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Abstract 

The analysis of network data has become an increasingly prominent and demanding 
field across multiple research fields including data science, health, and social sciences, 
requiring the development of robust models and efficient computational methods. 
One well-established and widely employed modeling approach for network data 
is the Exponential Random Graph Model (ERGM). Despite its popularity, there is a rec-
ognized necessity for further advancements to enhance its flexibility and variable 
selection capabilities. To address this need, we propose a novel hierarchical Bayesian 
adaptive lasso model (BALERGM), which builds upon the foundations of the ERGM. The 
BALERGM leverages the strengths of the ERGM and incorporates the flexible adaptive 
lasso technique, thereby facilitating effective variable selection and tackling the inher-
ent challenges posed by high-dimensional network data. The model improvements 
have been assessed through the analysis of simulated data, as well as two authentic 
datasets. These datasets encompassed friendship networks and a respondent-driven 
sampling dataset on active and healthy lifestyle awareness programs.
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Introduction
Multiple disciplines such as sociology, political science, and biology have extensively 
employed network analysis and random graph studies to comprehend and represent 
relationships among entities, ranging from friendships and global trading partners to 
proteins and genes. Early models generating random graphs assumed equal probabil-
ity among graphs of the same size or independence among edges, but these models 
had evident limitations (Erdös and Rényi 1959). Holland and Leinhardt presented the 
next advancement by introducing a model for directed graphs that solely employed 
independent dyads (Holland and Leinhardt 1981). Subsequent work overcame the 
limitations of independence assumptions and introduced Markov random graph 
models, establishing the foundation for ERGMs that have been endured for decades 
(Frank and Strauss 1986), however, traditional statistical methods have limitations in 
effectively capturing the complexities of relational data. The ERGM has emerged as a 
valuable tool for quantifying such data, elucidating how local interactions shape the 
overall structure of a network. ERGMs acknowledge and capture the inherent interde-
pendence embedded within network structures. The probability of an edge’s existence 
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is influenced not only by the presence of other edges but also by various network con-
figurations, such as triangles, and the characteristics of nodes throughout the entire 
network. This assumption of dependence aligns closely with our intuitive understand-
ing of how networks are formed and operate. It is noteworthy that the development 
of ERGMs by Frank and Strauss (1986) was primarily motivated by the recognition of 
tie-dependence in networks.

Fundamentally, ERGMs are analogous to logistic regression when the dyads are 
independent, offering regression-like analysis on random networks. ERGMs estimate 
the probability of tie existence between pairs of nodes in a network. Since ERGMs 
share commonalities with logistic regression, let us recall the traditional lasso method 
in classical linear regression and discuss its development and relation to Bayesian the-
ory, providing hints about the potential problems developing lasso estimates on the 
exponential random network. The lasso of Tibshirani is a method for simultaneous 
shrinkage and model selection in regression problems. Tibshirani (1996) In the con-
text of linear regression, the lasso is a regularization technique for simultaneous esti-
mation and variable selection where if y = Xβ + ǫ where y = (y1, y2, · · · , yn)⊤ is the 
response vector, X = (x1, x2, · · · , xp) is an n× p predictor matrix, β = (β1,β2, · · · ,βp) 
is a corresponding vector of regression coefficients, ǫ = (ǫ1, · · · , ǫn) are independent 
normal distributed errors, then the lasso estimates are defined as

where the second term in (1) is the so-called “ l1 penalty”. The tuning parameter � con-
trols the amount of penalty. Fan and Li (2001) studied a class of penalized models 
including the lasso. They proved that the lasso can perform automatic variable section 
because of the singularity of l1 penalty at the origin. If certain conditions are not satis-
fied, the lasso estimates could be inconsistent. To overcome the above issues, Zou in 
2006 and Wang et al. proposed to use an adaptive lasso that enjoys the consistency and 
the oracle properties: namely, it performs as well as if the true underlying model were 
given in advance. Zou (2006), Wang and Leng (2008) Tibshirani suggested that lasso 
estimates can be interpreted as posterior mode estimates when the regression param-
eters have independent and identical Laplace (i.e., double-exponential) priors. Tibshirani 
(1996) Targeting at finding this mode, several other authors studied subsequently differ-
ent Bayesian contexts. Yuan and Lin (2006), Park and Casella (2008), Leng et al. (2014), 
Alhamzawi and Ali (2018) However, all these studies are for linear regressions and they 
are not built on random networks.

In the context of ERGMs, estimation encounters computational challenges when 
there is dependence among dyads. These challenges are primarily attributed to the 
intractability of the normalizing constant and the issue of degeneracy. Chatterjee and 
Diaconis (2013) Intractability refers to the computational difficulties associated with 
calculating the normalizing constant, which ensures that the probability mass func-
tion sums to one. On the other hand, degeneracy refers to the phenomenon where 
the models assign a significant proportion of their probability mass to a small sub-
set of graphs. This leads to a cascading effect throughout the graph, resulting in the 

(1)β̂(lasso) = arg min
β

�y −
p

j=1

xjβj�2 + �
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model assigning most of its probability mass to very sparse or very dense graphs. 
Bayesian computational methods have proven instrumental in circumventing these 
challenges. Caimo and Friel were the first to develop complete Bayesian frameworks 
for network models, enabling the incorporation of Bayesian analysis into real-world 
networks, which often exhibit large-scale, high-dimensional, and complex structures 
with numerous attribute variables associated with nodes (Caimo and Friel 2011). Sub-
sequently, Caimo et al. integrated a transdimensional reversible jump Markov Chain 
Monte Carlo (RJMCMC) approach, initially introduced by Green (1995), with the 
exchange algorithm (Caimo and Friel 2013, 2014). This algorithm incorporates an 
independence sampler, utilizing a distribution that fits a parametric density approxi-
mation to the within-model posterior. This method is appealing in model selection 
since it relies exclusively on probabilistic considerations but is challenging computa-
tionally since it needs to estimate the posterior probability for each competing model. 
In scenarios with a high number of variables, the presence of numerous potential 
models becomes more pronounced. The increased dimensionality leads to a larger 
set of competing models, making the task of model selection more challenging and 
critical. This motivates the development of the penalized exponential random graph 
model developed in this paper.

While penalized estimation methods have been discussed in the context of graphi-
cal models by various researchers, these studies either lack a specific focus on ERGMs 
or fail to fully account for the inherent dependencies present in network data, often 
transforming the problem into generalized penalized linear regression. Meinshausen 
and Bühlmann (2006), Shojaie et  al. (2012), Shojaie and Michailidis (2010), Shojaie 
(2013), Fan et al. (2009) Motivated by the need to explore network model uncertainty 
and achieve parsimony in exponential random graphs, we propose a more flexible and 
adaptive lasso-type penalized model within the framework of the ERGM. This model 
aims to improve parameter estimations and prediction accuracy, enabling effective vari-
able selection within high-dimensional network data. Through comprehensive evalua-
tions and comparisons with existing methods, our model demonstrates its superiority 
in terms of efficiency and effectiveness in selecting significant variables. It promises sub-
stantial improvements in the field by addressing the critical challenge of model selection 
in the analysis of high-dimensional network data.

