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Abstract 

In recent years, Artificial Intelligence (AI) shows a spectacular ability of insertion 
inside a variety of disciplines which use it for scientific advancements and which 
sometimes improve it for their conceptual and methodological needs. According 
to the transverse science framework originally conceived by Shinn and Joerges, AI 
can be seen as an instrument which is progressively acquiring a universal character 
through its diffusion across science. In this paper we address empirically one aspect 
of this diffusion, namely the penetration of AI into a specific field of research. Taking 
neuroscience as a case study, we conduct a scientometric analysis of the develop-
ment of AI in this field. We especially study the temporal egocentric citation network 
around the articles included in this literature, their represented journals and their 
authors linked together by a temporal collaboration network. We find that AI is driving 
the constitution of a particular disciplinary ecosystem in neuroscience which is distinct 
from other subfields, and which is gathering atypical scientific profiles who are coming 
from neuroscience or outside it. Moreover we observe that this AI community in neu-
roscience is socially confined in a specific subspace of the neuroscience collaboration 
network, which also publishes in a small set of dedicated journals that are mostly 
active in AI research. According to these results, the diffusion of AI in a discipline such 
as neuroscience didn’t really challenge its disciplinary orientations but rather induced 
the constitution of a dedicated socio-cognitive environment inside this field.

Keywords: Science of science, Artificial Intelligence, Neuroscience, Research-
technology

Introduction
In recent years, Artificial Intelligence (AI) has been continuously spreading across sci-
ence. The associated worldwide scientific production and the amount of dedicated fund-
ing programs for technological developments supported both by academia and industry, 
are spectacularly growing (Gao and Wang 2023; Baruffaldi et al. 2020; Liu et al. 2021), 
and the outputs of such research are touching a variety of disciplines that are more and 
more citing it (Frank et al. 2019; Arencibia-Jorge et al. 2022). Though commonly associ-
ated to disciplines such as mathematics, statistics and computer science, AI originated 
as an interdisciplinary research area, and is currently spreading to a growing number of 
fields (Gargiulo et al. 2023).

*Correspondence:   
sylvain.fontaine@cnrs.fr

1 GEMASS, CNRS-Sorbonne 
Université, 59-61 rue Pouchet, 
75017 Paris, France
2 CREST, CNRS-IPP, 5 
avenue Henry Le Chatelier, 
91120 Palaiseau, France

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1007/s41109-024-00618-2&domain=pdf


Page 2 of 32Fontaine et al. Applied Network Science             (2024) 9:8 

AI knowledge and tools are amenable to applications in such welcoming disciplines 
which use them for scientific advancements, and which sometimes adapt and improve 
them in turn for their Bianchini et  al. (2022) studied especially such mutual improve-
ment dynamics at a macroscopic scale of science by focusing on the diffusion of neural 
networks’ concepts and tools in numerous disciplines. Qualified as a general method of 
invention by these authors because of its non-disciplinary status, AI is thus expanding 
the adjacent possible of the purposes of the concerned disciplines, and is therefore the 
source of innovation in the latter (Kauffman 2000; Monechi et al. 2017).

In this paper we address the process of penetration of AI inside a given field of 
research. We focus on neuroscience, which are part of such fields largely receiving AI, 
according to Gargiulo et al. (2023). We choose especially this field as it has a particu-
lar history which is closely intertwined with the AI one. Indeed neuroscience and AI 
are continuously providing feed-backs to each other toward the comprehension of the 
human brain and the artificial reproduction of some cognitive processes (Hassabis et al. 
2017; Savage 2019). This lead us to also assume that neuroscience is not only a field that 
receives AI, but also contribute to reshape AI knowledge, tools and practices, thus 
expanding the adjacent possible of the latter.

Along these lines, we focus on two dynamical mechanisms underlying the appropria-
tion of AI by neuroscience and then the possible knowledge transfer between the two 
fields:

• The cognitive embedding of AI into the multidisciplinary context of neuroscience: 

1. what is the disciplinary landscape around neuroscience research which is using 
AI?

2. how does such research fit in the disciplinary objectives of neuroscience?

• The diffusion throughout the neuroscience community: 

3. who are the actors leading AI research in this field?
4. does AI-related knowledge widespread throughout the whole scientific commu-

nity?

In what follows we answer these questions by analyzing a large corpus of neuroscience 
articles published between 1970 and 2019, extracted with a journal-oriented query from 
the Microsoft Academic Knowledge Graph (MAG) (Färber 2019). We distinguish AI-
related publications from others with a dedicated keyword filter applied to their titles 
and abstracts, as in Gargiulo et  al. (2023). After discussing in Sect.  2 the intertwined 
history of AI and neuroscience, and also the main concepts mobilized in this paper, we 
detail in Sect. 3 the building of some relational structures and some metrics given by the 
corpus that will be analyzed afterwards, namely its temporal egocentric citation network 
(composed of bibliographical references and citations of each paper), its peer-reviewed 
journals, and its temporal collaboration network, featured with the disciplinary profiles 
of the involved scientists.

In Sects.  4.1 and 4.2, we identify within the citation network the disciplines that 
are shaping the AI research in neuroscience, and the extent to which they differ from 
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those that are characterizing other neuroscience’s subfields unrelated to AI. We espe-
cially show that some disciplines related to STEM have become the main influence of 
AI research since the 1990s, by replacing progressively the conventionally used ones in 
neuroscience and commonly associated with biomedical and clinical research. The dis-
ciplines impacted by AI research over time are also shifting from neuroscience-related 
clinical and biomedical fields to STEM ones. These first results thus show that AI 
research is building itself as a subfield (or specialty) inside neuroscience, which draws 
upon a disciplinary basis that is different from the other neuroscience subfields. We 
also confirm this partial cognitive integration in Sect. 4.3, which reveals the spreading 
of AI in almost all the journals of the database, but with different patterns of promo-
tion of such research. In particular, we show that the journals that are publishing a lot of 
AI-related works are invested by researchers who contributed to AI research in general 
(inside or outside neuroscience). By regarding the temporal co-authorship network of 
the field, we show in the following Sect. 4.4 that the AI community includes two main 
academic profiles: (1) researchers trained in neuroscience – mainly within the biomedi-
cal and clinical parts –, who publish few AI-related works, and (2) researchers trained 
in STEM-related disciplines and having moved to neuroscience, who contribute much 
more to AI research in the welcoming field than those described by profile (1). Putting 
all the AI practitioners together, we then show that they are more and more isolated in 
the collaboration network since 1970.

Finally, by considering AI as a research-technology spreading across science, as origi-
nally conceived by Shinn and Joerges (2002) and formalized later by Hentschel (2015), 
we discuss in Sect. 5 the partial diffusion observed empirically in our results. With this 
framework we also discuss the similarity and differences between the local development 
dynamics of AI within this particular field of research, and the global one within the 
whole science system that is depicted in Gargiulo et al. (2023).

Literature review
AI and neuroscience: toward the mutual expansion of their adjacent possible

Artificial Intelligence (AI) commonly refers to both a research program and, more gen-
erally, a set of complex computer-based programs which aim to mimic human mind pro-
cesses with high reckoning power. Although its foundations are mainly associated with 
STEM disciplines, mainly mathematics, statistics and computer science (Gargiulo et al. 
2023), AI is constantly evolving alongside neuroscience by maintaining a virtual circle of 
mutual improvement (Hassabis et al. 2017).

Indeed neuroscience brings in a first place empirical confirmations of some theoretical 
models that reproduce parts of mental processes, and that were first imagined, analyti-
cally derived and computationally simulated by (neuro)psychologists within the field of 
cognitive science (Cooper and Shallice 2010; Lake et al. 2017). Most of these models are 
at the roots of AI-related algorithms, notably the case of the bio-inspired AIs such as 
artificial neural networks and their numerous versions, which became biologically plau-
sible with neuroscience. In particular, the 1980s and early 1990s marked also the launch-
ing of the first body-scanner machines applying positron emission tomography (PET) 
and functional magnetic resonance imaging (fMRI), both of which led to important dis-
coveries on the functional biological mechanisms in the human brain that are induced 
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by complex cognitive tasks (Cooper and Shallice 2010). This contributed to the rise of 
the connectionist paradigm that is now dominant in brain sciences, even if some debates 
are persisting within cognitive science about the representations of knowledge and the 
logical operations to process them in interaction with the real world (McCarthy 1981; 
Andler 1990; Perconti and Plebe 2020)

In the recent big data era, a panel of AI tools enables the efficient processing of large 
datasets composed of various kinds of biomedical data (electroencephalogram, MRI, 
biomarkers tracking, movement recordings, psychological survey, etc.), acquired from 
important clinical trials and cohorts for studying brain damages (Gopinath 2023). They 
are especially part of the improvement of the diagnosis of various neuro-degenerative 
diseases and of the attribution of potential dedicated treatments, if they exist.

