Page 9 of 15

Hence, our parameter estimates ignoring measurement errors, as in Table 4, give a scaled
estimate of the true parameters.

This effect is confirmed by the following experiments. We first generate the underlying
true log growth rates of firms using the actual network data with g = 0.06, Sy = 0.06,
B = 0.04, Bry = 0.04, y = —0.3, u = 0, and 0 = 0.3. Then, for each firm, we add
additional noise n ~ normal(0,0.15). Table 5 reports the posterior means of parameter
estimates with and without this additional noise. We see that the parameters are scaled as
predicted by Eq. (7).

In summary, the analysis performed in this section have clarified that the estimated
structural parameters only provide a lower bound on the true parameters. This was a
result of identification issues concerning measurement errors. Hence the message here
is that our evaluation of propagation of shocks, performed in the next sections using the
estimated parameters, could only be seen as a lower bound concerning the true level of

propagation in an economy.

Counterfactual analysis of propagation of shocks

To assess the nature of the evolving network, we perform counterfactual analysis of the
propagation of shocks. We do this by the following procedure. Using a structural model
describing the interfirm buyer—seller network, we estimate the structural firm-specific
shocks for year ¢ as

et .= (I — BcGy — BuHy) ¥t (8)

where g and By are parameters, e; and y; are vectors, and the rest matrices. Using these
estimates for all firms, we compute a firm’s growth in a counterfactual world, assuming
that the structure of the network is that of year ¢’ instead of year ¢ by

yo = — B6Gy — BruHy) ey )

Note that y;; (i.e., propagating shocks using the network from the same year as the log
growth rate) is the same as y;. Comparing y;; for different years enables us to ascertain
what the log growth rate of firms might have been if the network structure was that of
year t'. Moreover, motivated by Table 3, we perform this analysis of evolving networks by
separating the estimated e;s into positive shocks (i.e., ¢/”) and negative shocks (i.e., ;)
where we set all the values that are not positive in the former case or negative in the latter

case to 0. We propagate each of these shocks in the network. Thus, y;; is now replaced by

v = =BGy — BrHy) ™' & (10)
for positive shocks and
Yo = (I — BeGr — BuHy) ™" €[ (11)

for negative shocks. We assume that the structural parameters are fixed and set them as
B = 0.06 and By = 0.05. As before, we approximated the inverse matrix using the first

Table 5 Parameter estimates with measurement errors

Type of noise Be Br Bie Bie 4
No error 0.065 0.068 0.04 0.042 —0.29
Normal error 0.056 0.055 0.031 0.030 —0.237

The true parameters are reported in the text
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30 terms of the Neumann series (or power series) as in (Bramoulle et al. 2009) to speed
up calculations.

Comparing yffl’i and yﬁf for different years enables us to compare the propagation
(avoidance) performance of each network in the face of positive and negative shocks that
arrived in year t. Figures 4 and 5 show the results of comparing the standard deviation
of yf,(‘): and y:l,Tf for all years. It can be seen that the current network is often the best
network configuration, which optimizes both the propagation of positive shocks and the
avoidance of negative shocks compared with past networks. Furthermore, we see that for
positive shocks, the future network is often better than the current network in the sense
that it propagates positive shocks better than the current network. We also note that the
improvement caused by rewiring the network just after the shock has arrived is higher for
negative shocks than for positive shocks.

This is quite an interesting result, and is worth elaborating. The main reason is the
asymmetry between forming and severing links. Severing a link, and often switching to
better (but not necessarily the best) nodes, is easier than forming a link targeting good (if
not the best) nodes facing positive shocks. This is because the latter requires additional
search costs and negotiation time for the two firms to reach agreement. Further, because
of the existence of layers (or a hierarchical structure) in the network, creating a path to
distant nodes with which one is unable to form a direct link is a complex task that requires
decisions by one’s neighbors. For example, if a firm wants to buy automobile parts that
use a certain high-quality metal, it has to find an automobile parts manufacturer that
uses the metal in their own production or wait until some automobile parts manufacturer
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starts using the metal in their own production. Given this basic limitation governing the
microeconomic link renewal process of firms, link formation can only evolve gradually in
response to newly arrived shocks. The view of local rewiring of links is also shared with
works in social networks such as (Mele 2010; Krivitsky and Handcock 2014).

If there was a hypothetical social planner that could rewire all the network structures
in an economy to an optimal state, the behavior summarized in this section would not
take place. However, in reality, microscopic connectivity patterns are determined by each
agent’s decisions to avoid negative shocks and share positive shocks. These decisions are
made based on local information which each firms gathers without having access to the
full picture of the global state of the network. Moreover, apart from the fact that they
only have access to local information, there is asymmetry in cost between forming and
severing links which also contributes to the gradual process of link renewal. The analysis
performed in this section provides some insights into the gradual evolution process, sug-
gesting how the decentralized myopic decisions of individual firms gradually lead to an

improvement in the overall state of the network.