In summary, the utilization of Bayesian adaptive lasso model offers two prominent 
advantages: (1) Enhanced convergence speed and improved parameter mixing: adaptive 
lasso addresses a notable limitation of the conventional lasso regularization technique, 
which often exhibits sluggish convergence and difficulties in selecting significant vari-
ables within high-dimensional datasets. Consequently, it facilitates faster convergence 
and more effective mixing of parameters. This characteristic proves particularly advan-
tageous in scenarios involving extensive datasets or a substantial number of predictors. 
(2) Effective variable selection: Bayesian adaptive lasso exponential random graph model 
demonstrates exceptional proficiency in this task by automatically identifying pertinent 
variables while concurrently shrinking or eliminating less relevant ones. The process is 
facilitated through the utilization of multiple chains generated by a parallel direction 
sampling algorithm, which enhances the efficiency and accuracy of variable selection. 
These benefits are the primary focus of the discussed article.
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This article is structured as follows. Section  2 provides a basic introduction to 
exponential random graph models, offering a foundation for the subsequent discus-
sions. In Sect. 3, we introduce a Bayesian Exponential Adaptive Lasso Model for the 
exponential random graph, which enhances the Monte Carlo maximum likelihood 
method proposed by Geyer and the Bayesian ERGM (BERGM) presented by Caimo 
and Friel (Geyer 1991; Caimo et  al. 2022). Section  4 presents a derivation of the 
Gibbs sampling theory underlying the model, shedding light on the underlying theo-
retical framework. In Sect. 5, we introduce the adaptive parallel direction sampling 
algorithm, which is incorporated into the Gibbs sampling theory to improve the 
mixing of the Monte Carlo chains, thereby enhancing the overall performance of the 
model. Section 6 outlines the algorithm procedure and provides a comparative anal-
ysis with the BERGM method proposed by Caimo et al., highlighting the strengths 
and advantages of our proposed approach. Caimo and Friel (2013), Caimo and Friel 
(2014), Caimo et al. (2022) In Sect. 7, we describe the network dataset called Faux 
Dixon High, which is used to test the model and present simulation results. Addi-
tionally, this section includes the results of applying the proposed model to data col-
lected in a study conducted with the Prevention Research Center at USC and Sumter 
County Active Lifestyles (SCAL). In Sect.  8, we discuss the goodness of fit for the 
proposed Bayesian adaptive lasso method, providing an evaluation of its perfor-
mance and suitability. Finally, in Sect. 9, we summarize the key findings and contri-
butions of the paper and identify open problems and avenues for future research

Exponential random graph models
Examples and context

Exponential Random Graph Models (ERGMs) are widely applicable to research 
questions in the social and health sciences. In psychology, researchers studied 
Romanian school children’s friendship networks to find that sex and mental health 
showed patterns of homophily, concluding that ERGM are a “promising avenue for 
further research.” Baggio et al. (2017) Also in the social and health sciences, Becker 
et al. considered the friendship network of members of a sorority and the influence 
of disordering eating habits on friendship finding that women tended to have disor-
dered eating habits, unlike their friends (Becker et al. 2018). This unexpected result 
has implications for understanding the complex social dynamics that go into a seri-
ous health concern. Solo et al. note the utility and suitability of ERGM for modeling 
connections within the brain compared to more traditional methods, though they 
also note the computational difficulty of ERGM (Solo et al. 2018). On a much larger 
scale, ERGM have been used to understand the influences of information sharing 
on tourism. The model helped answer questions about the existence of patterns in 
the network including whether or not the network exhibited the characteristic of 
homophily and how organizations should understand their role in the network (Wil-
liams and Hristov 2018). In the biological world, Stivala et al. show that ERGM can 
address some of the limitations that previous research had found in modeling bio-
logical processes (Stivala and Lomi 2021). These examples show the incredible flex-
ibility and significance of exponential random graph models.
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Model structure

For any network, it can be expressed with an adjacency matrix. The connectivity of the 
network’s graph is described by an n× n adjacency matrix Y  . Its i-j entry Yi,j = 1 if node 
i will give referral to node j and Yi,j = 0 otherwise. Let Y be the set of all possible graphs 
on n nodes and let y be a realization of Y  . A given network y consists of n nodes and 
m edges that define a relationship between pairs of nodes called dyads. The adjacency 
matrix of the network graph Y  allows for the analysis of the structural relationship in the 
observed network.

For general exponential random graph models, the network has the following expo-
nential family type density: (Lusher et al. 2013)

where y is the observed network, θ is a vector of parameters, and s(y) is a vector of net-
work statistics. Each i-th network statistic si(·) has a corresponding parameter θi . A posi-
tive value of θi indicates that the edges involved in the formation of network statistics si 
are more likely to be connected with each other. The normalizing constant z(θ) is the 
summation 

∑

y∈Y
eθ

T s(y) where Y is the set of all possible graphs with the same number of 

nodes as y . The number of possible graphs with n nodes is 2n(n−1)/2 which becomes very 
large for all but the smallest graphs. Lusher et al. (2013) Hence, the calculation of z(θ) is 
feasible only for small networks in computer computation. It becomes challenging to 
find this normalization constant for large networks or even moderate-sized networks.

Let δ = s(y+ij )− s(y−ij ) be the vector of changes in the statistics in s when the edge yij 
between node i and j in the graph y changes from 1 to 0 along with the complement part 
ycij same. Conditioned on the state of the rest of the graph represented Y−ij , the log odds 
of the probability of a tie existing between node i and j is:

These network statistics can be overlapping subgraph configurations such as the number 
of edges, mutual edges, triangles, and uniform homophily etc. The representation above 
gives the intuitive explanation of the model parameter θ about their effect on the prob-
ability of an edge between node i and j.

Classical inference for ERGMs

Estimation methods

The inferential statistical goal is to find an appropriate estimate of θ such that the cor-
responding generated network has the probability distribution centered on the observed 
network on average. That is, we want to solve the moment equation:

where yobs is the observed network and s(y) is a vector of network statistics in the pro-
posed graph and s(yobs) is a vector of the network statistics in the observed graph. 

(2)π(y|θ) = 1

z(θ)
eθ

T s(y)

(3)log
P(Yij = 1|Y−ij = y−ij , θ)

P(Yij = 0|Y−ij = y−ij , θ)
= θT δ

(4)Eθ (s(y)) = s(yobs)
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However, in most cases, the moment equation cannot be solved analytically. This chal-
lenge leads to two mainstream simulations: Maximum Pseudolikelihood estimation and 
Monte Carlo Maximum Likelihood estimation.

Maximum pseudolikelihood estimation

The direct Maximum likelihood estimation of ERGMs is complicated since the likelihood 
function is difficult to compute for models and networks of moderate or large size. Strauss 
et  al. proposed a standard approximation with maximum pseudolikelihood estimation 
(MPLE). Strauss and Ikeda (1990) Instead of conditioning each tie on the state of the entire 
graph, the assumption is that the dependence of each dyad is weak. In particular, the MPLE 
estimates can be obtained by assuming the independence among values of Yij:

This allows for the pseudolikelihood function that has the strength of quick estimation 
but has been shown to not provide reliable estimates. van Duijn et al. (2009), Friel et al. 
(2009)

This will only provide the true estimate for ERGM with dyadic independence or when 
the change statistics can be found only considering one tie without knowing the rest of 
the graph. Research by van Duijn et al. compares the maximum pseudo-likelihood and 
maximum likelihood estimates, and their study shows the pseudo-likelihood estimation 
is biased and MPLE can only approximate the transitivity pattern in the network well. 
van Duijn et al. (2009)

Monte Carlo maximum likelihood estimation

Similar to methods in linear regression, ERGMs are log-linear, and a typical method for 
finding the maximum likelihood requires finding the roots of the derivative of the log of the 
function. This results in the s(y)T − Eθ (s(y)) = 0 found earlier. The Monte Carlo maxi-
mum likelihood estimation in ERGM case needs to find the following important ratio: (van 
Duijn et al. 2009)

The log-likelihood equation, however, is not directly solvable without computing the 
normalizing constant. As previously mentioned, this is computationally intensive for all 
but the smallest graphs. With this approximation, though, the normalizing constant can 
be estimated by generating m graphs from the density π(π |θ0) and finding e(θ−θ0)

T s(yi) 

P(Yij = 1|δ−ij = y−ij) = P(Yij = 1)

(5)π(y|θ) ≈ πpseudo(y|θ) =
∏

i �=j

π(yij|y−ij , θ)

(6)=
∏

i �=j

π(yij = 1|y−ij , θ)
yij

[1− π(yij = 0|y−ij , θ)]yij−1

(7)
z(θ)

z(θ0)
= Ey|θ0

[

eθ
T s(y)

eθ
T
0 s(yobs)

]

.
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for each graph and use importance sampling technique. The estimates of θ can be 
obtained by maximizing the log-likelihood ratio approximated as the following:

However, in this method, the choice of the initial θ0 is tricky and should be near the 
maximum likelihood estimate of θ0 . Poor choice of θ0 can lead to the failure of the maxi-
mization log-likelihood function and degeneracy problem. van Duijn et al. (2009), Hand-
cock (2003)

Bayesian adaptive lasso exponential random graph model
This work is motivated by the need to explore model uncertainty and flexibility. With 
these objectives, we consider the following exponential random graph model, this model 
is a particular class of discrete exponential random exponential families that represent 
the probability distribution of the adjacency matrix Y ∈ Y where Y is the set of all pos-
sible graphs on n nodes. Let y a realization of Y  . The likelihood function of an ERGM 
stands for the probability density of a random network and can be expressed as:

where q(y|θ) = eθ
T s(y) is the unnormalized likelihood.