This virtual feedback loop, well documented in the neuroscience literature, is thus 
inducing a reinforcement dynamics of both AI and neuroscience which are receiving 
it. From this assertion we assume that AI and neuroscience are expanding each other’s 
adjacent possible (Kauffman 2000; Monechi et al. 2017), ie. one domain is extending the 
field of possibilities that have yet to be explored in the other, by blending with the pre-
existing knowledge and practices that are characterizing the latter. One domain is thus 
reshaping the knowledge space of the other.

Conceiving AI as a research‑technology in science

In a socio-historical perspective of science, Shinn and Joerges (2002) propose the notion 
of research-technology, called also transverse science, to describe the dynamics of sci-
ence since the end of the 19th century, now largely based on instrumentation for experi-
mental or empirical investigations, especially in physical and life sciences. Within such 
a research regime, the production of knowledge is conditioned by an instrument that is 
designed in a specific research environment before being disseminated outside the latter 
(Shinn and Joerges 2002; Marcovich and Shinn 2020). Such an instrument requires the 
contribution of a dedicated socio-cognitive workforce composed of a variety of actors 
(scientists, technicians, promoters, administrators,...), to develop a dedicated techno-
logical culture of it, ie. a set of associated knowledge and practices shared by everyone in 
the community, without necessarily claiming a common professional identity related to 
it. These criteria shape a social group that could be also defined as an epistemic commu-
nity (Haas 1992; Roth 2008), although the research-technology framework relaxes the 
socio-cognitive boundaries that are specific to such communities. According to Shinn 
and Joerges (2002), the actors mentioned above are indeed able to move between differ-
ent research environments and across the established disciplinary boundaries in order to 
provide their expertise for the resolution of diverse scientific problems.

The research-technology associated with an instrument is thus a dynamical entity, 
with changing social and institutional organizations at different moments of its devel-
opment. Based on Shinn and Joerges (2002), Hentschel (2015) proposes four stages to 
describe the life of a given research-technology in a historical perspective, ie. throughout 
a long time period: prehistory, exploration, optimization and diffusion.

The first two stages are often associated together in the designing and testing phases 
of a given instrument. According to these authors, the underlying process needs 
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temporarily a closure of the community working on it, thus fostering the creation of 
a dedicated scientific field, often interdisciplinary, in which the instrument is also a 
research object.

Shinn and Joerges (2002) also highlight the criterion of genericity of an instrument: 
at later stages of its development, it could be adapted for disciplinary research contexts 
other than those in which it has been originally designed, or for a variety of applications 
outside scientific research. The two last development steps of Hentschel are thus repre-
senting such dynamics toward this final step. In particular, the diffusion phase requires a 
relaxation of the disciplinary boundaries within which the instrument was designed dur-
ing the prehistoric and exploratory phase, thus implying an openness of the actors in the 
community, who promote it in different fields of research within academia or industry. 
This the case of technologies related to laser beams or X-ray emission, now use widely 
from experimental physics to medical research and standard practices, even in daily 
objects such as smartphones (Hentschel 2015).

According to the analysis of the AI research ecosystem provided by Gargiulo et  al. 
(2023), AI seems to embrace some characteristics of an instrument embedded in a global 
research-technology program within science. Through the analysis of the development 
of AI in neuroscience, throughout a longer time frame (1970–2019), we discuss in Sect. 5 
to what extent this framework applies in the case of the development and the diffusion 
of AI in a single field of research.

Data and methods
Extraction and preprocessing of the data

MAG is a scientometric database that is well used in science of science, and especially for 
drawing the main trends of research within AI research (Gargiulo et al. 2023), measuring 
their impact in different scientific disciplines (Gao and Wang 2023), identifying the main 
actors involved in such research (Frank et al. 2019) and how they are organized accross 
the world (Tang et al. 2022), among others. Much bigger than the traditional databases 
such as the Web of Science (WOS) and Scopus (Visser et al. 2021), MAG covers not only 
the articles published in peer-reviewed journals, but also the publications within confer-
ence proceedings, books, preprints, etc., for a total of about 260 million scientific publi-
cations in all disciplines (in 2022).

MAG is organized as a big network of files containing different metadata to describe 
a single publication, such as title, abstract, publication date and publisher (Färber 2019). 
These metadata are embedded as strings or numerical identifiers in a set of dump files 
linked together by link files, all of them being available on the data deposit platform 
Zenodo Färber (2020).

To build an exhaustive database of the neuroscience literature from MAG, we draw 
upon a list of journals that we extracted from WOS, with the help of the database 
SCImago Journal Rank (SJR). We choose to use SJR in addition of WOS in order to 
extend the scope of neuroscience too narrow in the classification of the last one. Indeed 
the former is covering more neuroscience journals than the latter: in 2021, WOS ref-
erenced only 281 journals labeled as Neuroscience while SJR referenced 608 journals 
labeled as such. Moreover journals could be labeled differently by the two databases. 
Thus, with the help of SJR, we can retrieve in WOS some journals that are not labeled as 
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Neuroscience in this database but that are in fact publishing papers treating neuroscience 
topics. For instance, the well-recognized journal Neurocomputing, while labeled with 
both Neuroscience and Computer Science in SJR, is labeled only as Computer Science by 
WOS. Using SJR thus contributes to increasing the diversity of neuroscience-related 
subjects treated by the articles in the final dataset under study.

After having extracted the set of journals labeled as Neuroscience by WOS, we add the 
set of journals also labeled as such by SJR, and remove duplicates occurring in both of 
them. We thus get 421 journals.

Here we focus only on peer-reviewed journals because of their easy availability in 
WOS database, although we are aware that AI research could be largely published in 
other publication media such as preprint archives and conference proceedings (Wainer 
et al. 2013).

Then we extract the publications from MAG with an ISSN identifier matching pro-
cedure based on this list of journals. These publications are brought together in a set 
denoted by P in the following. In order to distinguish AI-related works in our neuro-
science dataset, we apply a selection criterion such that they must include at least one 
AI-related keyword in their title or abstract (see the SI of Gargiulo et al. (2023) for the 
complete list of keywords). This subset is denoted P ∩ AI . All neuroscientific studies 
outside this set are called P ∩ AI .

In the following we keep only the papers that were published in the period running 
from 1970 until 2019, and that have at least 10 references and at least 10 generated cita-
tions. Finally the sets P ∩ AI  and P ∩ AI include respectively 829,317 and 26,374 papers, 
spread over the period mentioned as illustrated in Fig.  1. Therefore, among all this 
research in neuroscience, only 3% contain AI-related keywords. The inset of this figure 
exhibits especially a slow growth of the share of AI-related publications in neuroscience 
at the very end of the 1980s, stabilizing around 1995 and followed by a very rapid growth 
from 2007 until 2019. This plateau around 1995 suggests a second, prolonged AI win-
ter in neuroscience, characterized here by stable interest in AI research but not waning, 
unlike in other disciplines or research fields (Cardon et al. 2018; Schuchmann 2019). The 
following period of important growth of this share, started in 2007, suggests also the 

Fig. 1 Left: classification of the papers in the extracted corpus. The intersection between the blue and red 
zones corresponds to the set P ∩ AI in the main text, while the blue zone excluded from this intersection 
represents the set P ∩ AI . The green set P  includes all papers added after the building of the ego-centered 
citation network that are not published in neuroscience journal. Right: cumulative number Nc of publications 
in the two main subsets considered in this paper. The inset shows the instantaneous part of AI-related 
publications in the whole neuroscience corpus
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main influence of the rise of deep learning techniques, a well-known trend shared by 
almost all the sciences (Cardon et al. 2018; Gargiulo et al. 2023). The share of AI publica-
tions in neuroscience reaches only 10% of the number of publications at its highest stage 
situated at the end of the studied period, which means that the use of the AI keywords of 
our list in neuroscience remains rather limited, even today.

