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Abstract
Graphs are used to model a wide range of systems from different disciplines including
social network analysis, biology, and big data processing. When analyzing these
constantly changing dynamic graphs at a high frequency, performance is the main
concern. Depending on the graph size and structure, update frequency, and read
accesses of the analysis, the use of different data structures can yield great
performance variations. Even for expert programmers, it is not always obvious, which
data structure is the best choice for a given scenario.
In previous work, we presented an approach for handling the selection of the most
efficient data structures automatically using a compile-time approach well-suited for
constant workloads.
We extend this work with a measurement study of seven data structures and use the
results to fit actual cost estimation functions. In addition, we evaluate our approach for
the computations of seven different graph metrics. In analyses of real-world dynamic
graphs with a constant workload, our approach achieves a speedup of up to 5.4×
compared to basic data structure configurations.
Such a compile-time based approach cannot yield optimal results when the behavior
of the system changes later and the workload becomes non-constant. To close this gap
we present a run-time approach which provides live profiling and facilitates automatic
exchanges of data structures during execution. We analyze the performance of this
approach using an artificial, non-constant workload where our approach achieves
speedups of up to 7.3× compared to basic configurations.

Keywords: Dynamic graph analysis, Data structures, Performance, Measurement
study, Compile-time optimization

Introduction
There is an emerging application domain that deals with the analysis of dynamic graphs.
They serve to model dynamic systems across different disciplines, such as biological
(Candau et al. 1982; Marti 2000), transportation (Chabini 1998), computer (Gonçalves
2012), and social networks (Braha 2009; Kossinets 2006; Mucha 2010). The analysis of
such dynamic graphs is challenging and its complexity arises from the frequent changes
to their topologies and properties rather than their size alone. Due to a proliferation of
applications and the ever increasing size of dynamic systems, performance has quickly
become a major concern (Ediger 2010, 2012; Madduri and Bader 2009).
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The general application pattern of dynamic graph analysis consists of a sequence of
graph modifications followed by a computation of metrics (cf. Fig. 1). Several metrics
investigate local properties such as the clustering coefficient and assortativity. Other met-
rics determine global properties like degree distribution, all-pairs shortest paths, and
connected components. Each metric has a different interpretation depending on the
application domain. As an example, a high betweenness centrality identifies users with
high influence in social networking and potential communication bottlenecks in com-
puter networks. Such an analysis serves to better understand the states of a system and
improve its design in a variety of applications (Ambedkar et al 2015; Trequattrini et al.
2015; Zhao et al. 2015). The analysis of the states of a dynamic graph can be implemented
using snapshot- or stream-based approaches (Ediger et al. 2010). We use snapshot-based
algorithms in the following since the problem of modifying and accessing the in-memory
representation of a dynamic graph is the same for both.
For performance reasons, dynamic graph analysis is implemented on an in-memory

graph representation (Ediger et al. 2010; 2012). There are well understood representations
of graphs, such as adjacency lists and matrices, on which algorithms, data structures, and
complexity analyses have been studied extensively. For practical applications, however, it
remains challenging to find the best suited match of algorithms and data structures as the
result often depends on the combination of a number of factors. In the case of dynamic
graphs this includes graph size and structure, frequency of updates to its topology, and
access patterns of the metric computation. Different graph representations result in high
performance deviations but are challenging for programmers to predict (Hunt and John
2011; Shirazi 2003).
There exist many frameworks for the efficient analysis of static graphs (Bader et al. 2008;

Batagelj et al. 1998; Malewicz et al. 2010). While they are all built for efficient analysis, the
graph representation is fixed and selected by the developers. Many graph databases have
been developed to represent graph over time (McColl et al. 2009). While they allow for
complex queries of the graph over time and the storage of additional properties, they are
neither suited for a large number of updates nor the efficient computation of topological

Fig. 1 General application scenario of dynamic graph analysis
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graph properties for specific states (Ciglan et al. 2012). A lot of work has been done to
develop compact representations of graphs. These approaches do not focus on runtime
efficiency but on obtaining a small memory footprint (Blandford and et al. 2004). They
often are not even applicable to arbitrary graphs as they are developed for separable or
sparse graphs (Blandford et al. 2003; Sun et al. 2007). Special graph representations for
dynamic graphs have also been developed. Their underlying data structures are tuned for
memory (Madduri and Bader 2009) or runtime efficiency (Bader et al. 2009; Ediger et al.
2012; Macko 2014) but cannot be adapted to different scenarios.
Many approaches have been developed for profiling programs to facilitate their subse-

quent optimization. Frameworks like Pin (Luk et al. 2005) or JFluid (Dmitriev 2004) allow
the instrumentation of existing programs to collect statistics about CPU usage, memory
consumption, or call frequencies of code fragments. In addition to this instrumenta-
tion, Brainy (Jung et al. 2011) enables the optimization of the data structures used by a
program. Based on benchmarks of available data structures, the approach uses machine
learning to generate rules like, e.g., if operation o is called more than k times use data
structure d. After the analysis of a complete execution of the program, data structures are
exchanged based on these general rules. This approach is not applicable to the problem
of dynamic graph analysis because the generated rules are generalized for all data types
and do not take into account the specific runtime properties of handling vertices or edges
in specific lists.
Other approaches attempt to exchange the used data structures during run-time. Just-