We consider the following adaptive lasso estimator on the exponential random 
network:

where l(θ |y) = ln(π(y|θ)) is the log-likelihood function of θ and each �j is a different 
penalty parameter used for the coefficients. In dyadic independence ERGMs, maxi-
mizing the log-likelihood function (10) is equivalent to maximizing the following log 
pseudo-likelihood function:

where πij = P(Yij = 1|ycij) = P(Yij = 1) . In this case, the network estimation problems 
are transformed into the classical adaptive lasso logistic linear regression model. For 
example, the coordinate descent algorithm developed in glmnet package for R (Tay et al. 
2023; Friedman et  al. 2010) can get estimations of the parameters θj , j = 1, 2, 3, · · · , p 
with penalties include the lasso, ridge and the elastic net. However, different from the 
generalized linear regression models, the challenge of estimation on the dyadic depend-
ent ERGMs relies on the intractable normalizing constant appearing in the log-likelihood 

(8)ℓ(θ)− ℓ(θ0) ≈ (θ − θ0)
T − ln

[

1

m

m
∑

i=1

e(θ−θ0)
T s(yi)

]

(9)π(y|θ) = q(y|θ)
z(θ)

= eθ
T s(y)

z(θ)

(10)θ̂ = arg max
θ

l(θ |y)− P(θ),

(11)P(θ) =
p

∑

j=1

�j|θj|

(12)l(θ |y) =
∑

y

yij ln(πij)+
∑

y

(1− yij) ln(1− πij)−
p

∑

j=1

�j|θj|
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function. With the review of ERGMs likelihood-based methods in Sect. 2, the solution to 
the equation (10) has similar obstacles. To get around those obstacles, we will study this 
problem with an adaptively Bayesian estimate obtained from the lasso penalized method 
on the random networks.

Assume that a prior distribution π(θ) is placed on θ , and we are interested in the 
posterior distribution

We consider a conditional Laplace prior specification of the form similar to the classical 
Bayesian lasso linear regression developed in Park and Casella (2008) but with different 
penalty terms so that we have �j for j = 1, 2, 3, · · · , p:

We can now formulate a hierarchical model on the exponential random graph, which we 
can use to implement this version of the Bayesian lasso with a Gibbs sampler, using the 
Laplace distribution as a scale mixture of Gaussians. When the mixing distribution is 
exponential, the resulting distribution is Laplace. Andrews and Mallows (1974)

Now we use a latent parameter τ 2 to make the prior (14) as a scale mixture of normal 
distributions (15). We can consider τj s as additional parameters that assign different var-
iances to the prior of θ . When τj → 0 , the coefficient of sj(y) is shrunk to zero.

Assume θ = (θ1, θ2, ..., θp) follows normal distributions centered at zero with vari-
ance defined below.

where σ 2 > 0 and Dτ = diag(τ 21 , τ
2
2 , · · · , τ 2p ) is a matrix that allows each parameter to 

come from a normal distribution with a different variance.
Different than the basic Bayesian lasso model proposed by Park and Casella (2008) 

in which τ follows

our Bergm adaptive lasso model sets up different shrinkage parameters for different coef-
ficients. This motivates us to define a more adaptive penalty in the hierarchical structure:

and an independent non-informative scale-invariant marginal prior π(σ 2) ∝ 1

σ 2
 on σ 2 

suggested by Park and Casella. Park and Casella (2008) The conditional distribution on 

(13)π(θ |y) ∝ π(y|θ)π(θ)

(14)π(θ |σ 2) =
p
∏

j=1

�j

2
√
σ 2

e−�j |θj |/
√
σ 2

(15)
a

2
e−a|z| =

∫ ∞

0

1√
2πs

e−
z2

2s
a2

2
e−

a2s
2 ds, a > 0

(16)θ |σ 2, τ 21 , τ
2
2 , ..., τ

2
p ∼ N (0p, σ

2Dτ )

(17)π(τ 2) = �
2

2
e−

�2τ2

2 ,

(18)π(σ 2, τ1, τ2, · · · , τp) ∝ π(σ 2)

p
∏

j=1

�
2
j

2
e−

�
2
j τ

2
j

2
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σ 2 guarantees a unimodal full posterior distribution for the estimate θ on the network. 
(See Appendix A ). The unimodal posterior distribution ensures the quick convergence 
of the Gibbs sampling algorithm and ensures the meaningful single point estimate of θ.

Finally, the simplest prior for the penalty term �j , for j = 1, 2, 3, · · · , p would be a uni-
form distribution, but this proved to be problematic with complex networks, particularly 
when a model has many parameters. Thus, following the notation of Park and Casella 
(2008) we propose a prior such that �2j  follows Gamma distribution with shape param-
eter r and rate parameter δj:

This prior mixes well with the other choices for the Gibbs sampling and as Park and 
Casella (2008) note, this prior can approach 0 as � → ∞ and can concentrate probability 
near the MLE.

In summary, the hierarchical formulation of the Bayesian adaptive lasso Model on the 
exponential random graph is as follows:

for σ 2, r, δj , j = 1, 2, 3, · · · , p and τ 21 , τ
2
2 , · · · , τ 2p > 0.

The major differences of this formulation compared with the Bayesian lasso in Park 
and Casella (2008) are first, the Bayesian lasso method in Park and Casella (2008) 
is applied to linear regression model y = µ1n + Xβ + ǫ without any network struc-
ture. In other words, y in Park and Casella (2008) follows the normal distribution 
N (µ1n + Xβ , σ 2In) , where y is a n× 1 vector of responses which doesn’t involve 
random graph. Second, our model allows different penalty variables �j , one for each 
different parameter. In this case, each τ 2j  can have its own distribution and thus the 
variance of each normal distribution can be different. With the flexibility of the pen-
alties, the lasso estimate of the parameter for less important random variables on 
the exponential random graph will have a larger penalty. And smaller penalty will be 

(19)π(�2j ) =
δrj

Ŵ(r)

(

�
2
j

)r−1
e
−δj�

2
j for �j , r, δj > 0.

(20)π(y|θ) = 1

z(θ)
eθ

T s(y)

(21)θ |σ 2, τ 21 , τ
2
2 , ..., τ

2
p ∼ N (0p, σ

2Dτ )

(22)Dτ = diag(τ 21 , · · · , τ 2p )

(23)π(σ 2, τ1, τ2, · · · , τp|�j) ∝ π(σ 2)

p
∏

j=1

�
2
j

2
e−

�
2
j τ

2
j

2

(24)π(�2j ) =
δrj

Ŵ(r)

(

�
2
j

)r−1
e
−δj�

2
j

(25)π(σ 2) ∝ 1

σ 2
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applied to those important random variables. And compared with the existing Bayes-
ian Adaptive Lasso model (Leng et  al. 2014),Alhamzawi and Ali (2018), our model 
is built on the random network. And compared with the Bayesian Exponential Ran-
dom Graph Model (BERGM) by Caimo and Friel (2011), our model Bayesian Adaptive 
Lasso Exponential Random Graph Model(BALERGM) has more accurate estimations, 
and the structure is more flexible and adaptive to the network statistics level by adopt-
ing distinct shrinkage and penalties for different network statistics. The estimates θ̂j of 
θj for j = 1, 2, 3, · · · , p will be small and close to 0 if it does not provide much improve-
ment on predicting the random network Y  . So it naturally leads to an estimator with 
an automatic variable selection property. The value of �j will affect the estimates θj . 
The larger �̂j exists in the model, the sparser θ will be. (namely, more coefficients are 
small and near 0) whereas smaller θ̂j leads to a less sparse θ . Sparsity is a common 
belief in high-dimensional statistics because we anticipate only a few covariates are 
actually related to the response and most covariates are useless. BALERGM is very 
powerful in this scenario because it leads to a sparse estimator on the network (many 
coefficients are near 0). Note that high-dimensional problems in network science are 
very common. For example, in genetics, there are many genes per individual but often 
we have few patients in our study, or in neuroscience, the fMRI machine produces 
many voxels per person at a given time.