Capturing the disciplinary landscape

Building of a citation ecosystem

After gathering the dataset under study, we build an exhaustive citation ecosystem 
around neuroscience publications, as illustrated in Fig. 2. We use the general reference 
link file of MAG – which is actually a giant citation network – for retrieving the refer-
ences and citations of our identified papers. We thus add such papers citing or cited in 
those in our dataset, as long as they are published in a journal that belongs to the WOS 
journals database – we conserve here 84% of the original citation network centered on 
the neuroscience dataset P . The added papers could therefore be published either in 
neuroscience publications, therefore in the set P , or in others such that they join the set 
denoted by P  , ie. the green border zone in Fig. 1. With the journal classification of WOS, 
we then enrich these sets of references and citations by assigning them a set of Journal 
Subject Categories (JSC) associated to their journals if they are referenced in this data-
base, which is a synonym of a large well-recognized discipline in science.

Then, for each corpus P ∩ AI and P ∩ AI  , we count the annual number of citations 
obtained by each JSCs represented in the global set of bibliographic references used by 
their papers. Doing this year by year over the period 1970–2019, we therefore build a 
temporal ranking of fields of study that are most cited by each corpus. For example, in 
Fig. 2, the papers cited by one corpus at year y0 (grey points) are mainly published in 
journals labeled by the JSC d1 with 8 citations, followed by the JSCs d2 with 5 citations 
and d3 with only one (red points and corresponding red-contoured ranking). Hence the 
disciplinary reference ranking r(y0) = {d1, d2, d3} with each JSC sorted according to 
their respective ranks mentioned above. However this ranking could be different before 
this year y0 and also in the following ones, depending on the citations received by each 
JSC at these years.

Fig. 2 Citation ecosystem centered here around three papers (grey) published at year y0 and that are 
included either in P ∩ AI or P ∩ AI . One dashed arrow represents the citation of a target paper by a source 
one. Hence red points are the papers that are cited by the papers of our corpus (reference) while the blue ones 
are citing them (impact). The rankings are shown in decreasing order with the associated number of citations 
of each JSC di
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We do the same for the JSCs that are most citing our papers of interest up to one year 
after their official publication year. We choose this temporal period to avoid the high 
time dispersion of the generated citations in the studied temporal period, the citation 
impact by the papers published in 1970 being eventually higher than those published in 
2019.

In this way we assess from which JSCs are issued at first the generated citations before 
eventually spreading into a broader disciplinary landscape. Finally, by looking at both 
reference and impact side, we represent two disciplinary landscapes associated respec-
tively with the corpora P ∩ AI  and P ∩ AI.

Representation of the disciplinary landscape

Following the procedure described in Sect. 3.2.1, and according to all the couples of ref-
erences’ and citations’ numbers associated with all the represented JSCs in P ∩ AI  and 
P ∩ AI , we associate with each JSC d two pairs of ranks indicating its weight either in 
references or in citations of the two corpora at year t, denoted respectively as 
rdR(t) = rd

R,P∩AI
(t), rdR,P∩AI (t)  and rdI (t) =

(

rd
I ,P∩AI

(t), rdI ,P∩AI (t)
)

 . In case of a missing 

JSC in one of the two corpora at a given year t, we fill the missing rank by a maximum 
value set at 100.

With one of such pair of ranks (either for references or citations), we can locate one 
discipline d in a 2D space of rankings, as shown in Fig. 3. In this coordinate system, the 
lower the value of one axis, the better the associated rank and the higher the number 
of collected citations along this axis. The angle θ indicates the deviation of d from the 
diagonal in this space, where the ranks are exactly the same in each corpus.

From this map we define the common interest area between P ∩ AI and P ∩ AI  (in 
grey) as the region close to the diagonal where the two rankings of the fields of study 
inside it are almost the same and not significantly varying over time. This zone is com-
prised between the two lines of respective equations rP∩AI = r

P∩AI + τ (above the diag-
onal) and rP∩AI = r

P∩AI − τ (below the diagonal), with τ a parameter set as 10 in this 
paper.

The blue zone over the common interest area corresponds to the space where the dis-
ciplines have a better rank in P ∩ AI  than in P ∩ AI . In the case of references, such dis-
ciplines in this zone are more cited by the corpus P ∩ AI  than by P ∩ AI , and in the case 

Fig. 3 Coordinate system to characterize the distribution of disciplines in the references and citations of the 
corpora P ∩ AI and P ∩ AI
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of citations received by each of the two corpora, such disciplines in this zone cite more 
the papers in P ∩ AI  than those in P ∩ AI . The purple zone under the common interest 
area is therefore the opposite case, ie. in the case of references (for example), the disci-
plines in this zone are more cited by the corpus P ∩ AI than by P ∩ AI .

In Sect.  4.2, we apply this per decade periods instead of single years, ie. we build a 
decennial ranking space from the total number of citations given or received by the rep-
resented JSCs in P ∩ AI  and P ∩ AI within the period under study.

Capture use of AI by neuroscientists

Classification of authors according to their AI involvement

The dataset P alone would not be sufficient for a study of social dynamics of scientists 
inside neuroscience. Indeed the latter would have had published in disciplines or fields 
of research other than neuroscience or in journals that are not labeled as such in WOS. 
We thus add another level of granularity by extracting all the missing publications that 
have been published by the authors who belong to P . Notice that some of these publica-
tions can have been published in the neuroscience journals extracted in our list of 421 
journals (see Sect.  3.1), since we focus only on the more impacting authors who have 
published papers with at least 10 generated citations (and having at least 10 references). 
From this extended set of papers we deduce the duration of the scientific life of each 
author, and we select first those who began after 1940. In addition, because of the poor 
disambiguation of some authors in the provided MAG dump-files, where some names 
are associated with centuries-long career and far too many publications, we select only 
the authors having a reasonable duration of academic life, here up to 50 years.

With these added data, we also capture the real activity (before 2019) of each author in 
AI research, not only in neuroscience but also in other fields of research by attributing 
them an AI score. We define it as the share of AI-related papers published before 2019, 
fAI (a) = nP∩AI

a /ntota  . To prevent the unexpected effect of accumulation of scientists hav-
ing an AI score equal to 1 due to a single publication in their very short career, we filter a 
second time the authors dataset by considering only those who have published at least 3 
papers. We thus consider in the following 886,074 scientists, in which 188,325 (only 16% 
of the scientists) have published at least one AI-related paper in neuroscience. Accord-
ing to the fAI distribution shown in Fig. 4, we divide this set of authors in four parts, 
namely Q ( fAI = 0 ; Na = 697, 749 ), Q0 ( fAI ∈ (0, 0.5) ; Na = 182, 925 ), Q1 ( fAI ∈ [0.5, 1) ; 
Na = 4977 ) and Q2 ( fAI = 1 ; Na = 423).

Fig. 4 Distribution of the AI score fAI of the authors
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Collaboration network

We then build a temporal co-signature network TCN from the set of papers P . Two 
authors i and j publishing together at year t are linked by an edge weighted by the 
number of common publications at this year wij(t) . All co-signatures in all papers 
published in year t shape a weighted snapshot called TCN(t). In order to unveil the 
structure of the collaboration at macro-scale in the whole period 1970–2019, we 
build the weighted time-aggregated co-signature network ACN, which includes the 
set V of all authors appearing in the dataset, and a set of weighted edges obtained 
by summing all the weights of the edges appearing in each snapshot of TCN, 
E = {w̃ij ∀(i, j) ∈ V 2|w̃ij =

∑

t wij(t)} . ACN is finally composed of 871,282 nodes and 
7,420,423 weighted edges, and is divided into 17,599 independent connected compo-
nents, with a giant one including 93% of the nodes. The smallest components exhibit 
also a non-negligible representation of authors belonging to the quartiles Q1 and Q2 , 
respectively 25,5% and 26,5% of the population in these quartiles. Since the authors 
belonging to them are supposed to drive the AI research in neuroscience, we choose 
to keep all the communities for our analysis, even smaller than the giant component.