in-Time data structures (JitDS) (DeWael et al. 2015) is an extension of the Java language
enabling the combination of multiple representations for a single data structure. For each
instance, swap rules can be defined by an expert programmer to declare when and how
to switch between representations. While this approach is powerful, it relies on the pro-
grammer’s intuition and foresight to define such rules. Chameleon (Shacham et al. 2009)
provides a framework for run-time profiling without the need to adapt the program. In
case the program uses data structure wrappers provided by the framework, data struc-
tures can be replaced during runtime which comes at the high cost of performing a
separate monitoring of all data structures. Based on fixed rules for exchanging data struc-
tures as well, CoCo (Xu 2013) requires the programmer to use wrappers provided by the
framework in order to optimize the selected data structures during run-time. With their
use of pre-defined rules that do not adapt to the current properties of the graph and
read accesses of the analysis, both approaches are not suited for the analysis of dynamic
graphs.
In previous work (Schiller et al. 2015), we presented a compile-time approach for opti-

mized data structure selection in the context of dynamic graph analysis.We benchmarked
five data structures as potential candidates and evaluated our approach for the computa-
tion of three graph metrics. In this article, we extend this work by benchmarking a total
of seven data structures, creating actual estimation functions via curve fitting, and evalu-
ating the impact on a total of seven graph metrics. Furthermore, we propose and evaluate
a run-time approach for the selection of optimal data structures during the execution of
an application to handle highly dynamic workloads.
The remainder of this article is structured as follows: We introduce our terminology in

Section “Terminology and notation”. In Section “Compile-time selection of efficient data
structures”, we describe our compile-time approach, discuss benchmarking and profiling
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results, and evaluate its performance benefits. We outline and evaluate our run-time
approach in Section “Run-time selection of efficient data structures” and summarize our
work in Section “Summary, conclusion, and outlook”.

Terminology and notation
In this Section, we introduce our terminology and notations for graphs, dynamic graphs,
and their analysis. We introduce the different lists for representing graphs in mem-
ory as well as the operations required to adapt them over time and access them for
analysis. Finally, we define the problem of selecting the best data structures for these
lists.

Graphs and adjacency lists

A graph G = (V ,E) consists of a vertex set V = {v1, v2, . . . } and an edge set E. In
undirected graphs, edges are unordered pairs of vertices and ordered pairs in directed
graphs. The adjacency list of a vertex in an undirected graph is then defined as adj(v) :=
{{v,w} ∈ E}. For directed graphs, incoming and outgoing adjacency lists are defined by
in(v) := {(w, v) ∈ E} and out(v) := {(v,w) ∈ E}. In addition, the vertices with bidirec-
tional connections are commonly stored in the neighborhood list, i.e., n(v) := {w ∈ V :
(w, v) ∈ in(v) ∧ (v,w) ∈ out(v)}.

Dynamic graphs

As a dynamic graph, we consider a graph whose vertex and edge sets change over time.
Each change is represented by an update of V or E that adds or removes an element.
Applying any of these updates add(v), rem(v), add(e), and rem(e) implies themodification
of V , E, and adjacency lists.
We consider a dynamic graph at an initial state G0 = (V0,E0) and its development over

time:G0,G1,G2, . . . . The transition between two statesGi andGi+1 of the graph can then
be described by a set of updates we refer to as a batch Bi+1. Then, the complete transition
of a dynamic graph over time can be understood as the consecutive application of batches
to it: G0

B1−→ G1
B2−→ G2

B3−→ . . . .

Analysis of dynamic graphs

Analyzing a dynamic graph means to determine its topological properties at certain
states, e.g., for G0,G1,G2, . . . . Examples of such topological metrics are the degree distri-
bution (DD), connected components (C), assortativity (ASS), clustering coefficient (CC),
rich-club connectivity (RCC), all-pairs-shortest paths (SP), and betweenness centrality
(BC).

Representing a dynamic graph in memory

For directed and undirected graphs, different lists are required to represent the graph
and all adjacencies in memory. For both types, the set of all vertices V and the set of all
edges E must be stored. For each vertex of an undirected graph, the list of all adjacent
edges adj must be represented. In the case of directed graphs, separate lists of incoming
and outgoing edges (in and out) as well as neighboring vertices (n) must be maintained.
Hence, there is a total of 6 different lists which we denote as L := {V ,E, adj, in, out, n}.
Each list stores either edges (e) or vertices (v), denoted as T := {v, e}. We refer to this
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element type stored in a list by t : L → T with t(V ) = t(n) := v and t(E) = t(in) =
t(out) = t(adj) := e.
Each list must provide operations to modify it and retrieve certain information. To cre-

ate and maintain a list, it must provide means to be initialized (init), add elements to it
(add), and remove existing elements (rem). It must provide operations to fetch a specific
element using a unique identifier (get) or iterate over all elements (iter). Often, it is also
necessary to retrieve a random element from a list (rand), determine its cardinality (size),
or determine if a specified element is contained in the list (cont).
The execution of add, rem, and get can be successful or fail depending on the current

state of the list. Likewise, the execution of cont can return true or false. For example,
adding vertex v to V fails in case it already exists while the removal of e from E is success-
ful in case the edge exists. Similarly, the result of a contains operation can be true or false,
also considered as success or failure. Depending on the data structure used to implement
a list for storing elements of a specific type, the runtime can differ significantly when an
operation fails compared to a successful execution. We do not need to make this distinc-
tion for the other operations: size and iter can not fail and rand returns null in case the
list is empty.
Therefore, we distinguish between successful (s) and failed (f ) execution of add,

rem, get, and cont and consider a set O of 12 different operations: o ∈ O :=
{init, adds, addf , rems, remf , gets, getf , iter, rand, size, conts, contf }.