Gibbs sampler implementation
Now we will implement the model with a Gibbs sampler. The Gibbs sampling method 
is a Markov Chain Monte Carlo (MCMC) algorithm. In our case, the joint distribu-
tion is difficult to sample from directly, but the conditional distribution of each vari-
able is known and is easier to sample from. The Gibbs sampling algorithm generates 
an instance from the distribution of each variable in turn, conditioned on the current 
values of the other variables. The construction of the hierarchical model (20) makes 
the derivation of the full conditional distributions for each component of the esti-
mates feasible.

Thus we can write the joint density as the product of the conditional density of y|θ and 
the density of θ . Using the pieces of the hierarchical formulation of the model from (20) 
we can substitute in each piece that we have already chosen to find the joint distribution.

To implement the Gibbs sampling, we require the distribution of each parameter 
τj , �j , σ

2 to update in turn. From the joint distribution (26), we consider all parts of that 
joint distribution that depend on each variable. As summarized in Table 1, we consider 
the full conditional distributions for τj , �j , and σ 2 respectively.

(26)

π(y, θ , σ , �, τ ) = π(y|θ)π(θ)

= π(y|θ)
p
∏

j=1

π(θj|τ 2j , σ 2)π(τ 2j |�j)π(�j)π(σ 2)

= 1

z(θ)
eθ

T s(y)

p
∏

j=1

1

(2σ 2τ 2j )
1/2

e
− 1

2σ2τ2j

θ2j �
2
j

2
e−

�
2
j τ

2
j

2

δrj

Ŵ(r)

(

�
2
j

)r−1
e
−δj�

2
j
1

σ 2
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Sample τj
For each τj we have the following distribution.

To find what distribution each τj follows, we begin by considering the following transfor-
mation. Chhikara and Folks (1988) If a random variable x ∼ Inverse Gaussian(µ, �′) , that 
is

then with the change of variable, we can find the density f ′ of w = x−1 as

Hence

Then we can rewrite equation 27 into the reciprocal of the Inverse Gaussian distribution

thus 
1

τ 2j
 follows inverse Gaussian distribution with parameters 

√

√

√

√

�
2
j σ

2

θ2j
 and �2j :

Sample σ 2

Similar to the other parameters, we now look at σ 2 with the following conditional 
distribution:

(27)
π(τj|y, θ , σ , �) ∝ (τ 2j )

−1
2 e

− 1
2

(

θ2j /σ
2

τ2j

+�
2
j τ

2
j

)

(28)f (x,µ, �′) =
(

�
′

2πx3

)
1
2

e
− �

′(x−µ)2

2µ2x ,

(29)f (w,µ, �′) =
(

�
′

2πw3

)
1
2

e
− �

′(1−µw)2

2µ2w .

(30)f ′(w,µ, �′) = µwf (w,µ−1, �′µ−2).

(31)

�

1

τ 2j

�− 3
2

exp

�

−1

2

�

θ2j

τ 2j
+

�
2
j

1/τ 2j

��

∝
�

1

τ 2j

�− 3
2

exp



















−
θ2j

�

1
τ 2j

−
�

�
2
j σ

2

θ2j

�2

2σ 2 1
τ 2j



















(32)
1

τ 2j
∼ Inverse Gaussian





�

�

�

�

�
2
j σ

2

θ2j
, �2j





Table 1  Sampling distributions from joint distribution for each variable

Variable Proportional Distribution

1

τj
Inverse Gaussian

(√

�
2
j σ

2

θ2j
, �2j

)

�
2
j Gamma

(

2,
τ 2j
2

)

σ 2
Inverse Gamma

(

p
2
, 1
2
θT D−1

τ θ
)
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If x ∼ Inverse Gamma (α,β) with the shape parameter α and scale parameter β , then it 
has the following density function:

We can compare the conditional density (33) with (34) to find:

Sample �2j
To sample the penalty term � , we have developed three methods providing flexibility 

depending on the network model requirements (Table 2). 
Method A: The simplest prior for the penalty term �j , for j = 1, 2, 3, · · · , p would be a 

uniform distribution, but this proved to be problematic with complex networks, particu-
larly when a model has many parameters. Thus, following the notation of Park and Casella 
(2008), we propose an adaptive prior such that �2j ∼ Gamma (r, δj) . That is,

For the full Bayes estimation of �2j  , we have to find the following distribution.

This shows us that �2j  is proportional to a gamma distribution with α = r + 1 and 
β = τ 2j

2 + δj , since a standard gamma probability density function is 

f (x) = βα

Ŵ(α)
xα−1e−βx.

Therefore we can conclude:

(33)π(σ 2|y, θ , �, τ ) ∝ (σ 2)−1− p
2 e

− 1

2σ2
θTD−1

τ θ
.

(34)f (x,α,β) = βα

Ŵ(α)
x−α−1e−

β
x .

(35)π(σ 2|y, θ , �, τ ) ∝ Inverse Gamma

(

p

2
,
1

2
θTD−1

τ θ

)

.

(36)π(�2j ) =
δrj

Ŵ(r)

(

�
2
j

)r−1
e
−δj�

2
j for �j , r, δj > 0

(37)π(�2j |y, θ , σ , τ ) ∝
�
2
j

2
e−

�
2
j τ

2
j

2

(

�
2
j

)r−1
e
−δ�2j

(38)=

(

�
2
j

)r

2
exp

{

−�
2
j

(

τ 2j

2
+ δj

)}

(39)π(�2j |y, θ , σ , τ ) ∝ Gamma

(

r + 1,
τ 2j

2
+ δj

)

Table 2  Methods for Sampling �

Methods

Method A: Full Bayes with a �j ∼ Gamma (r , δj), j = 1, 2, · · · , p
Method B: Partial empirical Bayes with an empirical update of δ = (δ1, δ2, · · · , δp)
Method C: Full empirical Bayes with an empirical update of � = (�1, �2, · · · , �p)
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where r and δ are chosen constants/vectors of constants.
Method B: In contrast to the previous Method A, where the parameters δj , for 

j = 1, 2, · · · , p , were treated as fixed constants, the proposed method incorporates an 
empirical update of the hyperparameter vector δ using the Monte Carlo Expectation-
Maximization (E-M) algorithm (Levine and Casella 2001). The empirical update of 
the parameters δj is performed using the following formula:

The full derivation of this method is presented in Appendix B.
The empirical update of the parameters δj using the E-M algorithm brings several 

advantages to the estimation process. Firstly, it eliminates the need for manually specify-
ing appropriate hyperparameter values, as the parameter values are estimated directly 
from the observed data. This data-driven approach enables the selection of hyperparam-
eters based on the characteristics of the data, enhancing the flexibility and adaptability 
of the model. Additionally, the empirical update of the parameters δj allows the model to 
capture intricate nuances and complexities that may not be adequately accounted for by 
Method 1, which relies on a fixed hyperparameter. By updating the parameters based on 
the observed data, the model can better capture the intricacies and variability present in 
the data, leading to improved estimation accuracy and model performance.

Method C: This method uses a full empirical Bayes that directly estimates � from 
observed data without assuming any specific distribution or model. The full deriva-
tion is in the Appendix B, but we can update �2j

While this Method C offers several advantages, such as adapting to the data and improv-
ing exploration of the parameter space, they also have certain disadvantages that should 
be considered.

One of the primary disadvantages of full empirical MCMC is its computational 
cost. Empirical MCMC methods typically require additional iterations and computa-
tions compared to traditional MCMC algorithms. The empirical updates of param-
eters or proposal distributions can be computationally intensive, particularly when 
dealing with large datasets or complex models. This can result in longer execution 
times, limiting the scalability of the method.

Another disadvantage is the potential for bias or inefficiency in the estimation pro-
cess. Empirical updates rely on the observed network data to estimate the param-
eters and the proposal distribution of the network. If the nodal sufficient statistics 
are not fully representative or the observations of nodal random variables contain 
outliers, the empirical estimates may introduce biases or inefficiencies in the MCMC 
sampling. Additionally, the convergence of this method 3 needs careful tuning of the 
other hyperparameters to achieve optimal performance. The optimization of hyperpa-
rameters can be nontrivial and needs expert knowledge or extensive experimentation.

(40)
δj =

r

E
δ
(k−1)
j

[

�
2
j |δ

(k−1)
j , y(k−1)

] .