Here the collaboration network is built only among the most impacting scientists 
of our dataset. Indeed we draw on the one hand the collaboration network directly 
from the set of neuroscience papers that are the most impacting in terms of citations, 
and on the other hand we focus on the authors who published at least 3 articles up 
to 2019. Therefore we disregard the short-terms collaborations among very early-
career scientists, short-career scientists or extra-academic ones, who are involved in 
one or two publications with too small impact but who can potentially drive forward 
innovation.

Intensity of collaborations between fAI quartiles

In this section we detail the general computation of z-scores which will be used in 
Sect. 4.4.2 to indicate the propensity of collaboration in the time-aggregated collabo-
ration network ACN.

We first consider a static collaboration network G = {S,E} with S the set of scien-
tists and E the set of edges between them. Each scientist in S is identified by their 
respective AI score fAI . According to Sect.  3.3.1, the distribution is divided in four 
parts {Q,Q0,Q1,Q2} , from the least to the most AI-expert. Therefore one author is 
belonging to one given group Q given its own AI score. By aggregating the scientists 
into such Q groups, we compute the 4 × 4 matrix τobs of effective edges between these 
groups, where one element is written as τobs(Qi,Qj) = |{(u, v)|u ∈ Qi, v ∈ Qj}|.

Then we create a set of N alternative collaboration networks {G̃k} = {(S, Ẽk)} , 
with k = {1, ...,N } , which are all based on the same set of scientists but have differ-
ent sets of edges obtained by perturbing the network with a uniform shuffling which 
conserves the degree distribution of the scientists. By applying the same clustering 
of scientists in Q groups for each network as for the real network G, we draw a set 
of matrices {τk} corresponding to the share of edges between the Q groups within 
the randomized networks {G̃k} . From this set we extract on the one hand the aver-
age matrix τsim where one element is defined as τsim(Qi,Qj) =

1
N

∑

k τk(Qi,Qj) , and 
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on the other hand the standard deviation matrix σ where one element is defined as 
σ(Qi,Qj) =

1
N−1

∑

k(τk(Qi,Qj)− τsim(Qi,Qj))
2.

We finally compare the empirical matrix τobs of the real network with the simulated 
one τsim through a z-score matrix where one element is defined as follows:

This standardization is used here to test the over-representation or under-representation 
of a given number of edges between two groups with respect to the corresponding aver-
age simulated value which represents an ideal situation through randomization. Apply-
ing the whole procedure before on the network ACN built in Sect. 3.3.2, with N = 100 , 
gives the Fig.  13B. Figure  13A is also drawn by applying the same method with same 
N on each temporal snapshot of the temporal collaboration network TCN (see also 
Sect. 3.3.2), and by aggregating the groups Q0 , Q1 and Q2 into a single one called Qi (see 
Fig. 13A) that includes all the scientists with at least one AI-related publication. Since 
TCN is undirected, the 4 × 4 matrices τobs , τsim , σ and z are therefore reduced to scalars 
defined with only the two groups Q and Qi.

Results
Citation homogenisation of the AI research specialty with general neuroscience

First of all we explore the integration of AI technologies and knowledge within neuro-
science through the dynamical interaction between the respective disciplinary environ-
ment of the two fields – AI and neuroscience. We especially compare year by year the 
basis of reference and citations that are shaping these fields, that are here represented as 
the AI-related publications and the non-AI ones within our neuroscience dataset.

After having divided the neuroscientific papers in two sub-corpora, one including the 
AI-related papers ( P ∩ AI ) and another including non-AI ones ( P ∩ AI  ), we build for 
each of them two disciplinary rankings which could vary over time, one for the disci-
plines appearing in their respective references ( rR(t) ), called reference ranking in the fol-
lowing, and another for those appearing in the respective citations they have received 
( rI (t) ), called citation ranking in the following. The reference ranking associated with 
one given corpus summarizes its main influential fields of study, thus the disciplinary 
structure on which it draws over time, while the citation ranking indicates the fields that 
are impacted at first by the corpus (for more detail, see Sect. 3.2.1 above).

We then compare macroscopically at each year the reference rankings of the two cor-
pora ( rR

P∩AI (t) and rR
P∩AI

(t) ) and also their citation rankings ( rI
P∩AI (t) and rI

P∩AI
(t) ) by 

using a common similarity metric J provided by Gargiulo et al. (2016, see their supple-
mentary materials). This last measure, comprised between 0 and 1, evaluates how simi-
lar are two given rankings rA and rB : if J (rA, rB) = 1 , the two rankings are exactly the 
same, ie. containing the same elements with the same respective ranks; conversely, if 
J (rA, rB) = 0 , the elements included in rA are not in rB , whatever their respective ranks.

Figure 5 shows the evolution of two such similarity measures, a first one for compar-
ing the rankings of disciplines cited by the corpora P ∩ AI and P ∩ AI  (blue curve) and 
a second one for comparing the rankings of the disciplines that are citing them over time 
(red curve).

(1)z(Qi,Qj) =
τobs(Qi,Qj)− τsim(Qi,Qj)

σ (Qi,Qj)
.
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This figure shows that the disciplines cited by P ∩ AI remain quite different from 
those cited by P ∩ AI  . However the almost linear growth over time of the similarity of 
references is a signal of bibliographic homogenisation. We observe also on this figure a 
similar behavior for the second similarity measure related to the disciplines citing the 
two corpora, which could be divided at first glance in two stages. First the similarity sta-
bilized at a very low value between 1970 and 1987, ie. the two corpora were cited by two 
very different sets of disciplines, then it has been steadily increasing since 1988, ie. the 
sets of disciplines that are showing interest for respectively the AI-related literature and 
the non-AI one, have become more intertwined over time.

Neuroscience and AI: two different disciplinary landscapes

We now study the difference between the disciplinary environments of the AI-related 
corpus ( P ∩ AI ) and the non-AI one ( P ∩ AI  ) in our neuroscience dataset. In particular, 
by considering the individual disciplines that are commonly cited by (or are citing) both 
of the two corpora, we compare to what extent these disciplines are actually cited by 
(are citing) each of them. The goal of such an analysis is to identify the disciplines from 
which each corpus prefers to find information, ie. their references, and those into which 
they spread their knowledge, ie. their citations.

By applying the framework described in Sect. 3.2, we associate with each represented 
discipline d in the references or citations of the corpora P ∩ AI  and P ∩ AI , their time-
aggregated ranks over decades, 

(

r̃d
P∩AI

(T ), r̃d
P∩AI (T )

)

 , with T = [t0, t0 + 10) a given 

time period where t0 ∈ {1970, 1980, 1990, 2000, 2010} . These ranks are built with the 
total numbers of references to the discipline d made by the corpora (references), or with 
the total numbers of citations given by d to the corpora (citations, or impact) during the 
time period T.

We then locate the cited or citing disciplines in the 2D space of rankings associated 
with each corpus respectively, as shown in Fig. 6. In one of the maps drawn on this fig-
ure, one colored disc represents a specific discipline d that is located with its respective 
ranks in each corpus during the considered time period, in references (Fig. 6A) or cita-
tions (Fig. 6B). Lower the value of one axis, better the associated rank, and then higher 
the number of collected citations along this axis. From these maps we define the com-
mon interest area between P ∩ AI and P ∩ AI  as the region close to the diagonal where 
the two rankings of the fields of study are almost the same and not significantly vary-
ing over time. These fields are colored in grey in these maps. The fields that are more 
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Fig. 5 Instantaneous similarity between the references’ or citations’ (also called impact) rankings of the two 
corpora P ∩ AI and P ∩ AI at year t 
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dispersed around the diagonal are represented with two different colors, the blue ones 
having a better rank in P ∩ AI  than in P ∩ AI and the purple ones having a better rank 
in P ∩ AI than in P ∩ AI .