Problem definition

In this article, we consider the problem of finding the most efficient data structures for
representing a dynamic graph during analysis in memory. Assume D to be a set of data
structures that implement all required operations. Then, we must find the most effi-
cient configuration cfg which maps each list to a data structure: cfg : L → D. For
undirected graphs, this means to select data structures for V , E, and adj while directed
graphs require data structures for in, out, and n in addition to V and E. In the fol-
lowing, we focus on undirected graphs since all results can be transferred to directed
graphs.

Compile-time selection of efficient data structures
In this Section, we describe a compile-time approach for the selection of efficient data
structures for the analysis of dynamic graphs. Afterwards, we discuss benchmarking
results for different data structures and give examples. Then, we present results of oper-
ation counts obtained during profiling for the computation of graph metrics and the
adaptation of a dynamic graph. Finally, we evaluate our approach on two real-world
datasets and summarize our results.

Compile-time approach

Our approach for optimizing the data structure selection for dynamic graph analysis is
based on the assumption that workload and characteristics of the dynamic graph do not
change drastically over time. We refer to such a workload as constant and call a workload
non-constant in case access patterns or list sizes change significantly over time. In this
case, we can estimate the workload for the complete analysis based on the first batches
and determine the best configuration.
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To understand and estimate the performance of data structures when executing specific
operations, we benchmark them beforehand. This preparation phase must be executed
only once for a platform where the application should be executed.
An overview of our compile-time approach is given in Fig. 2 and it consists of five

components: First, a given application is instrumented to enable profiling. Second, it is
executed for some batches to record access statistics for all lists. Third, these access statis-
tics are aggregated by the profiling component. Fourth, these statistics are analyzed using
the runtime estimations obtained during benchmarking to recommend the most effi-
cient configuration. Fifth and finally, the program is re-compiled to use the recommended
configuration.

Benchmarking

The runtime of executing an operation o ∈ O on a list l ∈ L depends on the element type
t(l) ∈ T , the data structure d ∈ D used to implement the list, and its size sl ∈ N

+. To
estimate this runtime, we perform measurements for data structures and element types
with all operations and list sizes s ∈[ 1, smax]. As a result, we obtain a set of measurements
for each list size s:md,t,o :[ 1, smax]→ R

k .
To obtain an estimation function ed,t,o from the runtime measurements md,t,o, we fit

the following functions using the nonlinear least-squares (NLLS) Marquardt-Levenberg
algorithm provided by gnuplot1:

• f1(x) = a + b · x + c · x2
• f2(x) = a + b · log(x)
We chose these functions to reflect the complexity classes O(1), O(s), O(s2), and

O(log(s)) of the operations on different data structures. We fit f1 and f2 via median value
and standard deviation of the data points inmd,t,o and select the function with the smallest
error as ed,t,o.

Instrumentation, execution, and profiling

Two actions are performed during the analysis of a dynamic graph: graph modification
and metric computation. Graph modification means that the in-memory representation
is changed to reflect the updates that occur in the graph over time, i.e., add and rem. For
the computation of metrics, read operations like iter, size, and contains are executed on
certain lists depending on metrics and algorithms.
In the first part of our approach, we instrument a given application such that

these accesses to data structures can be recorded. Then we execute the instrumented
application for some batches and aggregate the recorded access statistics for each list l
and o as cl : O → N. We refer to cl as operation counts. In addition, we record the average

Fig. 2 Compile-time approach for the selection of efficient data structures
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size of all instances of list l as sl. For example, cV (add) records how many elements have
been added to V and sadj denotes the average size of all adjacency lists adj.

Analysis and re-compilation

The analysis component takes as input operation counts cl and average size sl for all lists
l generated during profiling. From that, we estimate the runtime of any data structure d
as

∑
o∈O cl(o) · ed,t(l),o(sl). Then, the most efficient data structure d∗ ∈ D for executing cl

for sl can be estimated by

d∗(cl, sl) = argmin
d∈D

∑

o∈O
cl(o) · ed,t(l),o(sl).

Hence, the most efficient configuration for all lists l can be estimated as

cfg∗(l) := d∗(cl, sl), l ∈ L.

As a result, the analysis components returns the configuration cfg∗ which was estimated
to be the most efficient for executing the operation counts for the given list sizes. Finally,
we re-compile the application to use cfg∗.