Network effect on aggregate fluctuations

Using the parameters reported in the previous section, we estimate the role of networks
in aggregate fluctuations by comparing the average log growth rate of firms (i.e., y;) and
the average shocks for individual firms (i.e., ;). For each year, we calculate e;s by

et .= (I — BcGr — BuHy) yt — (BLcGe—1 + BrrHi—1) y+—1 — Yyt-1. (12)
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The average e; is used as the average shock for individual firms. We also simulate each
firms log growth rate assuming that there was no link renewal during the whole period
of study. This is performed by using Eq. (9), setting ¢’ as 2003. The average value of yy/;
is used as the average log growth rate in the counterfactual world assuming that no link
renewal took place during the whole period of study.®

Figure 6 shows the results. By comparing the case when there is link renewal (black
rectangles) and without link renewal (blue square), we see that the average log growth rate
shifts downwards when there is no link renewal. This was expected because as was seen in
the previous sections link renewal has two effects. One trying to mitigate negative shocks
from propagating and one trying to share positive shocks with their neighboring firms. In
recession period, link renewal is more motivated by the former process making the black
circles higher than the blue squares (because by link renewal the network succeeded in
mitigating negative shocks). While in boom period, link renewal is motivated more by the
latter process also making the black circle higher than the blue squares (because by link
renewal the network succeeded in sharing positive shocks).

Figure 7 shows the cumulative average log growth rate of each of the cases depicted in
Fig. 6. Comparing the cases when link renewal take place (black circles) and when firms
are connected and without link renewal (blue square) in Fig. 7, we see that on average
firm growth rate is 0.0027 higher when there is link renewal.® Hence we conclude that link
renewal has the positive effect of increasing the average log growth rate of an economy by
effectively mitigating negative shocks and sharing positive shocks among firms.

We next investigate aggregate fluctuation. Comparing the two cases when firms are not
connected (red triangle) and connected (black circles) in Fig. 6, we see that the average
log growth rate tends to fluctuate more when they are connected. It is worth emphasizing
that we only have nine data points in the calculation. Nevertheless, the estimated standard
deviation of the fluctuation is 0.023, while that of the original average log growth rate of

0.025-

0.000-

-0.025-

Average Log Growth

-0.050-

-0.075-

2005 2007 2009 2011
Year

Fig. 6 Time series of average log growth rates (black circles), average shocks for individual firms (red triangles)
and simulated average log growth rate assuming that there was no link renewal (blue square) for years 2004
t0 2012
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Fig. 7 Time series of cumulative average log growth rate (black circles), cumulative average shocks for
individual firms (red triangles) and simulated average log growth rate assuming that there was no link
renewal (blue square) for years 2004 to 2012

firms is 0.037. Thus, the network effect on aggregate fluctuations can be calculated as
1 —0.023/0.037, which is around 37%. Note that as discussed in “Estimation” section, the
estimated structural parameters provide a lower bound as a result of identification issues
concerning measurement errors. Therefore, we conclude that at least 37% of the aggregate
fluctuations can be explained by the network effect.”

It is also worth noting that this figure is similar to that in (Foerster et al. 2011), who
studied variability in log growth of the IP index in the United States and showed that, after
the great moderation, 50% of the variability in log growth of the IP index could indeed be
explained by sectoral linkages.

Conclusion

In order to answer the question concerning the trade-off between propagation of shocks
and link renewal in the interfirm buyer—seller network, we provided an empirical analysis
on the effect of link renewal on the overall growth rate of an economy. To this aim we used
a firm-level dataset from Japan where we have both network data as well as log growth rate
of fimrs over a decade. Using the unique dataset, we took structural equation modeling to
estimate the effect of link renewal. By means of counterfactual analysis, we first showed
that the current network is often the best network configuration which optimizes both
the propagation of positive shocks and avoidance of negative shocks compared with pre-
vious networks, perhaps reflecting each firms motivation to avoid other’s negative shocks
and share other’s positive shocks. We then showed that for positive shocks, the future
network is often better than the current network in the sense that it propagates positive
shocks better than the current network. This asymmetric behavior was explained by the
asymmetry in cost between severing and forming links. We then provided some evidence
that link renewal has a positive effect of increasing the average growth rate of firms at the
macroeconomic level answering to the main motivation of the paper. Last but not least,
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as a bonus of our structural equation modeling, we also showed that at least 37% of the
aggregate fluctuations can be explained by the network effect. This is in line with previous
research which focused on sectoral linkages such as (Foerster et al. 2011).

Endnotes

I Examples of firm—level idiosyncratic shock includes: productivity shocks stemming
from successful innovations, discovery of new export destination, changes in capacity uti-
lization including strikes and supply shock such as sudden change in raw material prices.
It should not be confused with economy—wide shocks such as inflation, wars and policy
shocks.

Zhttp://www.tdb.co.jp/index.html.

3Which is defined by the difference of logarithm of sales between two consecutive
years.

*It took about 5-8 h to calculate this term on a modern desktop computer using the
fully optimized software (Danny et al. 2010)

>To be more precise we are assuming that the network stayed as that of year 2003
during the whole period of study 2004-2012.

®This is calculated by taking the mean of y; — yy;.

7 As could be suspected by Fig. 6 the number only slightly changes when comparing the
case when there is no link renewal to the case when firms are not connected at all.
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