Fig. 6 Time-aggregated ranking maps of the fields of study involved in publications cited by both of 
the studied corpora P ∩ AI and P ∩ AI (A), and in publications that are citing them (B). The dashed lines 
show the diagonal where the rankings are exactly the same in the two corpora. Only are shown the most 
significant disciplines, with the condition that they commonly appear in the two corpora. The sizes of the 
discs, based on their empirical number of citations in the two different corpora, are normalized to compare 
their respective citation weights within each corpus. Grey points correspond to disciplines confined in 
the area between the two lines of respective equations rP∩AI = r

P∩AI + τ (above the diagonal) and 
rP∩AI = r

P∩AI − τ (below the diagonal), with τ = 10 , and with no important variations of positions from 
one period to one another. The most persistent ones over the 5 represented decades, with a rank lower than 
20, are mentioned in the upper left box of each figure A and B. Finally, blue points are the most preferred 
disciplines of the P ∩ AI corpus while purple ones are those for the corpus P ∩ AI . Abbreviations of the 
apparent disciplines are given in Appendix C
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To characterize each of these three areas around the diagonal in the references 
(citations) of each corpus, we use the annual couples of ranks rdR(t) ( rdI (t) ) of each 
represented discipline d in P ∩ AI  and P ∩ AI  , and we compute the temporal angle 
θ(t) that indicates its temporal deviation from the diagonal, here corresponding to 
the null angle θ = 0 . Then we compute inside each zone and at each year the average 
angle 〈θ〉 and the standard deviation from the latter, both represented in Fig. 7.

The disciplinary composition of the common interest area, concentrated around 
the diagonals of all the maps, includes rather the same fields at each decade, both on 
references’ and impact’s sides. According to the common ones that are more persis-
tent over decades inside the references and received citations (see upper left boxes in 
Fig. 6A and B), the core of the observed citation dynamics lies in neuroscience and 
is composed by disciplines that are mainly associated with medicine and biomedi-
cal research, such that Biochemistry & Molecular Biology, Behavioral Sciences, Clini-
cal Neurology, Physiology, Cell Biology, Psychology, Psychiatry and Ophthalmology. 
This zone is thus coinciding with the definition of neuroscience given by neurosci-
entists themselves, namely it “include[s] all fields that are involved with the study of 
the brain, the behaviors that it generates, and the mechanisms by which it does so, 
including cognitive neuroscience, systems neuroscience and psychology” (Hassabis 
et  al. (2017),  p.  245). This zone is also accompanied by disciplines whose ranks are 
more variable and that are associated to more technological aspects of neuroscience, 
such as Computer Science, Engineering, Radiology, Neuroimaging and Audiology & 
Speech-Language pathology. A description of the evolution of the disciplinary land-
scape inside this zone is detailed in Appendix B.

The special disciplinary ecosystem of the non-AI corpus P ∩ AI  , in blue in the rank-
ings maps of Fig. 6, is also centered around biomedical fields of study that tend to be 
close to the disciplines that characterize the whole neuroscience as mentioned above. 
In particular, as shown in Fig. 7, the mean angles and the standard deviations of the 
disciplines in the associated zone are asserting a global concentration of them toward 
the common interest area, which includes on one hand the most influential fields of 
research (reference) and on the other hand the core of those that show the same inter-
est for the two studied corpora (impact). We also notice in the reference’s angle plot 
of Fig.  7 a deviation from the diagonal of the disciplines in this zone of references 
since 2010, that is also shared by the disciplines in the common interest area of ref-
erences. This suggests a recent shift of references shared by the two corpora toward 
fields of study preferred by the non-AI corpus.

Fig. 7 Temporal average angles produced by the disciplines in each area of reference’s (left) and impact’s 
(right) diagrams of Fig. 6, with respect to the diagonals represented here by a dashed line at �θ� = 0 . The 
colored area covering the curves are representing their respective standard deviation from the mean angle. 
The angles are expressed in radians
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Conversely, the special disciplinary ecosystem of P ∩ AI evolves differently by repre-
senting the mathematical, computational and technological part of neuroscience since 
1970. The regular references to Computer Science, Physics, Statistics & Probability, 
Mathematical & Computational Biology and Engineering show a large influence of tech-
nological-oriented research in this particular AI research in neuroscience. Progressively 
concentrated toward the common interest area between 1970 and the late 1980 (see 
Fig. 7), these references preferred by P ∩ AI become more further away from the com-
mon interest area and more dispersed after this period, thus indicating a cognitive dif-
ferentiation of references on which the AI-related corpus P ∩ AI is drawing upon from 
the non-AI corpus P ∩ AI  . In addition, while neuroscience and associated medical fields 
– as Clinical Neurology and Neuroimaging – remain the primary stakeholders in the AI 
research conducted within it, the latter appears to be of varied interest, since the 1980s, 
to a subset of disciplines which do not place as much emphasis on works in the non-AI 
corpus and which are common to those cited preferentially by the AI-corpus over time, 
such as Computer Science, Engineering and Mathematics for Computational Biology, the 
last one exhibiting especially a spectacular increase of its own rank between 1990 and 
2019 (see Figs. 6A and B1). Moreover, these special disciplines that cite most the corpus 
P ∩ AI in Fig. 6B are as dispersed as the most cited ones by this corpus in Fig. 6A, and 
remain over time less close to the common interest area than the disciplines preferring 
the other corpus P ∩ AI  (see the corresponding annual evolution of the average angle 
〈θ〉 , colored in purple in the impact side of Fig. 7). All these results thus show that AI 
research in neuroscience is situated in a particular disciplinary environment that is not 
shared by the core of the neuroscience field.

By regarding the disciplines with the most significant rank evolution within the AI 
ecosystem P ∩ AI , Fig. 8 shows the rise of Neuroimaging and Radiology both on refer-
ences’ and impact’s sides, as already observed in the common interest area, and also the 
progressive domination of Computer Science. This figure shows also the decrease of the 
influence of fields of research linked to the disciplinary orientations of neuroscience and 
especially of the corpus P ∩ AI  . This is also a sign of a progressive differentiation of the 
research supported through AI from the rest of neuroscience. The case of Physiology, 
which contributed to the foundations of neuroscience (Cooper and Shallice 2010), is 
particularly eloquent with its distancing in time from the highest positions in the refer-
ence ranking of the corpus P ∩ AI since the 2000s. This observed retreat of master neu-
roscience disciplines, that had a strong influence in the building of AI in this field since 
the 1970s, suggests that a social transformation occurred in this special research during 
the studied temporal period. Perconti and Plebe (2020) mention such a transformation, 
in which AI in neuroscience was a matter for biomedical specialists before becoming an 
object of study and technological developments for engineers. This will be shown empir-
ically in the following sections.

1 Fig. 6B shows also a particular proximity of the AI-related corpus with the field of chemistry, here represented with the 
JSCs Chemistry and Biochemical Research Methods, the latter giving more citations than the former since 1990.
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An AI literature confined in a small set of journals

Another factor of differentiation of the AI research from the core of neuroscience lies 
on the set of journals in which the former are mainly published. Here we analyze how 
AI is promoted within the 421 journals included in the whole neuroscience dataset, 
and who are the authors heading to the neuroscience journals publishing most AI 
research.

For each journal, based on its respective entire publication history, we compute the 
temporal share aAI (t) of AI-related publications (called also temporal AI activity), and 
its global share aAI of such publications since its launch year (called also just AI activity). 
These scores are represented in Fig. 9. We then identify the journals with aAI higher than 
10%, whose names and launch years are given in the table in the bottom of this figure.

According to the evolution of the AI activities of neuroscience journals, the AI-related 
research in this field is concentrated around a small subset of journals providing devel-
opment in computational techniques mainly linked to neural networks and cognition. 
These journals are quite representative of the connectionist wave of AI which is active 
in neuroscience since the late 1980s (Cardon et al. 2018). They are representing 32,7% 
of the scientific production of AI in neuroscience during the whole period 1970–2019, 

Fig. 8 Time evolution of the ranking rP∩AI of the disciplines that are mostly represented by the corpus 
P ∩ AI in the references (top) and citations (bottom), ie. situated in the lower zone of the maps shown in 
Fig. 6. Only the curves with most significant evolution are highlighted with colors
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according to our dataset, the rest being distributed among the 398 other journals with a 
much smaller AI-activity (less than 10%).