Benchmarking results

We performed a measurement study of Java data structures to obtain md,v,o(s) and
md,e,o(s) for sizes s ∈[ 1, 105], and seven data structures that provide the required oper-
ations: Array (A), ArrayList (AL), HashArrayList (HAL), HashMap (HM), HashSet (HS),
HashTable (HT), and LinkedList (LL), i.e., D = {A,AL,HAL,HM,HS,HT , LL}. HashAr-
rayList is an implementation that stores all elements simultaneously in a HashSet and
an ArrayList to take advantage of their respective performance for different opera-
tions as proposed by Xu (2013). For the other data structures, we used the default Java
implementations.
All measurements are executed on an HP ProLiant DL585 G7 server running a Debian

operating system with 64 2.6GHz AMD OpteronTM 6282SE processors. We guaranteed
that no more than 60 processes were running during the evaluation executed using a 64-
bit JVM version 1.7. Our implementation of the benchmarking phase is available as an
open-source repository2.
We used implementations of vertices and edges and repeated all measurements 50

times. A vertex v is identified by a unique index id(v). An edge e = (v,w) is identi-
fied by a 32-bit (int) hash computed from the indexes of the connected vertices, i.e.,
h(e) := (

id(v) + id(w) · 216) mod 32. Selected results formd,e,o and ed,e,o with s ∈[ 1, 100]
are given in Fig. 3. Measurements for all operations and list sizes can be found in the
technical report3.
As examples, we list the estimation functions for gets and getf in Table 1.
The fastest data structure for each operation and list sizes between 10 and 100,000

based on our estimation functions is given in Table 2. The runtime for certain operations
differs greatly for data structures and list sizes. For example, Array is the fastest data
structure for testing the existence of an edge for small list sizes (s = 10) while HashSet or
HashArrayList are the better choice for larger lists. Adding an edge to a list of sizes 10 or
100 is fastest forArrayList while hash-based data structures should be preferred for larger
lists.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3 Selected runtime estimations (fitted functions ed,t,o with median of 50 measurementsmd,t,o) for list
sizes s ∈[ 1, 100]

For storing vertices, Array and HashArrayList appear to be the fastest data structures
overall (cf. Table 2). They perform best for most operations and list sizes.
When storing edges, Array and ArrayList are only fast for small lists of size 10. As the

lists grow, the fastest data structure depends on the respective operation and even changes
again the more the lists grow (cf. Table 2). For example, HashSet and HashTable perform
best when executing adds on lists of size ≥ 1,000 while ArrayList is fastest for lists of size
10 and 100.
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Table 1 Estimation functions of gets and getf depending on data structure and element type

t d ed,t,gets (x) ed,t,getf (x)

v

A 23.74 + 0.91 · x − 0.01 · x2 16.72 + 0.15 · x − 0.00 · x2
AL 24.49 + 1.41 · x − 0.01 · x2 41.09 + 1.82 · x + 0.04 · x2
HAL 47.58 + 0.18 · x − 0.00 · x2 60.36 + 3.23 · x − 0.00 · x2
HM 73.57 + 0.93 · x − 0.00 · x2 57.48 + 15.46 · log(x)
HS 56.20 + 40.23 · x − 0.18 · x2 54.05 + 40.99 · x − 0.17 · x2
HT 153.87 + 18.14 · log(x) 98.70 + 19.96 · log(x)
LL 39.80 + 0.24 · x − 0.00 · x2 26.28 + 14.04 · x + 0.22 · x2

e

A 22.92 + 1.88 · x + 0.02 · x2 27.78 + 1.51 · x + 0.02 · x2
AL 23.49 + 3.65 · x − 0.00 · x2 29.81 + 3.63 · x − 0.00 · x2
HAL 51.42 + 5.26 · x − 0.02 · x2 53.08 + 4.77 · x − 0.02 · x2
HM 371.51 + 1.38 · x − 0.00 · x2 357.04 + 1.44 · x − 0.00 · x2
HS 33.45 + 15.87 · x − 0.04 · x2 69.20 + 34.08 · x + 0.01 · x2
HT 442.95 + 2.09 · x − 0.01 · x2 407.83 + 5.01 · x − 0.04 · x2
LL 31.36 + 11.18 · x + 0.10 · x2 35.44 + 10.59 · x + 0.11 · x2

The reason for the difference in performance when storing vertices or edges lies in the
identification of elements. Vertices are identified by a unique identifier which can simply
be used as the index of Array, ArrayList, or HashArrayList. Therefore, performing con-
tains or get operations translates to a simple lookup at a deterministic location inmemory.
In contrast, hash-based data structures perform the overhead of looking up this identi-
fier in the corresponding hash table and potentially determining its location in memory.
Edges are identified by a hash computed from the two unique indexes of the adjacent ver-
tices. Their lookup in an array-based data structure is time consuming since the complete
list has to be scanned. Representing all possible indexes of an edge list in an array-based
data structure would require each list to map all possible hash values, and hence always
be of size 232 which is infeasible. While the lookup in array-based data structures is still
faster for small lists, hash-based data structures are faster for larger lists as they only need
to check for the respective hash in their hash table.
From these results, we assume that array-based data structures should be recom-

mended for storing vertices. Similarly, we see that for storing small edge lists, array-based