(41)
�
2
j =

r

E
�
(k−1)
j

[

τ 2j
2 |�

(k−1)
j , y(k−1)

]

+ δj
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Adaptive parallel direction sampling algorithm
There have been considerable developments in the approaches dealing with the prob-
lem of sampling from a distribution with a doubly intractable normalizing constant. For 
example, the easy-to-implement and more direct single variable exchange algorithm 
proposed by Murray et al. (2012). However, if there is strong temporal dependence in 
the state process and a strong correlation between model parameters, the exchange algo-
rithm performs slow mixing. Caimo and Friel (2011) and Caimo and Mira (2015) apply 
the ideas in Murray et al. (2012) to increase MCMC sampling efficiency by combining 
delayed rejection and adaptive Monte Carlo techniques. First, a collection of H parallel 
Markov chains are generated. Then the next element of a current chain h is found using 
estimates from chains h1 and h2 as below.

Algorithm: Parallel Adaptive Sampling Algorithm

while i = 1, ...,N  do
Define a scalar ADS move factor γ , for each chain h ∈ {1, 2, 3, · · · ,H}:
1. Sample two current states h1, h2 and h1  = h2  = h.

2. Sample the error term from a symmetric normal distribution. ǫ ∼ N(0, σ 2
ǫ).

3. The sampling of θh performs a simple random walk: θ
′
h = θh + γ (θh1 − θh2 )+ ǫ.

4. Sample y′ from π(·|θ ′
h).

5. Accept θ
′
h with probability min(1,

q(y|θ ′h)π(θ ′h)q(y′ |θh)
q(y|θh)π(θh)q(y′ |θ ′h)

)            (42)

         where q(y|θ) = eθ
T s(y) is the unnormalized likelihood.

end while

The move of θ is illustrated in Figure 1. Here, two other chains h1 and h2 are chosen at 
random. The difference between the corresponding estimates in the other two chains θh1 
and θh2 are used to find the distance to move away from θh . A normal distribution with a 
very small variance is used to slightly adjust the estimate for the new θ.

Bayesian adaptive lasso algorithm
In this section, we will list the algorithm of the Bayesian Exponential Random Graph 
Model (BERGM) by Caimo et  al. (2017) and the algorithm of our Bayesian Adaptive 
Lasso Exponential Random Graph Model (BALERGM)) for easy comparison. Caimo 
et al. (2017) set up the exchange algorithm with a Gibbs update of θ ′ and then y′ using 
Markov Chain Monte Carlo iteration without penalized terms. The algorithm can be 
written in the following concise way:

θh1

θh2

θh
ε

Fig. 1  The parallel ADS move of θh is generated based on the difference of the states θh1 and θh2 in other 
Markov chains and ǫ is a random error term
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Algorithm: Bayesian Exponential Random Graph Model

while i = 1, ...,N  do
      while h = 1, ...,H  do

1. generate h1 and h2 such that h1  = h2  = h

2. generate θ ′h from γ (θh1 − θh2 )+ ǫ(
. . . |θh)

3. simulate y′ from π(
. . . |θ ′h)

4. update θh → θ ′h with the log of the probability

min
(

0, [θh − θ ′h]T [s(y′)− s(y)] + log
[

π(θ ′h)
π(θh)

])

      end while
end while

Where s(y) and s(y′) are functions of the observed and simulated vector of network 
statistics respectively.

For the new Bayesian Adaptive Lasso model, we use the parallel adaptive direction 
sampler method suggested by BERGM and combine with Gibbs sampling to generate 
samples to find estimates for θ.

Algorithm: Bayesian Adaptive Lasso Exponential Random Graph Model Algorithm

Require: Set the initial value for �, σ 2, γ , Use ERGM to find MPLE (Maximizer to the Psuedolikelihood Function) 
to find initial values for θ . Denote samples of θ in the h th chain, as θh.

while i = 1, ...,N  do
      while h = 1, ...,H  do

1. sample θh with Parallel Adaptive Direction Sampler:

         a. generate h1 and h2 such that h1  = h2  = h

         b. update D−1
τ

         c. generate θ ′h from γ (θh1 − θh2 )+ ǫ(
. . . |θh)

         d. simulate y′ from π(
. . . |θ ′h)

         e. update θh → θ ′h with the log of the probability

min
(

0, [θh − θ ′h]T [s(y′)− s(y)] + log
[

π(θ ′h)
π(θh)

])

            where π(θ) ∼ N (0p , σ
2Dτ )

2. sample σ 2from Inverse Gaussian( p
2
,− 1

2
θTD−1

τ θ)

3. sample 
τ 2j for j = 1, 2, 3, ..., p from Inverse Gaussian

(√

�
2
j σ

2

θ2j
, �2j

)

4a. full Bayes update of �

         1. sample �2j for j = 1, 2, 3, ..., p from Gamma (r + 1,
τ 2j
2
+ δj)

OR
4b. empirical update of δ and update of �

         1. update δj for j = 1, 2, 3, ..., p with the mean of the last five � samples estimating the expected value.

δj = r

E
δ
(k−1)
j

[

�
2
j |δ

(k−1)
j ,y(k−1)

]

         2. sample �2j for j = 1, 2, 3, ..., p from Gamma (r + 1,
τ 2j
2
+ δj)

OR
4c. full empirical update of �

         1. update � with the mean of the last five τ estimating the expected value



Page 16 of 31Han et al. Applied Network Science             (2024) 9:9 

Algorithm: Bayesian Adaptive Lasso Exponential Random Graph Model Algorithm

�
2
j = r

E
�
(k−1)
j

[

τ2j
2 |�(k−1)

j ,y(k−1)

]

+δj

   end while
end while

This code was built with R version 4.1.1 (2021-08-10). R Core Team (2021) The follow-
ing package versions were also used: coda 0.19-4, mcmc 0.9-7, Bergm 5.0.3, ergm.count 
4.0.2, ergm 4.1.2, mvtnorm 1.1-3.

This BALERGM package is shared on Github:xxxx. (The link will be provided upon 
the acceptance of this paper).

Simulation and application
In this section, we will show the strength of BALERGM in three key ways. The first way 
uses the Faux Dixon High School data set to simulate 100 graphs to compare BERGM 
and BALERGM. The results of trials shows BALERGM is a stable model with accurate 
estimation, in addition to providing improvements to BERGM with a higher accept-
ance rate and effective sampling size, and lower MSE. The next two ways showcase the 
parameter selection abilities of BALERGM. The first on a simulated parameter and the 
second with network data collected in a study by Prevention Research Center at USC 
and Sumter County Active Lifestyles (SCAL).

Data

The network object Faux Dixon High represents a friendship network among junior 
high and high school students based on data gathered by a National Longitudinal Study 
of Adolescent Health, see details in Resnick et al. (1997). This study, first conducted in 
1994–1995, considered more than 90,0000 American students. Students were asked to 
list friends, and a tie is formed between them in the network if both students claimed 
friendship (Goodreau et al. 2008).

The final network has 248 nodes with 1,197 directed edges. Each node has three char-
acteristics: grade, sex, and race. The grades include 7th-12th and race is first delineated 
by Hispanic and non-Hispanic which was further split into Asian, Black, Native Ameri-
can, Other, and White. Figure 2 shows the network plotted with nodes colored for each 
grade showing the homophily.

Executing the BALERGM algorithm requires choosing network statistics with both 
nodal and edge attributes and structural features such as triangles and triads (Morris 
et  al. 2008). The count of these network statistics is found with the adjacency matrix 
realization y of Y  with i-j entry in the matrix defined as yij . For a directed network, the 
following summations demonstrate the counting procedure.

A natural network statistic for this data is the instances of homophily between students 
in the same grade, since as seen in Fig.  2, nodes with the same attribute (in this case 

Edges:
∑

i  =j

yij Mutual Edges:
∑

i  =j

yijyji Cyclic Triads:
∑

i  =j  =k

yjkyi,kyij
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grade) appear visually to have more connections. As seen in Table 3, with the diagonal 
entries of the mixing matrix from Grade i to Grade i for i ∈ {7, 8, 9, 10, 11, 12} , most of 
the connections are between students in the same grade. This feature can be included in 
network models with the R code nodematch.

