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Abstract 

In this paper, we extended the technique of measuring similarity between topologi-
cal spaces using bottle neck distance between persistence diagrams to hypergraph 
networks. Finding a relationship between the bottleneck distance of the Cartesian 
product of topological spaces and the bottleneck distance of individual spaces, we are 
trying to ease the comparative study of the Cartesian product of topological spaces. 
The Cartesian product and the strong product of weighted hypergraphs are defined, 
and the relationship between the bottleneck distance between hypergraph products 
and the bottleneck distance between individual hypergraphs is determined. For this, 
clique complex filtration and the Vietoris–Rips filtration in unweighted and weighted 
hypergraphs are defined and used.

Keywords: Persistent homology, Bottleneck distance, Cartesian product of 
hypergraphs, Strong product of hypergraphs

Introduction
One of the challenges that data science has faced in recent years is obtaining valuable 
information from complex data sets. In the field of topological data analysis, there has 
been substantial advancement in dealing with the challenge of analysing the structure 
of such data. As such, a variety of efficient techniques are available in this rapidly devel-
oping field to help with finding significant topological structures in data. By applying 
homology, an effective mathematical technique, one can categorise objects based on 
their topological properties. When identifying holes in objects with different dimen-
sions, homology plays an essential role in helping to classify those objects. Due to its 
efficacy in storing data and its computing efficiency, the simplicial method to homol-
ogy has been gaining importance. The most advanced technique for identifying topo-
logical features is persistent homology, which takes provided data and converts it into 
simplicial complexes to give an accurate picture of the structure of space at various 
spatial scales. Through persistent homology, a set of homology classes that are persis-
tent across broad spatial resolutions is identified and these classes represent significant 
aspects of the underlying space, offering valuable insights into its structure. Two effi-
cient tools for displaying persistent Betti numbers (Pears 1975), which give informa-
tion about the lifetime and persistence of topological features, are persistence diagrams 
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(Pears 1975; Edelsbrunner and Harer 2022) and barcodes (Carlsson et al. 2004; Ghrist 
2008). Patrizio Frozini and his coworkers first proposed the idea of persistent homol-
ogy in 1990 (Frosini 1990). They also proposed the use of size functions to determine 
0-dimensional persistent homology by identifying connected components. Based on this 
study, Vanessa Robbins explored sample space homology by characterizing persistent 
homology groups as a collection of homomorphisms that were generated by inclusion 
(Robins 1999). Later, Edelsbrunner, Letscher, and Zomorodian developed a definition of 
persistent homology based on simplicial complexes that are widely recognized (Edelsb-
runner and Zomorodian 2002).

Graph theoretic techniques are frequently used to analyze complex systems as they 
are typically depicted as a collection of entities, or vertices with binary relationships. 
Graph models, while simple and relatively universal, are limited to representing pair-
wise relationships between entities. However, actual occurrences such as computer net-
works, in which dynamic connections are established through packets exchanged over 
time between computers, or co-authorship networks, where relationships are formed by 
articles written by two or more authors, can be intricate with multi-way connections, 
dependencies among more than two variables, or characteristics of collections compris-
ing more than two objects. Thus introduced the powerful tool hypergraph, a broad natu-
ral representation that can implicitly capture multi-way relationships and it is introduced 
in 1973 by Berge. Applications for hypergraphs can be found in many different domains, 
including knowledge representation (Zhenyong et al. 2018), social network analysis (Zhu 
et al. 2018; Li et al. 2013; Zlatić et al. 2009), data mining (Gunopulos et al. 1997; Alam 
et al. 2021), and bioinformatics (Tian et al. 2009; Mithani et al. 2009). To some extent, 
the concept of 2 section of a hypergraph (Bretto 2013) is useful and easy while compar-
ing hypergraphs. In the work of Aktas et al. (2023) they have defined persistent homol-
ogy for hypergraph through filtrations using simplicial complex closure which is simply 
2 section of hypergraph. So this filtration is same as the clique filtration that we have 
defined in this paper. Consequently, when comparing hypergraphs topologically, 2 sec-
tion and its filtration are effectively useful. To find the 0-dimensional and 1-dimensional 
persistence barcodes for the given hypergraphs, we may use the filtration 2 section of 
the hypergraphs. If the barcodes are not similar, we could conclude that the given hyper-
graphs are not isomorphic. As so, we can compare hypergraphs to some extent through 
barcodes, filtering, and persistence diagram comparison (Bandyopadhyay et al. 2020).