Table 2 Fastest data structure according to our estimation for different list sizes

o
v e

101 102 103 104 105 101 102 103 104 105

init LL LL LL LL LL LL LL LL LL LL

adds AL HS HAL HAL HS AL AL HS HT HT

addf A A A HS A A HS HS HS HS

rems A A A A A A A HS HM HM

remf A A A A A AL HS HS HS HM

gets A LL A A LL A HAL LL HM HT

getf A A A A A A HAL LL HM HM

iter AL HAL HAL HAL LL AL HAL LL LL A

rand A HAL A A A AL HAL A A HAL

size A LL A A A A A A A HAL

conts A A A A LL A HS HS HAL HS

contf A A A A HS A HS LL HM HS

A Array, AL ArrayList, HAL HashArrayList HM HashMap, HS HashSet, HT HashTable, LL LinkedList
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data structures should be recommended as well. For larger edge lists with more than 100
elements, there is not a single data structure which appears best. Hash-based data struc-
ture perform better than Array and ArrayList but which one depends on the combination
and count of the performed operations.

Profiling results

We instrumented the graph component of DNA (Dynamic Network Analyzer)4, a frame-
work for the analysis of dynamic graphs (Schiller and Strufe 2013), to record cl and sl for
all lists l ∈ L during graph modification and metric computation using AspectJ (Kiczales
et al. 2001). In the following, we present such results generated using the profiling com-
ponent. With these operation counts and average list sizes, we can perform an analysis to
estimate the most efficient configuration.
First, we compare cl for two different workload types of dynamic graphs: constant and

non-constant workload. We refer to a workload as constant in case the list sizes and opera-
tion counts do not change significantly over time. In the example shown in Fig. 4a, batches
only consist of a similar amount of edge removals and additions. Such a workload is char-
acterized by an equal number of additions and removals to E and adj without additions
to V . We consider a workload as non-constant in case the list sizes or operation counts
change over time. Such a workload is produced when growing a graph, i.e., adding new
vertices and further interconnecting them (cf. Fig. 4b). This workload is reflected by add
operations on V , E, and adj but not a single removal.
Second, we observe cl during the computation of seven metrics on an instance of a

dynamic graph: degree distribution, connected components, assortativity, clustering coef-
ficient, rich-club connectivity, all-pairs shortest paths, and betweenness centrality. We
selected these metrics to cover all operations and their combinations commonly found in
graph analysis5. To compute the degree distribution of a graph, an algorithm iterates once
over V and determines the degree of each vertex using the size operation of its adjacency
list adj (cf. Fig. 5a). Similar operation counts can be observed for the rich-club connec-
tivity (cf. Fig. 5e) with the difference that the iteration is performed over E instead of V .
To determine the connected components of a graph, a breadth-first search is performed
by iterating over V and the adjacency lists adj (cf. Fig. 5b). All-pairs-shortest paths and
betweenness centrality are computed by performing similar operations from every ver-
tex resulting in a higher count (cf. Fig. 5f and g). Computing the clustering coefficient of
a graph implies an iteration over all vertices and iterations over all adjacency lists adj (cf.

(a) (b)
Fig. 4 Operation counts for graph modification (o ∈ {init, adds , size, contf , gets , rems})
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(a) (b) (c)

(d) (e)

(f) (g)

Fig. 5 Operation counts for metric computation (o ∈ {size, iter, conts , contf })

Fig. 5d). On these adjacency lists, contains operations are executed to check which neigh-
bors of a vertex are connected to each other. Some of these operations fail, others are
successful.
During the profiling phase, executed for each program at the beginning of our compile-

time approach, the counts for graph modification as well as metric computation are
recorded and used as basis for the recommendation.

Evaluation

Now, we evaluate our compile-time approach on the analysis of two real-world dynamic
graphs: one that produces a constant workload (MD) and a second one that generates
a non-constant workload (FB). Our analysis scripts for performing the evaluation are
available as an open-source repository6.

Datasets

MD is the dynamic graph obtained from a molecular dynamics simulation of an enzyme,
the para Nitro Butyrate Esterase-13 (Schiller et al. 2015). The initial graph consists of 491
vertices representing the residues of the enzyme and 1,904 edges. Edges exists between
two vertices in case their Euclidean distance is shorter than 7Å. During the simulation, a
total of 20,000 snapshots were taken. On average, each batch consists of 70 edge additions
and 70 edge removals resulting in a constant workload (cf. Fig. 6a).
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(a) (b)

Fig. 6 Dataset statistics (development of |V| and |E| over time)

The FB dataset is a friendship graph of Facebook taken from KONECT, the Koblenz
Network Collection (Kunegis 2013). It represents users and their friendship relations as a
list of edges sorted by the timestamp they appeared. We take the initial graph consisting
of the first 1,000 edges and 898 vertices. With each batch, the next 100 edges and cor-
responding vertices are added creating a non-constant workload. After 200 batches, the
graph consists of 11,941 vertices and 21,000 edges (cf. Fig. 6b).
For both datasets, we create the initial graph and apply the first 20 batches. After the

application of each batch one of the following metrics was computed: DD, C, RCC, ASS,
SP, CC, or BC. Based on the operation counts cl of the 20 batch applications and metric
computations, we determine the recommended data structures for V , E, and adj.
Then, we perform the same computation with the recommended data structures, as

well as configurations where V , E, and adj are all using Array, ArrayList, HashArrayList,
HashMap, HashSet, HashTable, or LinkedList, referred to as basic configurations. In total,
we compute the properties of MD for all 20,000 states and the properties of FB for 201
states. For comparison, we compute the runtime of all seven configurations relative the
configurations recommended by out approach. All results presented here are the median
speedup of 50 repetitions.