The spectrum of aAI (top yellow curve in Fig. 9) shows that the launches of the most 
AI active journals in the neuroscience field are concentrated around three periods. The 
first one spans the period 1987–1994 with especially 7 journals (no. 3 to 9 in the table 
of Fig. 9) whose aAI is higher than 28% and whose scopes are oriented toward compu-
tational neuroscience and the use of neural network formalism for complex calcula-
tions, especially the simulation of cognition on neural systems. These journals, except 

Fig. 9 Top diagrams: A: temporal AI activity of the journals. One square at the position (j, t) of the diagram is 
the share of AI publications in the journal j at time t. One column of the plot is the AI activity of one journal. 
B: distribution of the global AI activity of the journals over all their publications up to 2019. The horizontal 
axis is corresponding to the journals axis of the bottom plot A, as shown by the red dashed zone. C: zoomed 
activities of the 23 most active journals in AI research, with a global AI-activity higher than 10%. They are 
indicated in the bottom table
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no. 7 and 9 (respectively Network: Computation in Neural Systems and Neural Network 
World) are showing well-sustained activity on AI research. This period falls commonly 
into the second “AI winter”, when AI-research funding and the production of scientific 
results and associated technological solutions were at their lowest for a second time 
(Cardon et al. 2018; Schuchmann 2019). Paradoxically, neuroscience are especially active 
in such research in this period, as shown by the strong, long-lasting AI-activity of these 
journals created in this period.

The second period includes the journals 10, 11 and 12, which were launched between 
1999 and 2001. The journal IEEE Transactions on Neural Systems and Rehabilitation 
Engineering is especially oriented toward the development of computational methods 
and technological tools to capture the neural activity of the brain. This period is followed 
by another until 2007 which did not lead to the launch of AI-active journals.

Finally, the third period following the latter, between 2007 and 2009, saw the launch of 
numerous journals (no. 14 to 20) in a particularly short time, that are fostering research 
at the crossroads of neuroscience and cognitive science. It includes especially the most 
AI active journal of our dataset, Evolutionary Intelligence, whose scope is oriented 
toward evolutionary computation, a subset of the field of optimization. Its temporal 
activity is also strongly sustained over the whole time period covered in our datasets.

Aggregating over time, Fig. 10 shows a linear correlation between the mean AI-activity 
in the journals and the average of the AI scores fAI of the authors that have published at 
least one paper in these journals. The tail at highest aAI (higher than 0,1) is correspond-
ing to the top 15 of the most AI-active journals given in Fig. 9. This particular result thus 
unveils attraction of the authors publishing the most AI-related works of our dataset in 
the journals with a high AI-activity in time. This suggests that AI research in neurosci-
ence is done by a specialized scientific community inside this field with its own journals 
for communicating results.

Who are the scientists making AI in neuroscience?

Disciplinary profiles in each quartile of the fAI distribution

In this part we focus on the profiles of the scientists doing AI in neuroscience (in Fig. 4, 
included in one of the quartiles Q0 , Q1 or Q2 ) and how they are inserted into the global 
authorship landscape of neuroscience. In particular, we compare these AI practition-
ers with the other scientists in neuroscience who never published AI-related papers 

Fig. 10 Correlation plot between the global AI activity aAI of the journals appearing in P and the average AI 
scores fAI  of the authors who are published in it between 1970 and 2019. Each point represents one journal 
in the horizontal aAI space, colored by the standard deviation of the fAI scores of their associated authors. The 
maximum average value of fAI  is situated around 0,4
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(included in the quartile Q ) under two aspects, namely (1) their disciplinary background 
and (2) their disciplinary trajectory in academia.

We define the disciplinary background of one author as the set of unique disciplines 
corresponding to the journals in which he/she has published in his/her first year of aca-
demic life, namely the year of his/her very first publication(s). For example, a fictitious 
author publishing his/her three first papers in the same year y0 in two different jour-
nals labeled with disciplines {d1} , {d1, d2} and {d3} respectively, would have a disciplinary 
background composed of disciplines {d1, d2, d3} . In this way, another fictitious author 
who has published only one paper in his/her first year of academic life (actually the most 
frequent situation, occurring 64% of times in the dataset) would have a disciplinary 
background composed only of the discipline(s) labeling the corresponding journal.

Then we compute for each quartile the temporal cumulative number of new scientists 
trained in each represented disciplinary background in this quartile, as shown in Fig. 11. 
In this way we assess for each quartile the main native specialties in which authors have 
first published.

Figure 11 shows that the profiles included in Q0 and Q overall the period 1940–2019 
are very similar. They are mainly confined in biomedical research around neuroscience, 
as well as in Multidisciplinary Sciences which is represented by 91 international jour-
nals with a broad topical diversity. We recognize also the main fields of research that are 
shaping the common interest area of the disciplinary ecosystems of the two separated 
AI and non-AI corpora (see the most persistent disciplines in references and citations 
in Fig. 6). These two profiles best represent the disciplinary spectrum of neuroscience 
itself. We notice in addition the spectacular increase of the Neurosciences curve in the 
two plots until the 1970s (after having emerged in 1957 for Q and in 1962 for Q0 ), fol-
lowed by a quasi-linear progression until 2015. This boom of neuroscience profiles in 
these quartiles suggests that modern neuroscience is progressively being institutional-
ized as a well-structured discipline in science.

The profiles of Q1 and Q2 shown in Fig. 11 are at the opposite of the previous ones, 
coming at most from fields of research related to Computer Science. The specialty Com-
puter Science, Neuroscience, which emerged in 1988 for Q1 and in 1991 for Q2 indicates 
the rising of a group of scientists that are specialized into computation in neuroscience. 
Notice that the behavior of the Neurosciences curve within Q1 in Fig.  11 appears later 
than computational and engineering profiles, suggesting also that AI-related knowledge 
and technological tools penetrate progressively the global neuroscience field.

From the subset of authors belonging to the most frequent disciplinary background 
in each quartile, we consider their respective disciplinary profile as the disciplines cor-
responding to the journals in which they publish throughout their scientific life – that 
would not be ended for the youngest still publishing in 2019. We therefore draw from 
these two parameters – disciplinary background and career-related disciplines – the 
typical disciplinary trajectories in each quartile, which are shown in Fig. 12. Since the 
backgrounds are built from the publications at a given year, the authors who began their 
career in 2019 would have a disciplinary profile corresponding to it. For avoiding an 
over-representation of some confined disciplinary trajectories due to these newcomers, 
we therefore consider only the authors who began at the latest in 2018. For the sake of 
clarity we select only the most significant trajectories.
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As a confirmation of the disciplinary background shown in Figs. 11, 12 shows that the 
studied authors in Q and Q0 are involved in a similar disciplinary landscape centered 
around Ophthalmology, Clinical Neurology and general Neurosciences, while Q1 and Q2 
are more confined into Computer Science and Engineering. In particular, by consider-
ing neuroscience as the subset of disciplines composed of the WOS disciplines Neu-
rosciences, Clinical Neurology and Neuroimaging, we observe that Q and Q0 are more 
involved in that field of research, with respectively 77% of the authors in the first and 
78% of those in the second with a disciplinary profile that includes one or more of the 

Fig. 11 Cumulative number of new authors per disciplinary background for each quartile. For one plot, the 
point of the curve of the specialty d at year t is the number of authors who have published their first articles 
inside d during their very first year of academic career, since the year of first appearance of d. Only the top 10 
native specialties in 2019 are shown in Q , Q0 and Q1 , and the top 6 for Q2 because of the insignificance of the 
following ones
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fields of research associated with neuroscience. On the contrary, 45% of the authors in 
Q1 and 42% of the authors in Q2 have a disciplinary profile that includes such JSCs. These 
two last quartiles are therefore mainly detached of the neuroscience goals given the dis-
ciplinary backgrounds and profiles of their main respective authors. These results thus 

Fig. 12 Significant disciplinary trajectories of the authors belonging in each quartile. On each plot lie on the 
left the most significant disciplinary backgrounds, and on the right lie the career-related disciplines up to 
2019
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show that neuroscience is a field that brings together heterogeneous profiles who seem 
to serve different epistemic objectives inside and outside neuroscience (Sedooka et al. 
2015).