Using the idea of a categorical product, Gakhar and Perea (2019)have presented a method 
to look at the filtration of the Cartesian product of topological spaces. Additionally, they 
have proposed a technique for ascertaining the barcodes of the Cartesian product of topo-
logical spaces, which offer significant insights into the topological properties. A powerful 
mathematical tool for studying topological features of a data set is a persistence diagram 
(Pears 1975; Edelsbrunner and Harer 2022), which is used in topological data analysis. It 
provides a clear description of the underlying geometric and topological structure of the 
data by capturing the genesis and termination points of topological features like holes and 
connected components. since persistence diagrams enable us to measure the similarity of 
topological spaces to some extent, it is possible to extend this idea to measure the similar-
ity of Cartesian products of topological spaces. Furthermore, comparing persistence dia-
grams is sufficient to compare topological spaces. Among the distances assigned for it is 
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the bottleneck distance. The relationship between the bottleneck distance of the Cartesian 
product, and individual spaces is discussed in this paper. Since hypergraphs are topological 
structures, we can also apply this notion to them.

The topological properties and interconnection of certain networks are studied recently 
(Siddiqui et  al. 2016; Dongchuan et  al. 2006; Hong et  al. 2020). Analogously, studies has 
been carried out with hypergraphs (Flamm et al. 2015). Our main concern is the hyper-
graph product. Although the literature has discussed an amazing variety of different 
products of hypergraphs, most of hypergraph products can be thought of as an extension 
of one of the four standard graph products. Here, the focus is on the Cartesian product 
and strong product of simple, undirected and connected hypergraphs. It is hard to com-
pare hypergraphs using common methods, but with the aid of different filtering tech-
niques, graphs can be compared using bottle neck distance (Edelsbrunner and Harer 2022). 
These filtering methods helps in reducing the complexity of complex hypergraphs to sim-
pler representations, such as products of smaller hypergraphs. This is what in fact we do 
here because, when complex hypergraph networks can be expressed as a product of these 
smaller hypergraphs, it is necessary to find out whether there is a relationship between the 
distance between complex hypergraph networks and the distance between smaller hyper-
graphs. We have also thought about weighted hypergraphs and their filtration in addition 
to unweighted hypergraphs. On weighted hypergraphs, we define the Cartesian product 
(Cooper and Dutle 2012) and the strong product (Hellmuth et al. 2012). Additionally, add-
ing cliques (simplex) (Aktas et al. 2019) and using weight as a parameter for clique filtration 
for comparing persistence diagrams with 0 and 1 dimensions.

The background information including preliminary definitions, results, theorems, and 
notations, is provided in “Preliminaries” section of the paper. By introducing the main con-
cepts and frameworks needed for the analysis, it lays the foundation for the sections that 
follow. The paper presents significant results about the comparison of persistence diagrams 
in “New Results” section. The relationship between the bottleneck distances of the individ-
ual spaces and the bottle distances of persistence diagrams of Cartesian products of topo-
logical spaces is specifically studied. Furthermore, the study analyzes the relation between 
the bottleneck distances of persistence diagrams of Cartesian product and strong product 
of hypergraphs, with a special focus on smaller hypergraphs. Knowing the Cartesian prod-
uct and the strong product operations on these hypergraph structures enables us to look 
into these relationships for both weighted and unweighted hypergraphs.

For fundamental definitions, notations, and terminologies associated with Homology, 
Persistent homology, and homology of product spaces we can refer to Hatcher (2002), 
Munkres (2018), Edelsbrunner and Harer (2022), Carlsson et al. (2004), Gakhar and Perea 
(2019), Wallace (1957). Further, for graph and hypergraph theoretical concepts we refer 
West (2001), Zhang and Chartrand (2006), Hammack et al. (2011), Bretto (2013), Cooper 
and Dutle (2012), Hellmuth et al. (2012).

Preliminaries
It is obviously challenging to determine the homology of a topological object, regard-
less of how complex it may be. A simplicial complex can be used as an alternate way 
to approximate the topological object. Homology can be computed using this method, 
called simplicial homology. The following definitions provide a detailed explanation of 
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the requirements that must be followed while defining simplicial complexes. It’s also 
important to understand the basic concepts of chains, cycles, and boundaries before 
moving into the idea of simplicial homology, an effective tool for locating voids or gaps 
inside a system. The foundation for dealing with simplicial complexes and recognizing 
their homology is this fundamental idea.