Constant workload

For MD, our approach recommended the use of HashMap for E for all metrics (cf.
Table 3). It recommended to use either Array or ArrayList for adj and Array or HashAr-
rayList for V . Since the dataset creates a constant workload, we expect that our rec-
ommendation is applicable and therefore well-suited for the analysis of the complete
dataset.
The relative speedup of our recommended configurations over all seven basic configu-

rations is given in Fig. 7. Our recommended data structures achieve a speedup up to 5.4×
and always outperform the basic configurations. The relative performance is very simi-
lar when computing degree distribution, connected components, and assortativity. This
is most probably because these three metrics have a similar access pattern to the graph
(cf. Fig. 5a, b, and c). For the other metrics (CC, RCC, SP, and BC), the relative speedup
greatly differs with no basic configuration outperforming the others.

Non-constant workload

After profiling for the first 20 batches of FB, our approach recommended the use of
HashArrayList for representing E for all metrics. With a single exception, the same data
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Table 3 Recommendations for V , E, and adj depending on workload and computed metric

Metric
Constant workload (MD) Non-constant workload (FB)

V E adj V E adj

All-pairs shortest paths A HM AL HAL HAL LL

Assortativity A HM A HAL HAL A

Betweenness centrality HAL HM AL LL HAL LL

Clustering coefficient A HM A HAL HAL AL

Degree distribution A HM A HAL HAL AL

Rich-club connectivity A HM AL HAL HAL AL

Connected components A HM AL HAL HAL AL

structure was recommended for V while the use of either Array, ArrayList, or LinkedList
was proposed for adj. We consider this workload to be non-constant because the sizes
of V and E increase with each batch. We expect that this significant change in list sizes
renders the initial profiling meaningless for the far longer running analyses of all 200
batches. Based on the profiling during the first twenty batches, we assume a total number
of 1, 000+ 20 · 100 = 3, 000 edges as input of our analysis. But after 200 batches, E grows
to a total of 21,000 elements, 7× more than the list size we assume based on our initial
profiling. Therefore, we expect that the recommendations generated by our approach are

(a) (b) (c)

(d) (e)

(f) (g)

Fig. 7 Speedup of compile-time approach (for analysis of constant workload (MD))
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not always the best choice throughout an analysis and can be outperformed by the other
configurations.
The relative speedup for the analysis of FB for all metrics is shown in Fig. 8. Note that

the speedup for LinkedList lies between 7.5 and 245 for computing DD, C, ASS, and CC
and is truncated in these plots. As for the constant workload, the relative speedups for
computing degree distribution, connected components, and assortativity are similar. For
all metrics, there is at least one standard configuration that closely matches the runtime
of the recommended data structures. When computing all-pairs shortest paths, the stan-
dard configurations with Array and ArrayList outperform our recommendations with
only 80% of the total runtime.

Summary of the compile-time approach

The fact that our recommended configurations outperform all other tested combinations
for MD suggests that our estimation of the actual runtime based on ed,t,o is accurate
and the recommendation valid for all subsequent batches. We have shown that our
compile-time approach achieves speedups over basic configurations in case of a constant
workload. These recommendations are based on a short profiling phase and the results
independent of the duration of the analysis afterwards.

(a) (b) (c)

(d) (e)

(f) (g)

Fig. 8 Speedup of compile-time approach (for analysis of non-constant workload (FB))
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In contrast, our evaluation has shown that our compile-time approach is not always able
to accelerate the analysis for all metrics when applying a non-constant workload (FB). We
assume that this is because of the increase of list sizes over the complete analysis period
which also affects the operation counts.
Hence, we conclude that our compile-time approach is well suited for constant but not

for non-constant workloads. Therefore, we propose a run-time approach that analyzes
the workload during the execution of an application and exchanges data structures
accordingly to account for changes in list sizes and operation counts over time.

Run-time selection of efficient data structures
In this Section, we present a run-time approach for the selection of efficient data struc-
tures for the analysis of dynamic graphs. Then, we perform a performance analysis using
an artificial workload. Finally, we summarize the insights gained from the analysis.

Run-time approach

For our run-time approach, we assume that the workload (i.e., list sizes or operation
counts) of an application changes drastically over time. In such a case, there is not a sin-
gle data structure configuration which performs best throughout the complete execution
and it would be necessary to continually change the data structures during execution for
optimal performance. Based on this assumption, we propose an approach to monitor the
list sizes and operation counts at run-time, use that information to make regular recom-
mendations for the best configuration for the current workload, and finally exchange the
data structures used to represent the dynamic graph in memory.
Our approach for the run-time optimization of graph data structures consists of the

following components, shown in Fig. 9: instrumentation, execution, profiling, analysis,
and hot swap.
The instrumentation adds capabilities to the program to record the access statistics and

list sizes during execution and perform a hot swap of data structures if required. Like
in our compile-time approach, the profiling component regularly generates operation
counts and average list sizes. The analysis component takes these statistics as well as the
cost functions generated during the benchmarking phase as input to recommend a data
structure configuration. In case this recommendation differs from the currently used con-
figuration, the hot swap component replaces the lists in memory with new instances of
the recommended data structure. Afterwards, the execution of the program is continued.