Nonetheless we notice two special things about these last quartiles. First the authors 
who began into the specialties including one or more neuroscience-related disciplines 
tends to continue in the same field of research, which is sometimes interdisciplinary, 
such as the combinations Computer Science, Neurosciences and Neuroimaging, Neuro-
sciences, Radiology. This means that these scientists are trained into a disciplinary con-
text centered around neuroscience. Second, some authors who began into Computer 
Science, Engineering or mathematics-related disciplines – who seem to be more distant 
from neuroscience in their disciplinary backgrounds – continue into neuroscience, as 
shown by the combination of their originating field(s) of research with neuroscience 
ones in their disciplinary profiles in Fig. 12, for instance Computer Science, Engineering 
leading to Computer Science, Engineering, Neurosciences. The late emergence of inter-
disciplinary profiles in computer science and neuroscience, who are more involved in 
neuroscience in general, such as those in Q2 , also testify that the AI community is tak-
ing root in the global neuroscience landscape, the more recent profiles in neuroscience 
becoming insiders in this new technological specialty. All these scientists thus represents 
a special labor force for neuroscience whose main expertise lies in AI, and more gener-
ally in mathematical, computational and technological tools (Perconti and Plebe 2020).

Structure of the collaboration network between quartiles

We investigate in the following how AI practitioners are distributed within the neuro-
science community, and how are shaped the collaborations between them, especially 
between the different kinds of scientific profiles described before.

We first consider the temporal collaboration network TCN built in Sect. 3.3.2, and we 
evaluate the temporal standardized share of edges between scientists belonging respec-
tively to Q and to all other quartiles Qi (see Sect. 3.3.3 for the calculation of such score). 
This score is showed in Fig. 13A, from which we deduce two facts.

Fig. 13 A temporal z-score applied to the edges in TCN between the scientists in Q and those in the other 
Qi , here aggregated together under the notation Qi . B Z-score matrix of the edges between each quartile in 
the time-aggregated collaboration network ACN. The values are normalized with the absolute maximum one 
in the matrix
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First, all its values are lower than 0 over time, meaning that the number of edges 
between the two ensembles Q and {Q0,Q1,Q2} , is lower than the average one computed 
from several random distributions of all the edges between the authors in TCN. This 
fact thus shows that the AI practitioners within neuroscience and the other neuroscien-
tists maintain few collaborations as TCN grows over time. Second this situation worsens 
over time, with a steady decline until the 1990s followed by a steeper one toward 2015. 
Although this tendency has reversed since 2015, these results indicates that the neuro-
scientists making AI, ie. in Qi and not in Q , are shaping an almost independent com-
munity inside neuroscience by widening progressively a gap with other neuroscientists 
belonging to the set Q . Furthermore, concerning especially the authors in Q0 , who have 
similar disciplinary backgrounds and trajectories as the authors in Q (see Figs. 11 and 
12), the results advanced above also suggest that the scientists in Q0 became progres-
sively outsiders from the subset Q in the history of neuroscience by moving closer to AI 
– even if the scientists in Q0 have few AI-related publications.

This social divide is confirmed with Fig. 13B, which represents the panorama of the 
links shared between the different quartiles in ACN (see also Sect. 3.3.3). This diagram 
represents a stabilized situation observed since the end of the 1990s (see Fig.  16 in 
Appendix D), where the scientists in Qi cosign more with one another than with Q while 
the scientists in the second ensemble prefer to collaborate with one another as well. This 
social separation around AI research does not produce, however, a strict knowledge 
divide in neuroscience, as demonstrated before with the temporal similarity index of dis-
ciplines impacted directly by neuroscience in Fig. 5, as well as with the temporal evolu-
tion of the disciplinary landscapes in Fig. 6, both indicating meaning that the quartiles Qi 
export their knowledge in the whole neuroscience as much as the quartile Q.

We also observe in Fig.  13B a polarization within the subset of AI practitioners in 
neuroscience. Indeed, the authors belonging to Q1 and Q2 are more strongly connected 
together than with those in Q0 . This can be explained by the disciplinary proximity of 
the authors in Q1 and Q2 observed in Fig.  11, especially the prominence between the 
late 1980s and the early 2000s of full computer scientists and hybrid profile publishing 
in journals labeled as Computer Science, Neurosciences. Furthermore, the links between 
Q1 and Q0 are much more important than those between Q2 and Q0 . The scientists in 
Q1 thus appears to be the most interdisciplinary by assuring the bridge between these 
differentiated profiles inside AI community. These other outsiders in neuroscience are 
especially driving the diffusion of AI in neuroscience from computation to medical and 
clinical applications, given their disciplinary trajectories shown in Fig. 12.

Discussion
In this article we have explored the penetration of AI in neuroscience through the co-
development of the two fields and especially the construction of a technological specialty 
centered around AI inside neuroscience. To do this we have conducted a scientometric 
analysis of an exhaustive bibliometric database that aims to represent at best neurosci-
ence research between 1970 and 2019. This analysis relies on many indicators.
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First, we have conducted a comparative analysis of the egocentric citation networks 
associated with respectively AI research and non-AI research within neuroscience. We 
have shown that the sets of disciplines influencing respectively the AI-related works and 
the non-AI ones tend to be similar over time, as well as those impacted by these works. 
AI thus becomes epistemically embedded in neuroscience over time, by reproducing 
citation patterns that are characterizing the field – ie. toward the disciplines that struc-
ture the field –, and by increasingly impacting the disciplines that show the most interest 
in this field – including neuroscience itself.

However, we have shown at micro-scale a progressive cognitive differentiation of the 
AI research from the non-AI one within neuroscience, based on both the employed bib-
liographic references in each of the two fields and their respective ensemble of impacted 
disciplines. We especially have observed specialization of AI research toward computer 
science, mathematics and engineering, while the core of neuroscience research draws 
upon biomedical and clinical research fields related to it. This differentiation is also pro-
duced by the neuroscience journals landscape, in which a small set of 23 journals, the 
most active in AI research in neuroscience, are representing those STEM fields in ref-
erences and are gathering the scientists who are the most active in AI in neuroscience 
as well. Furthermore, by observing the fields impacted by the two corpora under study, 
we show that AI research targets rather the same fields of research as those cited by it. 
The epistemic integration of AI into neuroscience that was observed at first glance thus 
remains partial because of a specialty demarcation process of the former from the latter.

In a second step we explained this specialization by conducting a relational approach 
based on the scientific profiles of the authors of the studied database. By distinguish-
ing the AI practitioners in neuroscience from the other neuroscience specialists, we 
have shown that the first tend to not maintain links with the second in the temporal 
co-authorship network including the main collaborations in the field since 1970. With 
the previous results we concluded that AI researchers are outsiders in neuroscience. We 
especially have distinguished two classes in this group of scientists, namely a first wave 
of outsiders including authors who are trained in the main disciplines that are shaping 
the neuroscience field since the 1940s and who have a low AI activity, and a smallest 
second wave which emerged around the 1980s and that is including authors who are 
trained in other disciplines that are not represented in the former group, such as com-
puter science and engineering, and who exhibit the highest activities in AI research in 
general (inside and outside neuroscience). Furthermore this second group is not the 
most involved in the field of neuroscience, its members keeping to publish within their 
original disciplines that are mainly STEM ones.

This social polarization inside the AI practitioners in neuroscience suggests that AI 
becomes over the years a set of technologies that need to be shaped not only by neuro-
scientists themselves, but also with the help of scientists coming from outside neurosci-
ence, or from within the discipline but with an interdisciplinary background, and who 
present specific expertise about AI itself. Since we considered AI as a global research-
technology in science (Shinn and Joerges 2002; Marcovich and Shinn 2020; Hentschel 
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2015), these results thus are a consequence of the diffusion of AI outside its originating 
STEM disciplines and throughout the science system (Gargiulo et al. 2023). The second 
wave of AI researchers described before represents the mobility of such experts toward 
other fields of research, in order to propose and integrate the associated knowledge and 
technologies to achieve some of the disciplinary objectives of these receiving fields or, 
less ambitiously, to solve some technical problems that could not be solved with more 
conventional tools.

These results thus illustrate quite well the generic property of AI when applied in 
neuroscience, which is producing a social and cognitive differentiation inside the lat-
ter (Shinn and Joerges 2002). However we could question the relevance of this crite-
rion in this case, where only 3% of publications in our dataset involves AI according 
to our keyword filter introduced in Sect. 3.1. This leads especially to ask how spread 
is AI across the topics covered by neuroscience over time, ie. if it is present in all sub-
fields of neuroscience or concentrated around a few ones. With such a topic space, 
and by reusing data about authors, the co-signature network and the citation net-
work, we could evaluate more precisely how much universal AI is inside neuroscience 
through the distributions of authors and citations in this topic space, and then deduce 
the propensity of AI to fit with the knowledge and methods associated with some top-
ics rather than others.