Simulation

To demonstrate the overall effectiveness of BALERGM, we conducted a compara-
tive analysis between BALERGM and BERGM (Caimo and Friel 2014). Our evaluation 
involved the generation of 100 independent exponential random graphs using the Faux 
Dixon High dataset, with known and fixed parameters θ . Specifically, we focused on two 
selected network statistics: the count of edges in the network ( θ1 : edges) and the count 
of occurrences of homophily, where students of the same grade have a friendship con-
nection ( θ2 : nodematch.Grade). Without loss of generality, we fixed the parameter val-
ues θ = (−4.8, 2.3) and generated 100 independent exponential random graphs based on 
the Faux Dixon High dataset, considering them as new instances with associated node 
attributes. This approach allowed us to create 100 distinct opportunities to estimate the 
parameter vector θ using both the BALERGM and BERGM algorithms, enabling a com-
prehensive performance comparison against the true parameter values θ = (−4.8, 2.3).

Grade 7
Grade 8
Grade 9
Grade 10
Grade 11
Grade 12

Fig. 2  Generated in R, this plot shows the clustering of student friendship with students that have the same 
grade

Table 3  Summary table for the connections among different grades. The i − j position in this table 
shows the number of connections from Grade i to Grade j, i = 7, 8, 9, 10, j = 7, 8, 9, 10

Grade 7 Grade 8 Grade 9 Grade 10 Grade 11 Grade 12 Sum

Grade 7 42 5 8 3 3 1 62

Grade 8 9 263 48 10 7 4 341

Grade 9 13 53 184 35 32 15 332

Grade 10 3 14 46 183 14 13 273

Grade 11 0 2 13 12 42 16 85

Grade 12 0 4 11 10 8 71 104

Sum 67 341 310 253 106 120 1197



Page 18 of 31Han et al. Applied Network Science             (2024) 9:9 

In each run of BERGM and BALERGM, the main chain for either model consists of 
2000 iterations and the burn-in number is 50 iterations. In 100 simulations, each model 
generates a sequence of values estimating each θ in each simulation. To confirm the sta-
bility of the model, the following representation of the MCMC results (Fig. 3) shows the 
strength and stability of the BALERGM algorithm after relatively few iterations. The uni-
modal distribution of estimates is on the left, and the center column shows the trace of 
the estimates indicating a stable estimating process. The final column shows the auto-
correlation plot with the lag decreasing quickly; by 50 iterations, the process has stabi-
lized to minimal lag.

Using both the mean and median of these estimates we can compare several metrics. 
Table  4 compares the acceptance rate of generated estimates for each run, the mean 
effective sample size, and both the mean and median square error (MSE) of the esti-
mates compared to the chosen true values, where MSE = 1

ne
⊤e , e is the error vector, 

that is e = θ̂ − (−4.8, 2.3).
Table  4 shows that using either the mean or median of the generated estimates in 

MCMC for θ (1) BALERGM has a better overall acceptance rate and effective sam-
ple size on average than BERGM. The acceptance rate or the percentage of generated 

θ1 (edges)
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Fig. 3  MCMC output: Distribution of samples on the left, the trace of samples in the center, autocorrelation 
plot on the right
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samples that are accepted in the MCMC process is increased. This implies BALERGM 
adjusts to the true parameter for each single variable faster than BERGM. (2) BALERGM 
offers an improvement over BERGM with a lower mean squared error (MSE). The mean 
squared error is dramatically lower with the BALERGM process no matter whether the 
mean or median in MCMC is used as the estimate for θ . This can be seen in the quantiles 
for each estimate of θ since the true values are θ = (−4.8, 2.3) , the BALERGM estimates 
are much closer to these true values.

In Table 5, the true known value of each θ is estimated by either the mean or median of 
the generated samples. The quantiles for estimates of θ show the spread of each estimate.

Once results are generated, the estimates produced can be used to calculate the prob-
ability of a tie, using the θ . Using the previous example, if no new tie is created, so the 
change statistic for θ1 is zero, then the probability that a tie is between students of the 
same grade can be calculated as follows.

P(Yij = 1|θ2 = 2.8550) = e2.8550

1+ e2.8550
= 0.945577.

Table 4  Results of both BERGM and BALERGM using formula y ∼ edges + nodematch(“Grade”)

Results

Mean AR Mean ESS Mean squared error Median squared error

BERGM θ1 0.5286 222.16 4.641585 2.845891

θ2 220.69

BALERGM θ1 0.5607 246.72 0.1960137 0.06896186

θ2 221.82

Table 5  Results of simulating 100 graphs and comparing results for BERGM and BALERGM using 
means as the estimates of θ

a Chosen true value for parameter for each simulated graph
b Mean of MCMC outputs
c  Quantiles from MCMC output
d Median of MCMC outputs

Mean of the MCMC output as the estimate for θ

True Value a Estimate b Quantilesc

2.5% 25% 50% 75% 97.5%

BERGM θ1 −4.800 −5.3470 −5.607 −5.456 −5.349 −5.253 −5.031

θ2 2.300 5.2656 4.455 5.026 5.251 5.543 6.185

BALERGM θ1 −4.800 −4.9444 −5.172 −5.018 −4.938 −4.871 −4.739

θ2 2.300 2.8550 2.496 2.680 2.824 2.996 3.304

Median of the MCMC output as the estimate for θ

True Value Estimate d Quantiles

2.5% 25% 50% 75% 97.5%

BERGM θ1 −4.800 −5.1367 −5.386 −5.235 −5.137 −5.045 −4.874

θ2 2.300 4.6296 3.903 4.397 4.632 4.822 5.355

BALERGM θ1 −4.800 −4.8778 −5.077 −4.949 −4.873 −4.806 −4.682

θ2 2.300 2.6131 2.398 2.501 2.595 2.713 2.918
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That means the conditional probability of observing an edge (not involved in the crea-
tion of other network statistics included in the model) is about 94.56%.

Variable selection

BALERGM not only improves sampling efficiency compared to previous models but also 
demonstrates strong performance in variable selection through its adaptive lasso com-
ponent. This indicates the ability of the model to identify and highlight parameters that 
are either more or less significant to the network structure. The example using the fol-
lowing simulated dataset showcases the effectiveness of BALERGM in terms of variable 
selection.

For this example, we still use Faux Dixon high school dataset. The chosen network sta-
tistics are the count of the edges in the network (edges), the counts of the occurrences of 
homophily where students of the same grade have a friendship connection (nodematch.
Grade), and the third artificial created term: the counts of the occurrences of homoph-
ily from a generated nodal attribute for the wealth of a parent (nodemath.Wealth). This 
additional nodal attribute “Wealth” is generated from the uniform distribution on 20 and 
75. Given that this nodal variable is generated uniformly at random, it is intentionally 
designed to have no impact on the network structure. Our objective is to test whether 
BALERGM can effectively identify and exclude this artificially created insignificant 
nodal variable. Running the BALERGM algorithm produces the following results, dem-
onstrating that the model accurately estimates the value of θ3 to be close to zero. This 
outcome aligns with our expectations, as the variable has no meaningful influence on 
the network structure (Table 6, Fig. 4).

Sumter county active lifestyles (SCAL) network analysis

With reports by The US Burden of Disease Collaborators (2018) of worsening metrics 
of American health, communities are working on addressing and understanding the 
factors that might improve health outcomes. To this end, the University of South Car-
olina Prevention Research Center and Sumter County Active Lifestyles (SCAL) based 
in Sumter County, South Carolina conducted a respondent-driven sampling study in 
2014 to better understand the dynamics of social networks and health outcomes.

In this study, community ambassadors chosen for their history of community 
involvement were given a set compensation for their participation. Each ambassador 
was instructed to share the survey with those in their social network. Each of these 
respondents was also compensated for both completion of the survey and sharing the 
survey with others that completed the survey. Using referral codes, a network can be 

Table 6  Results of BALERGM using formula y ∼ edges + nodematch(“Grade”) + 
nodematch(“Wealth”)

BALERGM result for parameter selection

Estimate Mean SD Naive SE Time-series SE

θ1 (edges) −4.8005296753 0.07659603 0.0001398446 0.001769280

θ2 (nodematch(“Grade”)) 2.2939927192 0.09614381 0.0001755338 0.002292080

θ3 (nodematch(“Wealth”)) 0.0001696885 0.01967663 0.0000359245 0.000151961
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created with nodes representing survey respondents, edges formed by survey shar-
ing, and nodal characteristics from the results of the survey. The final network has 
80 nodes with the data for 30 questions for each respondent. Figure 5 is the network 
plot labeled with one of the 30 questions: “Have you heard of a group called Sumter 
County Active Lifestyles (SCAL)?”