Hot Swap In our compile-time approach, the recommended data structures are assigned
to the respective lists and the program is re-compiled. In the run-time approach, these

Fig. 9 Run-time approach for the selection of efficient data structures
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changes must be applied during the execution of the program. In case a new recommen-
dation appears more efficient than the current one, we pause the execution and exchange
the current data structures for the recommended ones. To exchange the data structure
we create new instances of the recommended data structure and fill them with the ele-
ments representing the current state of the graph. Afterwards, we update all references
that point to the respective list.

Performance analysis

To analyz the performance of our run-time approach, we generated an artificial workload
where the operations executed on V and E as well as their sizes change over time to inves-
tigate how our approach performs compared to basic configuration for highly dynamic
scenarios. We execute this workload for each of the 7 basic data structure configurations
we used before and for our run-time approach. The run-time approach always begins
execution using Array as the data structure for all lists. For each execution, we measure
the runtime for processing the workload as well as the overhead of recommending data
structures and exchanging them.

Workload and execution To understand the characteristics of the performance in detail,
we designed a synthetic workload. It consists of 4 separate steps, each of which is applied
first to V and then E, resulting in a total of 8 different operations on the data structures:

1. cont:V, cont:E - 100k contains operations of random elements
2. get:V, get:E - 100k get operations of random elements
3. iter:V, iter:E - 10k iterations over all elements
4. add:V, add:E - 1k additions of new elements

Each of these individual operations is performed 10 times before moving on to the next,
forming a round consisting of 80 operations. We execute 4 such rounds, leading to a total
of 320 separate operations.
We start such an execution with a random graph consisting of 10k vertices and edges.

We then apply add:V and add:E 10 times at the end of each round, leading to a final list
size of 50k elements once the workload has finished executing (cf. Fig. 10).
All runtimes shown in the following are the average of 50 repetitions.

Basic configurations The runtimes for executing a single round of the workload using
the seven basic configurations are shown in Fig. 11a.

Fig. 10 List sizes (development of |V| and |E| during application of the artificial workload)
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As the sizes of V and E do not change during the execution of cont, get, and iter, their
runtimes only depend on the data structure used but remain similar for all repetitions.
In contrast, each application of add:V and add:E increases the respective list size by 1k
leading to an increase in their runtime with each repetition.
As indicated by our benchmarks, array-based data structures (Array, ArrayList,

HashArrayList) are most efficient for the execution of cont:V, get:V, and iter:V. For add:V,
hash-based data structures (HashArrayList, HashSet, HashTable) perform best.
For operations executed on E, the results are more diverse: While HashArrayList,

HashMap, and HashSet are the best choices when executing cont:E, HashMap is the
fastest data structure for obtaining elements (get:E). When executing iter:E, ArrayList

(a)

(b)

Fig. 11 Workload runtimes (execution of artificial (non-constant) workload, round 3)
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performs best. When adding elements, all hash-based data structures (HashArrayList,
HashMap, HashSet, HashTable) outperform the others.
HashArrayList always performs well when either HashSet or ArrayList do so. This is

expected because HashArrayList takes advantage of their respective benefits to execute
these operations and shows the usefulness of this combined data structure.

Run-time approach The best data structure for the execution of an operation depends
on the element type and its size. Therefore, the data structures recommended by the
analysis component of our run-time approach should change accordingly as the artificial
workload is executed. These recommendations, depending on operation, element type,
and size are shown in Table 4.
Our approach correctly recommends the data structure which ran the fastest during the

execution using the basic configurations (cf. Fig. 11a): For all investigated list sizes, Array
is recommended for the execution of cont:V and get:V. When executing get:V, ArrayList
is proposed and HashSet for adding vertices (add:V ). When obtaining elements from E
(get:E),HashMap is recommended for all sizes. For the execution of cont:E,HashArrayList
is recommended for list sizes below 20k while HashSet is selected for larger ones. Simi-
larly, Array is recommended for executing iter:E on lists with 30k and more elements but
ArrayList for smaller ones. When executing add:E, the recommendation changes during
the second round: HashSet is recommended for |E| ≤ 21k and HashMap for larger ones.
The runtimes of our run-time approach (denoted as RT) for executing a single round

of this workload are shown in Fig. 11b. Our approach achieves runtimes consistent with
the expectation of following our recommendation of the fastest basic configuration (cf.
Fig. 11a). The only anomaly introduced in the run-time approach are spikes that can occur
on the first execution of each operation batch. The reason for this behavior is that we have
to execute a new operation at least once on the old data structure before we can recognize
that swapping the data structure would be beneficial. For example, take the execution of
get:E: During the first execution of this operation, E is still stored in HashSet, the best
choice for the previously executed cont:E. During this first execution, the accessed oper-
ations are recorded by the profiling component and used by the analysis component to
recommend a data structure that is best suited for this new workload. Afterwards, the hot
swap component replaces these data structures with the recommended ones which leads
to the performance improvement for the following executions.
When using our run-time approach, overhead is produced by the recommendation of

data structures and the regular execution of the hot swap component. The cumulative
overhead of these two operations for all 4 runs is shown in Fig. 12. At a total execution
time using our run-time approach of 821.24 sec, this overhead accounts for 6, 11%. The
overhead is composed of the time for recommending data structures (18.82 sec, 2.29%)
and hot swap (31.38 sec, 3.82%).