Nonetheless, the dynamical process of integration of AI in neuroscience exhibits 
some differences regarding the global history of AI in science depicted in Gargiulo 
et al. (2023). Although the development of AI in science is statistically characterized 
by a disciplinary closure around STEM disciplines between 1980 and 2010, AI contin-
ued its interactions with neuroscience for its own epistemic purposes in this period, 
as shown by a large number of journals created in this period and that are very 
active in AI research (see Sect. 4.3), and by its global citational impact in the disci-
pline (see Sects. 4.2 and 4.1). However, a social closure was simultaneously occurring 
and accentuated inside the field, where not everyone is finally using AI at all, even in 
recent days. According to Shinn and Joerges (2002), this is typical of a differentiation 
process observed in the conception phase of an instrument.

The penetration of AI inside a single discipline thus could also be described as 
another underlying dynamical process of development of the associated knowl-
edge and instruments following the four steps of Hentschel (2015), included inside 
the diffusion phase of the original instrument. For instance, the AI developed inside 
neuroscience, potentially different from the originally what is produced in STEM dis-
ciplines, would be also adapted to furnish other capabilities in neuroscience first, but 
also in other disciplines or fields of research afterwards if they judge it useful for their 
own goals. Under such an hypothesis, we could explore more precisely on the one 
hand the expansion of adjacent possible of neuroscience caused directly by AI, and on 
the other hand the expansion of the adjacent possible of other fields that have been 
influenced later by an adapted AI that was designed in neuroscience (Kauffman 2000; 
Monechi et al. 2017; Bianchini et al. 2022).
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In addition to the limitations mentioned throughout this paper, especially for the 
building of our database described in Sect.  3, we should also consider diversity of 
types of publications that could differ from one discipline to another, and the manner 
they impact different disciplinary communities as well. Indeed, we have shown that 
most of AI research published in peer-reviewed journals in neuroscience is impacting 
mainly neuroscience itself, but we could test whether this pattern subsists in other 
media for communicating research results, such as conference proceedings and pre-
prints sharing platforms such as arXiv, commonly used by mathematicians, physicists 
and computer scientists (Wainer et al. 2013). Future research may clarify whether our 
results hold if we consider the impact of AI produced within neuroscience through 
these other publication outlets.

Finally, this paper intends to be a road map for further studies of the diffusion of AI 
in a broad range of disciplines or fields of research that are receptive to it, but probably 
with different patterns. A comparative work would then be required.

Appendix A
Self‑similarities of references and citations, and disciplinary concentration in the AI 

and non‑AI corpora

This section focuses on the cognitive development of the research field associated with 
the AI corpus ( P ∩ AI ) and the non-AI one ( P ∩ AI  ), based on the same similarity 
measure introduced in Sect. 4.1. We compute for each corpus two such measures that 
could vary over time: 

1. the temporal self-similarity of one given ranking r, namely the similarity between this 
ranking at time t and the the same at the previous time t − 1 , denoted as J (rt−1, rt) ; 
we apply it for references’ and citations’ rankings in each corpus,

2. the temporal disciplinary concentration of one corpus, namely the similarity 
between its references ranking rR and its citations one rI at a given time t, denoted as 
J (rR(t), rI (t)),

Fig. 14 A: temporal self-similarity of disciplinary rankings associated with either the references of one 
specific corpus (R) or the citations it has received (I), either for the AI-related corpus ( P ∩ AI ) or for the non-AI 
one ( P ∩ AI ). More precisely, one point at time t is the similarity between the ranking at time t and the 
former one at t − 1 . B: instantaneous similarity between the references used by one corpus and its produced 
citational impact



Page 27 of 32Fontaine et al. Applied Network Science             (2024) 9:8  

The evolution of these two indices are represented in Fig. 14A and B respectively.
According to Fig.  14A, the references on which the AI corpus and the non-AI one 

draw upon respectively (solid lines) are both consolidating with time toward their high-
est respective values in 2017, but not at the same speed. Indeed, the non-AI corpus lies 
on almost the same set of disciplines from year to year, while the AI-related one grow 
from a low similarity in 1970 (around 50%) to a stable set with a high similarity (around 
90%) between 2015 and 2017. The observed decrease after 2017 is mainly due to the 
lack of data grabbed by MAG. In addition, while the self-similarity of citations in the 
corpus P ∩ AI  (blue dashed line) follow the same trend as its corresponding self-simi-
larity of references, the self-similarity of citations in the corpus P ∩ AI  (purple dashed 
line) is rather chaotic and varying around 50% between 1970 and the late 1990s, then it 
increases toward around 80% until 2019. This means that the short-term impacted fields 
in the two corpora are also consolidating toward rather the same ones in recent days. 
More precisely, Fig. 14B shows a growing concentration of references’ and impact’s rank-
ings inside each corpus over the time period under study, ie. the impacted disciplines 
and those appearing in references become more and more similar, hence a research 
inspired by itself toward itself. This shows also the progressive disciplinary homogenisa-
tion of the two corpora P ∩ AI and P ∩ AI  independently, and therefore a consolidation 
of the entire field of neuroscience.

Appendix B
Disciplinary composition of the common interest area of the AI‑related and non‑AI corpora

This section focuses on the disciplines inside the common interest area of the AI and 
non-AI corpora defined in Sect. 4.2. According to Fig. 6 in the main text, each discipline 
d appearing in the references and/or in the citations of these corpora is located in a 2D 
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Fig. 15 Time evolution of the distance ρ of the disciplines included in the common interest area, as defined 
and shown in Fig. 6. Only the most significant curves are highlighted with colors
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space by the coordinates ( rd
P∩AI , r

d
P∩AI

 ) associated with its respective ranks in the AI 
and non-AI corpora. From these coordinates we compute the distance of the disciplines 
from the origin of the map (point with ranks (0,0)), denoted as ρ in the following. Fig-
ure 15 shows the evolution of this distance for some disciplines, which are here exhib-
iting the most significant variations (increasing or decreasing) over the years since the 
1970s.

This figure shows especially a spectacular rise since around 1995 of the references’ 
rankings associated with Radiology and Neuroimaging in both AI and non-AI corpora, as 
well as a growing impact of neuroscience articles published in this period on these dis-
ciplines. This trend thus testifies to the diffusion of these technologies in scientific and 
medical practices associated with neuroscience.

Appendix C
Web of Science categories’ abbreviations table

WOS Categories Abbreviations

Acoustics Acoustics

Anatomy & Morphology A &M

Anesthesiology Anesth

Anthropology Anthropo

Automation & Control Systems A &CS

Biophysics BioPhys

Biochemical Research Method BRM

Biotechnology & Applied Microbiology Biotech

Cardiac & Cardiovascular System Cardio

Chemistry Chem

Computer Science CS

Critical Care Medicine CCM

Dentistry Dentistry

Developmental Biology DB

Ecology Ecology

Education Educ

Endocrinology & Metabolism E &M

Engineering Engineering

Entomology Entomo

Ergonomics Ergo

Gastroenterology & Hepatology G &H

Genetics & Heredity Genetics

Geriatrics & Gerontology G &G
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WOS Categories Abbreviations

Hematology Hemato

Imaging Science & Photographic Technology IS &PT

Immunology Immuno

Instruments & Instrumentation Instrum

Language & Linguistics L &L

Mathematical & Computational Biology M &CB

Mathematics Maths

Mechanics Mech

Medical Informatics MI

Medical Laboratory Technology MLT

Microbiology Microbio

Microscopy Microscopy

Neuroimaging NI

Nutrition & Dietetics N &D

Operations Research & Management Science OR &MS

Optics Optics

Otorhinolaryngology Otorhino

Pathology Patho

Pediatrics Ped

Peripheral Vascular Diseases PVD

Philosophy Philo

Physics Phys

Plant Sciences Plant

Public, Environmental & Occupational Health Public Health

Radiology Radio

Rehabilitation Rehab

Social Sciences SocSci

Sport Sciences Sport

Statistics & Probability S &P

Substance Abuse SA

Telecommunications Telecom

Toxicology Toxico

Virology Viro

Zoology Zoology
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Appendix D
Temporal evolution of the inter‑quartile collaboration network
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