Definition 2.1 (Wallace 1957; Edelsbrunner and Harer 2022) A simplex is a generali-
zation of the notion of a triangle or tetrahedron to arbitrary dimensions. Specifically, a s 
simplex is a s -dimensional polytope which is the convex hull of s + 1 affinely independ-
ent points.

Definition 2.2 (Wallace 1957; Edelsbrunner and Harer 2022) A simplicial complex S is 
a collection of simplices such that 

1. If S contains a simplex s1 , then S also contains every face of s1
2. If two simplices in S intersect, then their intersection is a face of each of them.

Definition 2.3 (Wallace 1957; Edelsbrunner and Harer 2022) Let S be a simplicial com-
plex and p a dimension. A p-chain is a formal sum of p-simplices in S with integer coeffi-
cients. The standard notation for this is cp = ziσi , where the σi are the p-simplices and 
the zi are the coefficients. The set of all p-chains form a group Cp under addition.

Definition 2.4 (Wallace 1957; Edelsbrunner and Harer 2022) The boundary of a p-sim-
plex is the sum of its (p− 1)-dimensional faces. If σ = [u0,u1, . . . ,up] for the simplex 
spanned by the listed vertices, then its boundary is ∂pσ =

∑p
j=0(−1)j[u0, . . . , ûj , . . . ,up] , 

where ∂p is called boundary operator and the hat indicates that uj is omitted.

Definition 2.5 (Wallace 1957; Edelsbrunner and Harer 2022) A p-cycle c is a p-chain 
with empty boundary, ∂pc = 0 . A p-boundary b is a p-chain that is the boundary of a 
(p+ 1)-chain, b = ∂p+1d with d ∈ Cp+1. And the set of all p-cycles and p-boundaries will 
form subgroups of chain group Cp.

Definition 2.6 (Wallace 1957; Edelsbrunner and Harer 2022) Let Cp be a chain group 
whose elements are the p chains and ∂p : Cp → Cp−1 maps each p-chain to the sum of 
the (p− 1)dimensional faces of its p cells which is a (p− 1) chain.

Writing the groups and maps in sequence, we get the chain complex,

Then the nth homology group is defined as

Homology may not yield pertinent insights when dealing with point cloud data. To 
address this limitation, an alternative approach involves constructing a series of simplicial 
complexes using a method known as filtration. Using certain distances or criteria, filtration 
involves constructing simplicial complexes from the given points in a systematic way. This 

. . .
∂p+2
−−→ Cp+1

∂p+1
−−→ Cp

∂p
−→ Cp−1

∂p−1
−−→ . . .

Hn = Ker(∂n)/Im(∂n+1).
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procedure creates a series of complexes that, at various scales, capture the data’s underlying 
topological properties. Indeed, a few voids or holes may arise and then disappear during 
the construction of simplicial complexes and homology computation. We may say that an 
essential part of the dataset is the homological features’ persistence, which shows how long 
these voids persist on various levels.

Definition 2.7 (Edelsbrunner and Harer 2022) Consider a real valued function 
g ′ : T → R is defined on a topological space T. Let Ta = g ′−1(−∞, a] denote the sublevel 
set for the function value a. So we have inclusions:

This inclusion induces a map in the homology groups. So, if   i : Ta → Tb denotes the 
inclusion map, we have induced map

Consider the sequence a sequence of distinct values a1 < a2 < . . . corresponding to 
which we have the sequence of homomorphisms induced by inclusions.

Then the homomorphism

for all p and 1 ≤ i ≤ j ≤ n takes the homology classes of the sublevel set Tai to those of 
the sublevel sets of Taj.

The pth persistent homology groups are the images of the homomorphisms:

Topological persistence may be introduced with the observation that a nested sequence 
of topological spaces

gives a sequence of vector spaces and linear maps

upon computing homology with coefficients in a field F . In general, a diagram of vector 
spaces and linear maps V0 → V1 → . . . → Vn is called a persistent module indexed by 
0, 1, 2, . . . , n . We can write persistent homology module:

Module Mh decomposes in to a direct sum of interval modules Mp
hj , each of which cor-

responds to a bar in the barcode (bcdn).