The survey was intended to be a brief but broad look at self-reported health bench-
marks. Questions cover demographic characteristics revealing that the respondents 

Member
Yes
No
Not sure
Refused

Fig. 5  Generated in R, this plot shows results of asking “Have you heard of a group called Sumter County 
Active Lifestyles (SCAL)?”
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are primarily white (87%), female (78%), likely to be older than 50 (44%), and more 
educated with 46% being college graduates. Other questions focused on self-reported 
health outcomes and activities including exercise habits, eating habits, and social 
support dynamics. The question forms included qualitative questions about physical 
activities and opportunities for physical activities in the community. For the purposes 
of this network, network attributes were assigned using the answers to only multiple-
choice questions.

The resulting network contains many nodal attributes where ERGM and BERGM 
cannot be applied effectively. This motivates a model like BALERGM which ena-
bles understanding which of these network statistics contribute less to the network 
structure.

Results

Using the SCAL data set from the previous section, we use the network statistics in 
Table 7 to analyze this model, where we use the ergm terms “nodematch”, “nodefac-
tor” and “nodecov”. These three terms all provide measures of homophily. “node-
match” counts the instances of nodes with the same attribute for a given attribute. 
“nodecov” performs a similar function but for continuous variables. “nodefactor” 
creates network statistics for each discrete level of a nodal attribute and counts the 
occurrences of connected nodes with the same attribute level. For more details, see 
Morris et al. (2008).

Table 7 shows the BALERGM output on the SCAL social network. Here the sparsity of 
the network can be seen in the large negative values for the network statistics for edges 
and the out-degree of the nodes. While the standard deviations vary with each estimate, 
the MCMC outputs show stable estimating with symmetric distributions as the quantile 
values indicate. It 7 provides valuable insights into the relationships between different 
variables in the network analysis. One interesting observation is that individuals who 
maintain a healthy diet ( θ6-θ13 are all positive) tend to have positive connections with 
each other. This suggests a clustering effect among individuals with similar dietary hab-
its, indicating a potential influence of shared health-conscious behaviors on network 
connections.

Furthermore, the result highlights that participation in a walking program (variables 
θ18 to θ19 ) is positively associated with network connections. This implies that individu-
als who engage in walking programs are more likely to know each other within the net-
work. This finding suggests a potential social bonding effect among individuals who 
actively participate in health-promoting activities, leading to the formation of connec-
tions and social ties.

The adaptive lasso penalty in BALERGM is useful for shrinking θ values for network 
statistics that are less significant to the network structures. Depending on the model and 
network conditions, the parameter estimate might not reach exactly zero. For example, 
the estimate for both θ26 = −.001 and θ20 = −.076 are small, but this mean of the gen-
erated samples as the single factor utilized doesn’t allow for a nuanced ranking of how 
significant each parameter is. Using the distribution of θ found in the Gibbs sampling 



Page 23 of 31Han et al. Applied Network Science             (2024) 9:9 	

process, we can find the probability that half of the distribution is less than zero at some 
significance level α.

A larger value of α indicates a higher importance of the variable in the context of the 
model. This creates the ability to rank variables. The following Table 8 shows the param-
eters less significant to the construct of the network at various significance levels. For 
example, the network statistic of the age of the participant ( θ26 ) is less significant than 
for the network statistic of having heard of the SCAL program ( θ20 ). While both are not 
the primary factors, BALERGM gives researchers insights into the social dynamics of 
Sumter County allowing for targeted programs to improve health outcomes.

|P(θ < 0)− 0.5| = α

Table 7  Results from BALERGM with variable selection on SCAL data

anodefactor
bnodematch
cnodecov

Result for parameter selection

Network statistic Mean SD Quantiles

2.5% 25% 50% 75% 97.5%

θ1 (edges) −5.794 0.995 −7.770 −6.460 −5.782 −5.121 −3.879

θ2 (out degree 0) 1.212 0.64 −0.051 0.795 1.216 1.631 2.477

θ3 (out degree 1) −1.025 0.526 −2.066 −1.372 −1.025 −0.679 0.016

θ4 (out degree 2) −0.629 0.407 −1.428 −0.901 −0.632 −0.363 0.189

θ5 (out degree 3) −0.207 0.319 −0.853 −0.410 −0.209 −0.002 0.431

θ6 (1 serving fruit/day) a 0.654 0.308 0.046 0.453 0.655 0.859 1.265

θ7 (2 servings fruit/day) a 0.536 0.304 −0.063 0.334 0.534 0.738 1.134

θ8 (3-4 servings fruit/day) a 0.608 0.329 −0.054 0.391 0.612 0.829 1.245

θ9 (5+ servings fruit/day) a 0.877 0.461 −0.066 0.577 0.887 1.186 1.772

θ10 (1 serving vegetables/day) a 0.451 0.310 −0.164 0.248 0.454 0.655 1.062

θ11 (2 servings vegetables/day) a 0.477 0.295 −0.106 0.283 0.478 0.675 1.056

θ12 (3-4 servings vegetables/day) a 0.587 0.292 0.018 0.392 0.587 0.782 1.165

θ13 (5+ servings vegetables/day) a 0.096 0.359 −0.644 −0.128 0.109 0.335 0.770

θ14 (vigorous phys. activities/week)b −0.011 0.206 −0.426 −0.145 −0.008 0.125 0.389

θ15 (moderate phys. activities/week)c 0.008 0.042 −0.075 −0.019 0.009 0.037 0.090

θ16 (days walking 10min/week)c −0.018 0.035 −0.088 −0.042 −0.019 0.006 0.052

θ17 (days using parks/month) c −0.030 0.028 −0.090 −0.049 −0.030 −0.011 0.022

θ18 (heard of walking program) b 0.333 0.214 −0.087 0.190 0.334 0.478 0.752

θ19 (participate in walking program)b 0.186 0.244 −0.305 0.027 0.188 0.346 0.668

θ20 (heard of SCAL)b 0.076 0.191 −0.310 −0.049 0.081 0.206 0.448

θ21 (general health is very good)a −0.203 0.206 −0.616 −0.339 −0.201 −0.065 0.194

θ22 (general health is good) a −0.247 0.204 −0.650 −0.381 −0.248 −0.113 0.154

θ23 (general health is fair) a −0.072 0.207 −0.470 −0.211 −0.077 0.063 0.349

θ24 (general health is poor) a −0.479 0.477 −1.505 −0.773 −0.456 −0.160 0.402

θ25 (gender) a −0.064 0.15 −0.362 −0.163 −0.064 0.035 0.226

θ26 (age) c −0.001 0.005 −0.012 −0.005 −0.001 0.002 0.009

θ27 (highest year of school completed)b −0.165 0.205 −0.571 −0.302 −0.166 −0.029 0.240
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This example highlights the powerful functionalities of BALERGM, particularly in the 
context of variable selection and importance ranking in network analysis. In network 
studies, the presence of numerous network variables is common. The identification of 
the most relevant variables is crucial as it enables researchers to concentrate their analy-
sis and interpretation on the factors that significantly influence the network’s structure 
and behavior. By focusing on these key variables, we can gain a deeper understanding of 
the underlying mechanisms that drive network dynamics.

Goodness of fit
To assess the performance and goodness of fit of Exponential Random Graph Models 
(ERGMs), various diagnostics can be employed. These diagnostics involve comparing 
key statistical measures calculated from observed networks with those obtained from 
simulated networks generated based on the estimated network parameters. In the Bayes-
ian framework, evaluating the goodness of fit of the model involves conducting posterior 
predictive assessments. This entails comparing the observed network to a collection of 
networks simulated from the posterior distribution of the model’s parameter estimates, 
as determined by Caimo and Friel (2011).