Table 4 Recommended data structures (for workload and set size, underlined: swap required)

list size cont:V get:V iter:V add:V cont:E get:E iter:E add:E

10k A A AL HS HAL HM AL HS

20k A A AL HS HS HM AL HS, HM

30k A A AL HS HS HM A HM

40k A A AL HS HS HM A HM
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Fig. 12 Overhead of run-time approach (consisting of hotswap and recommendation)

Comparison For the artificial workload, our approach, including its overhead, achieves
a speedup over all basic configurations (cf. Fig. 13). The fastest runtime of a basic config-
uration is achieved by HashArrayList with a speed of 1.12. This is not surprising as this
data structure combines the benefits ofHashSet and ArrayList both of which are also rec-
ommended by our approach. The highest speedup of 7.34 is achieved in comparison to
the basic configuration using HashSet for all lists.

Summary of the run-time approach

We proposed a run-time approach for recommending and exchanging the data struc-
tures used to represent a dynamic graph in memory. We evaluated our approach using an
artificial, regularly changing workload. Our approach outperformed basic configurations
by up to 7.34×. This shows that in scenarios where the workload behavior changes over
time, our approach has the potential to achieve significant performance improvements
for the analysis of dynamic graphs. Some questions, however, remain open and need to
be investigated in future work:
What is the best recommendation given a realistic execution history? We currently

assume that any overhead is justified when making our recommendation, which is obvi-
ously not a generally valid assumption. The problem of determining whether a system
has shifted its workload sufficiently that the cost of the overhead of swapping data

Fig. 13 Speedup of run-time approach (for application of artificial workload, 4 rounds)
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structures is outweighed by the performance gain of a faster data structure is not triv-
ial. This problem can be broken up into several sub-problems: How can the difference
between a dynamic system changing its behavior and just making a few anomalous
requests be determined? We currently assume that a realistic application of dynamic
graph analysis will not erratically change its workload, but rather stay consistent to
a slowly changing usage profile. We believe that this assumption is valid and sup-
ported by real world data, but the degree of consistency and the velocity of overall
change varies from application to application. Determining these factors is critical in
order to answer the above question and make an accurate recommendation. How much
information should be taken into account when making our recommendations? This
question pertains to how much of the execution history is relevant for our recommen-
dation. On the one hand, correct processing of more information can never make the
result less accurate, on the other hand taking into account too much information might
make the system inflexible over time and significantly increase the overhead of our
recommendation.
It may not be avoidable to use a certain degree of machine learning to make the best

recommendation due to the sheer number and complexity of the involved variables.
On a lower level, closer to the implementation of data structures themselves, it should

be investigated how the actual exchange of data structures can be improved. Instead of
treating the swap between any two data structures over the same interfaces, more efficient
ways to swap between specific data structures should be investigated.

Summary, conclusion, and outlook
In this work, we considered the problem of finding the most efficient data structures for
representing a graph for the application of dynamic graph analysis.
We proposed a compile-time approach for optimizing these data structures. As a case

study, we performed a measurement study of seven data structures, fitted estimation
functions from the results, implemented our approach on top of a Java-based frame-
work for dynamic graph analysis, and evaluated it using real-world datasets. Our results
show that our optimization achieves speedups of up to 5.4× over basic configurations on
real-world datasets.
The data structure configuration proposed by our approach outperformed all seven

default configurations for the computation of all metrics for a constant workload. For
non-constant workloads, we achieved speedups in many but not all cases. Thereby, our
approach is well-suited for improving the analysis of dynamic graphs with a constant
workload but not capable of adapting to the drastic changes of list sizes that can occur in
non-constant workloads.
To close this gap, we developed a new run-time based approach for the adaptation of

graph data structures during the execution of an application. We analyzed the perfor-
mance of our approach using a synthetic workload designed to capture most operations
and generate a non-constant workload. In this scenario, our approach performed as
expected and achieved speedups over basic configuration of up to 7.3×.
In future work, we will further investigate the benchmarking phase of our approaches

to generate more appropriate cost estimation functions. In addition, we will perform an
extensive parameter study to understand the different aspects of the proposed run-time
approach and look for methods to determine when to use which approach.
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Endnotes
1http://gnuplot.sourceforge.net
2https://github.com/BenjaminSchiller/DNA.gdsMeasurements
3http://bit.ly/1UT9pnX
4https://github.com/BenjaminSchiller/DNA
5We omitted the computation of motif frequencies used in previous work because

the resulting operation counts and runtimes are very similar to those observed for the
clustering coefficient.

6https://github.com/BenjaminSchiller/DNA.gdsAnalysis
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