Ta ⊆ Tb for a ≤ b

f = i∗ : Hp(Ta) → Hp(Tb)

0 → Hp(Ta1) → Hp(Ta2) → Hp(Ta3) → . . . → Hp(Tan) → Hp(T )

f ij : Hp(Tai) → Hp(Taj)

H
ij
p = imf

ij
p for 1 ≤ i ≤ j.

T0 ⊆ T1 ⊆ T2 . . . ⊆ Tn

Hp(T0) → Hp(T1) → . . . → Hp(Tn)

Mh = Hp(K1)⊕HP(K2)⊕ . . .⊕Hp(Kn)
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Definition 2.8 (Bubenik and Scott 2014) A category, C , consists of a class of objects, 
C0 , and for each pair of objects X1,X2 ∈ C0 , a set of morphisms, C(X1,X2) . We often write 
f : X1 → X2 if f ∈ C(X1,X2) . For every triple X1,X2,X3 ∈ C0 , there is a set mapping,

called composition. Composition must be associative, in the sense that (hg)f = h(gf ) . 
Finally, for all W ∈ C , there is an identity morphism, IdW : W → W , that satisfies 
IdW f = f  and gIdW = g for all f : Z → W and all g : W → Y . The identity mor-
phism is unique.

Theorem 2.9 (Gakhar and Perea 2019) Let Pc be the poset category of a separable(with 
respect to the order topology) totally ordered set. Let K1,K2 ∈ SPc be Pc-indexed dia-
grams of spaces, and assume that Hi(K1;F) and Hi(K2;F) are pointwise finite for each 
0 ≤ i, j ≤ n where Hi is the ith persistence homology group. Then Hn(K1 × K2;F) is point-
wise finite, and its barcode satisfies:

where the union on the right is of multisets.

Corollary 2.10 (Gakhar and Perea 2019) Let K1, . . . ,Km ∈ SPc . Assume that for each 
1 ≤ j ≤ m and 0 ≤ nj ≤ n , then Hn(K1 × K2 × . . .× Km) is point wise finite, and its bar-
code satisfies:

where the union on the right is of multi sets.

Definition 2.11 (Aktas et  al. 2019) The clique complex C L (G) of an undirected 
graph G = (W , F) is a simplicial complex where vertices of G are its vertices and each 
k-clique, i.e. the complex sub graphs with k vertices, in G corresponds to a (k − 1)-sim-
plex in C L (G).

Definition 2.12 (Edelsbrunner and Harer 2022) Let P and Q be two persistence dia-
grams. The bottleneck distance between P and Q is defined as

where α ranges over all matchings from P to Q and �p− q�∞ = max(|p1 − q1|, |p2 − q2|) 
for p = (p1, p2), q = (q1, q2) ∈ R

2 with �∞−∞� = 0.

Hypergraphs are a natural generalization of undirected graphs in which “edges” may 
consist of more than 2 vertices (Berge 1984). More precisely, a (finite) hypergraph 
H = (VH, EH) consists of a (finite) set VH and a collection EH of non-empty subsets of 

C(X2,X3)× C(X1,X2) → C(X1,X3), (g , f ) → gf ,

bcdn(K1 × K2;F) =
⋃

i+j=n

{

I ∩ J | I ∈ bcdi(K1), J ∈ bcdj(K2)
}

bcdn(K1 × K2 × . . .× Km) = {I1 ∩ I2 ∩ . . . Ik |Ij ∈ bcdnj (Kj),

m
∑

j=1

nj = n}

d̂B(P ,Q ) = inf
α
sup
x∈P

�x − α(x)�∞
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VH . The elements of VH are called vertices and the elements of EH are called hyper-
edges, or simply edges of the hypergraph (Hellmuth et al. 2012).

A hypergraph H = (VH, EH) is simple if no edge is contained in any other edge and 
|e| ≥ 2 for all e ∈ EH. A hypergraph H = (VH, EH) is called connected, if any two vertices 
are joined by a path (Hellmuth et al. 2012).

For two hypergraphs H1 = (VH1, EH1) and H2 = (VH2, EH2) a homomorphism from 
H1 into H2 is a mapping � : VH1 → VH2 such that �(e) = {�(v1), . . . ,�(vr)} is an 
edge in H2 , if e = {v1, . . . , vr} is an edge in H1 . A homomorphism VH1 → VH2 such that 
�(e) = {�(v1), . . . ,�(vr)} is an edge in H2 , if e = {v1, . . . , vr} is an edge in H1 . A homo-
morphism � that is bijective is called an isomorphism if holds �(e) ∈ EH2 if and only if 
e ∈ EH1 . We say, H1 and H2 are isomorphic, in symbols H1

∼= H2 if there exists an iso-
morphism between them (Hellmuth et al. 2012).