The set of statistics used for the comparison contains degree distributions, the mini-
mum geodesic distance, and the number of edge-wise shared partners. Since the SCAL 
network graph is a directed graph, the degree distributions for both in and out degrees 
are included. Since the graph includes isolated nodes and clusters such that there is no 
path between some nodes, the minimum geodesic distance or the minimum number of 
edges needed to connect any two nodes is infinite leading to the spike in the plot for 
minimum geodesic distance in 6. Finally, the edge-wise shared partners are concentrated 
in the lower values since the number of nodes in common for any number of edges is 
small.

The Bayesian goodness of fit diagnostic in Fig. 6 evaluates the implemented model in 
section  8. The observed network is compared with 300 randomly simulated network 
samples drawn from the estimated posterior distribution using 50 auxiliary iterations 
for the network simulation step. Figure  6 illustrates the summary results of these 300 
generated graphs in black and gray, alongside the original network represented in red. 
The comparison reveals a strong alignment in the high-level characteristics that are not 
explicitly modeled. This indicates that the posterior mean obtained through BALERGM 
accurately generates networks with corresponding structures.

Table 8  Variable Selection with Different Tolerance Levels

Tolerance Level Variable Index Number

0.05 26

0.10 16 20 25 26

0.15 4 16 20 25 26

0.20 4 14 15 16 20 22 25 26
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Discussion
Bayesian adaptive lasso exponential random graph model (BALERGM) offers several 
notable advantages in the field of network analysis. One key advantage is its ability 
to perform automatic variable selection, facilitated by the integration of the Lasso 
regularization technique. By employing the Lasso penalty, BALERGM effectively 
identifies and emphasizes the most relevant network parameters while diminishing 
the influence of less significant ones towards zero. This feature streamlines the mod-
eling process and extracts valuable insights from intricate network data, enhancing 
the interpretability of the results. Moreover, the Lasso penalty promotes sparsity in 
parameter estimates, resulting in a more parsimonious model that aids in discerning 
the influential factors governing network behavior.

Another compelling advantage of BALERGM is its superior adaptive estimation 
performance. Through the adaptive adjustment of penalties for each parameter, 
the model swiftly adapts to the data, allowing it to focus on the most relevant net-
work parameters and capture underlying patterns and relationships more effectively. 
Researchers can readily select key network factors based on their significance levels, 
providing valuable insights and actionable knowledge.
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We have shown the effectiveness of the the proposed algorithm in simulation 
and compared its performance against the currently popular BERGM method. One 
promising direction for future work involves the development of more general-
ized penalized forms within the context of network analysis. While the Lasso pen-
alty has demonstrated its efficacy in variable selection and sparsity promotion, the 
incorporation of ridge penalty distributions could offer additional benefits. Combin-
ing the strengths of both Lasso and ridge penalties would strike a balance between 
model complexity and over/underfitting issues, leading to more robust parameter 
estimation.

Appendix A: proof of unimodal posterior
The chosen prior needs to result in a unimodal posterior for faster Gibbs sample conver-
gence and confidence that the estimates found are actually best.

Theorem:
The joint posterior distribution is unimodal for typical choices of π(σ 2) and any choice of 

� ≥ 0.
Proof:
We begin by representing the joint distribution of θ and σ 2 > 0 using distributions 

already defined.

We have choose the prior such that π(σ 2) ∝ 1
σ 2 according to the recommendation of the 

literature. Park and Casella (2008)
We wish to show that the posterior is unimodal in the sense that every upper-level set of 

{(θ , σ 2)|π(θ , σ 2) > x, σ 2 > 0}, for x > 0 is connected. We will show this is true under a 
continuous transform with continuous inverse since the continuous image of a connected 
set is connected. Munkres and Davis (2018)

The posterior is shown here

(42)π(θ , σ 2) ∝ π(θ |σ 2)π(σ 2)

(43)=
p
∏
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e−�j |θj |/
√
σ 2 1
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(44)π(θ , σ 2|y) ∝ π(y|(θ , σ 2))π(θ , σ 2)
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We now take the natural log of the equation above.

The following transform allows for easier calculation.

This is continuous with a continuous inverse when 0 < σ 2 < ∞ , so the upper-level sets 
for the original parameters correspond under the transformation to upper-level sets for 
the original parameters.

Let φ = (φ1,φ2, ...φp)
T be the column vector for ease of notation. This transform is 

one-to-one and continuous for 0 < σ 2 < ∞ , therefore the unimodality of the trans-
formed equation is equivalent to the unimodality of the original equation.

Using the transform and algebra we get the following expression

We can show that (A8) is unimodal by showing it is a concave function in (φ, ρ) . We will 
do that by considering each term of the equation in turn.

We will determine the concavity of the first two functions by checking the spectral prop-
erty of the corresponding Hessian matrix.

For the first term and the second term h1 = ln(ρ) and h2 = φT s(y)
ρ

 , the corresponding 
Hessian matrix Hh1 and Hh2 are both negative semi-definite and thus h1 and h2 are both 
concave in (φ, ρ).

For the third term h3 = −
∑p

j=1 �j|φj| , we see this is a sum of the negative of a constant 
times an absolute value function. This is a concave function in φ, ρ , since the j the term 
in h3 is h3(j) = −�j|φj| which is a concave function of φj and the sum of concave func-
tions is a concave function.

Using the same reasoning that the sum of concave functions is concave gives that (A8) 
is concave, and hence the posterior distribution is concave.

Therefore, we can conclude that our posterior distribution is unimodal.

(48)

ln π(θ , σ 2|y) = − ln(σ 2)+ θT s(y)−
p

∑

j=1

�j|θj|
1√
σ 2

+
p

∑

j=1

ln(�j)− p ln(2)− p

2
ln(σ 2)

φj ↔
θj√
σ 2

ρ ↔ 1√
σ 2

j = 1, 2, 3, ...p

(49)

h(φ, ρ) = ln ρ2 + (
√
σ 2φ)T s(y)−

p
∑

j=1

�j|φj| +
p

2
ln(ρ2)

= (p+ 2) ln(ρ)+ φT s(y)

ρ
−

p
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j=1

�j|φj|

h1 = ln(ρ) h2 =
φT s(y)

ρ
h3 = −

p
∑

j=1

�j|φj|

(50)Hhi =




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

 , i = 1, 2.
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Appendix B: empirical bayes
The Monte Carlo Expectation-maximization algorithm for empirical Bayes estimation 
of hyperparameters proposed by Levine and Casella (2001) essentially treats the param-
eters as missing data and then uses the E-M algorithm to iteratively approximate the 
hyperparameters substituting Monte Carlo estimates for any expected values that can-
not be computed explicitly. For BALERGM, the Gibbs sampler is used to estimate the 
expected values.

Method B: Estimating δj
To begin this process, we consider the part of the joint distribution that depends on 

δ , since when taking the derivative all other terms will become zero.

We then take the natural log of the resulting equation.

1. Expectation step

2. Maximization step

Solve

we get

Method C: Estimating �j
The empirical process of estimating �j begins with the joint distribution terms that 

depend on �j.

(51)π(y, θ , δ) =
δrj

Ŵ(r)

(

�
2
j

)(r−1)
e
−δj�

2
j + terms not involving δ2j .

(52)ln(δj|y, θ) ∝ r ln(δj)− δj�
2
j .

(53)Q(δj|δ(k−1)
j , y(k−1)) = Eδ(k−1)

[

ln(δj|y, θ)|δ(k−1)
j , y(k−1)

]

(54)= r ln(δj)− δjE

[

�
2
j |δ

(k−1)
j , y(k−1)

]

+ other terms not involving δj

(55)δ
(k)
j = arg max

δj
Q(δj|δ(k−1)

j , y(k−1)).

(56)
∂Q

∂δj
= r

δj
− E

[

�
2
j |δ

(k−1)
j , y(k−1)

]

= 0,

(57)δj =
r

E

[

�
2
j |δ

(k−1)
j , y(k−1)

] .

(58)π(θ , �, σ 2, τ |y, s(y)) ∝ π(y|θ)π(θ |σ 2, τ )

p
∏

j=1

π(τ |�2j )π(�2j )π(σ 2)



Page 29 of 31Han et al. Applied Network Science             (2024) 9:9 	

Next, we take the natural log

1. Expectation step

2. Maximization step

Solve

we get

Thus these conditional expectations are just the posterior expectations under the hyper-
parameter �(k−1) thus they can be estimated using the sample averages from a run of the 
Gibbs sampler described in the section.
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