Definition 2.13 (Hellmuth et  al. 2014) The 2-section [H]2 of a hypergraph 
H = (VH, EH) is the graph (VH,E

′) with E′ = {{x, y} ⊆ VH | x �= y, ∃ e ∈ EH : {x, y} ⊆ e} , 
that is, two vertices are adjacent in [H]2 if they belong to the same hyperedge in H . Thus, 
every hyperedge of H is a clique in [H]2.

Definition 2.14 (Cooper and Dutle 2012) The Cartesian product H1�H2 of 
two hypergraphs H1 and H2 has vertex set VH1�H2

= VH1 × VH2 and the edge set 
EH1�H2

= {x × f : x ∈ VH1 , f ∈ EH2}
⋃

{e × y : e ∈ EH1 , y ∈ VH2}.

Example 2.15
Let H1 be a hyper graph with vertices VH1 = {1, 2, 3} and a hyperedge eH1 = {1, 2, 3} and 
H2 be a hyper graph with vertices VH2 = {a, b, c} and a hyperedge eH2 = {a, b, c} (Fig. 1).

Definition 2.16 (Hellmuth et  al. 2012) Let H1 = (VH1 ,EH1) and H2 = (VH2 ,EH2) 
be two hypergraphs. Then the strong product H1 ⊠H2 of H1 and H2 is defined as 
H1 ⊠H2 = (VH1⊠H2

,EH1⊠H2
) where

VH1⊠H2
= VH1 × VH2

a b c

H2

1

2

3

H1

1a 1b 1c

2a

3a

2b

3b

2c

3c

H1�H2

Fig. 1 Cartesian product of hypergraphs
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and a subset e = {(v1, v
′
1), (v2, v

′
2), . . . , (vn, v

′
n)} of VH1 × VH2 is an edge in edge set 

EH1⊠H2
 of H1 ⊠H2 if, 

1. {v1, v2, . . . , vn} is an edge of H1 and v′1 = v′2 = · · · = v′n ∈ VH2 , or
2. {v′1, v

′
2, . . . , v

′
n} is an edge of H2 and v1 = v2 = · · · = vn ∈ VH1 , or

3. {v1, v2, . . . , vn} is an edge of H1 and there is an edge f ∈ EH2 such that {v′1, v
′
2, . . . , v

′
n} 

is a multi set of elements of f,  and f ⊆ {v′1, v
′
2, . . . , v

′
n} , or

4. {v′1, v
′
2, . . . , v

′
n} is an edge of H2 and there is an edge f ∈ EH1 such that {v1, v2, . . . , vn} 

is a multi set of elements of f,  and f ⊆ {v1, v2, . . . , vn}.

Example 2.17
Let H1 be a hyper graph with vertices VH1 = {a, b, c} and a hyperedge eH1 = {a, b, c} and 
H′

1 be a hyper graph with vertices VH2 = {1, 2} and a hyperedge eH2 = {1, 2}. Then the non 
Cartesian edges of strong product of these two hypergraphs will be the union of hyperedges 
of He1 , He2 , He3 (Fig. 2).

Using a single graph, we can represent the non-Cartesian edges of the strong prod-
uctH1 ⊠H2 . With the help of this method, the combined edges can be visualized 
in their entirety, giving a clear picture of their relationship in relation to H1 and H2 
(Fig. 3).

1a 2a

1b 2b

1c 2c

He1

1a 2a

1b 2b

1c 2c

He2

1a 2a

1b 2b

1c 2c

He3

Fig. 2 Non-Cartesian edges of strong product of hypergraphs

2a 2b 2c

1a 1b 1c

Fig. 3 non-Cartesian edges of strong product of hypergraphs
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New results
Here even if we are doing the direct filtration of hyper graphs by considering param-
eter as size of each edge will be topologically similar to the filtration of two section. 
So we can represent bcdk([H1�H2]2) as simply bcdk(H1�H2). Also for any filtrations 
X  and Y of topological spaces X and Y we will have to define new term dmin(P

k ,Q k) 
with kth persistence diagrams P k and Q k as

where,

and

with i + j = k .

Theorem 3.1 Let X ,Y ,X ′, and Y ′ be filtrations of topological spaces X ,Y ,X ′, and Y ′ 
respectively with kth persistence diagrams P k ,Q k ,P ′k , and Q

′k . If (P × Q )k and 
(P ′ × Q

′)k are kth persistence diagrams of filtrations X × Y and X ′ × Y ′ of Cartesian 
products X × Y  and X ′ × Y ′ respectively. Then,

Proof For i = 0, 1, 2, . . . , k , let

and

We have, for all i + j = k ,

and

dmin(P
k ,Q k) = min

i,j=1,2,...,k
{|ail − cjt |, |bil − djt |, l, t = 1, 2, . . . , n}

bcdi(X ) = {(ai1 , bi1), (ai2 , bi2), . . . , (ain , bin)}

bcdi(Y) = {(ci1 , di1), (ci2 , di2), . . . , (cin , din)}

dB((P × Q )k , (P ′ × Q
′)k ) ≥ min{dmin(P

k
,P

′k ), dmin(P
k
,Q

′k ), dmin(P
′k
,Q

k ), dmin(P
′k
,Q

′k )}

bcdi(X ) = {(ai1 , bi1), (ai2 , bi2), . . . , (ain , bin)}

bcdi(Y) = {(ci1 , di1), (ci2 , di2), . . . , (cin , din)}

bcdi(X
′) = {(a′i1 , b

′
i1
), (a′i2 , b

′
i2
), . . . , (a′in , b

′
in
)}

bcdi(Y
′) = {(c′i1 , d

′
i1
), (c′i2 , d

′
i2
), . . . , (c′in , d

′
in
)}.

dmin(P
k ,P ′k) = min

i,j=1,2,...,k
{|ail − a′jt |, |bil − b′jt |, l, t = 1, 2, . . . , n}

dmin(P
k ,Q ′k) = min

i,j=1,2,...,k
{|ail − c′jt |, |bil − d′jt |, l, t = 1, 2, . . . , n}

dmin(P
′k ,Q k) = min

i,j=1,2,...,k
{|a′jt − ciq |, |b

′
jt
− diq |, q, t = 1, 2, . . . , n}
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Let (P × Q )k be the k dimensional persistence diagrams of X × Y and (P ′ × Q
′)k be 

the k dimensional persistence diagrams of X ′ × Y ′. For any (a, b) ∈ bcdk(X × Y) and 
(c, d) ∈ bcdk(X

′ × Y ′),

and

Here

and

Then,

  �

While doing Clique filtration we are considering parameters from 0 to ∞. Hence 
the minimum value of each interval in zero dimensional barcode will be zero. In Bot-
tleneck distance we are taking maximum values. So in the case of zero dimensional 
persistence diagrams we have to consider the following terms,

and

Corollary 3.2 Let X1,X2, . . . ,Xn and Y1,Y2, . . . ,Yn are the filtrations of topological 
spaces X1,X2, . . . ,Xn with kth persistence diagrams P1,P2, . . . ,Pn and Y1,Y2, . . . ,Yn 
with kth persistence diagrams Q1,Q2, . . . ,Qn respectively. If (P1 ×P2 × · · · ×Pn)

k be 
the kth persistence diagram of X1 × X2 × . . .× Xn and (Q1 × Q2 × · · · × Qn)

k be the kth 
persistence diagram of Y1 × Y2 × . . .× Yn, then

dmin(Q
k ,Q ′k) = min

i,j=1,2,...,k
{|cjt − c′iq |, |djt − d′iq |, q, t = 1, 2, . . . , n}.

(a, b) = (ail , bil ) ∩ (cws , dws) for some i,w ∈ {0, 1, . . . , k}, i + w = k , l, s ∈ {1, 2, . . . , n}

(c, d) = (a′or , b
′
or
) ∩ (c′pt , d

′
pt
) for some i,w ∈ {0, 1, . . . , k}, o+ p = k , r, t ∈ {1, 2, . . . , n}.

a = max{ail , cws}, b = min{bil , dws}

c = max{a′or , c
′
pt
}, d = min{b′or , d

′
pt
}.

dB((P × Q )k , (P ′ × Q
′)k) ≥ min{dmin(P

k
,P

′k), dmin(P
k
,Q

′k),

dmin(P
′k
,Q

k), dmin(P
′k
,Q

′k)}

dBmin(P
k ,P ′k) = min

i,j=1,2,...,k
{|bil − b′jt |, l, t = 1, 2, . . . , n}

dBmin(P
k ,Q ′k) = min

i,j=1,2,...,k
{|bil − d′jt |, l, t = 1, 2, . . . , n}

dBmin(P
′k ,Q k) = min

i,j=1,2,...,k
{|b′jt − diq |, q, t = 1, 2, . . . , n}

dBmin(Q
k ,Q ′k) = min

i,j=1,2,...,k
{|b′jt − d′iq |, q, t = 1, 2, . . . , n}, for k = 0, 1
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Proof For ij = 1, 2, . . . , k , j = 1, 2, . . . , n , let

and

Any element (s, t) in bcdk(X1 × X2 × . . .× Xn) will be of the form

for some t1, t2, . . . , tn = 1, 2, . . . ,m, and i1 + i2 + · · · + in = k .

Here

and

also any element (s′, t ′) in bcdk(Y1 × Y2 × . . .× Yn) will be of the form

for some t1, t2, . . . , tn = 1, 2, . . . ,m, and i1 + i2 + · · · + in = k .

Here

and

Then,

  �

dB((P1 ×P2 × · · · ×Pn)
k , (Q1 × Q2 × · · · × Qn)

k) ≥ min
g ,h=1,2,...,n

{dmin(P
k
g ,Q k

h )}.

bcdi1(X1) = {(ai11 , bi11 ), (ai12 , bi12 ), . . . , (ai1m , bi1m )}

bcdi2(X2) = {(ai21 , bi21 ), (ai22 , bi22 ), . . . , (ai2m , bi2m )}

...

bcdin(Xn) = {(ain1 , bin1 ), (ain2 , bin2 ), . . . , (ainm , binm )}

bcdi(Y1) = {(ci11 , di11 ), (ci12 , di12 ), . . . , (ci1m , di1m )}

bcdi(Y2) = {(ci21 , di21 ), (ci22 , di22 ), . . . , (ci2m , di2m )}

...

bcdi(Yn) = {(cin1 , din1 ), (cin2 , din2 ), . . . , (cinm , dinm )}.

(s, t) = (ai1t1
, bi1t1

) ∩ (ai2t2
, bi2t2

) ∩ · · · ∩ (aintn
, bintn

)

s = max{ai1t1
, ai2t2

, . . . , aintn
}

t = min{bi1t1
, bi2t2

, . . . , bintn
}

(s′, t ′) = (ci1t1
, di1t1

) ∩ (ci2t2
, di2t2

) ∩ · · · ∩ (cintn
, dintn

)

s′ = max{ci1t1
, ci2t2

, . . . , cintn
}

t ′ = min{di1t1
, di2t2

, . . . , dintn
}.

dB((P1 ×P2 × · · · ×Pn)
k , (Q1 × Q2 × · · · × Qn)

k) ≥ min
g ,h=1,2,...,n

{dmin(P
k
g ,Q k

h )}.
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Definition 3.3 Let H be a simple unweighted connected hyper graph and [H]2 be the 
2-section of H. Now for any n ∈ Z, the clique complex of [H]2 is denoted as C L ([H]2) 
and the filtration is defined as

where, C Li([H]2) =
∑i

j=1 kj, kj is the jth skeleton of clique complex.The set of all sim-
plices with dimension less than or equal to j is called the ith complex in this situation. 
Filtration will be from 0 to ∞ . In other words, adding vertices at the parameter of filtra-
tion, δ = 0 , edges at δ = 1 and so on.

Definition 3.4 Let H1 and H2 two simple unweighted connected hyper graphs with 
Cartesian product H1�H2. Also we have [H1�H2]2 be the 2-section of of H1�H2. Now 
for any n ∈ Z, the clique complex of [H1�H2]2 is defined as

where, C Li([H1�H2]2) =
∑i

j=1 Kj, Kj is the jth skeleton of clique complex. Here the 
set of all simplices of dimension less than or equal to j is the ith complex. Filtration start-
ing from 0 to ∞ . That is adding vertices at the parameter, η = 0 , edges at η = 1 and so 
on.

Definition 3.5 Let H1,H2, . . . , Hn are simple unweighted connected hyper graphs with 
Cartesian product H1�H2� · · ·�Hn. Also we have [H1�H2� · · ·�Hn]2 be the 2-section 
of of H1�H2� · · ·�Hn. Now for any n ∈ Z, the clique complex of [H1�H2� · · ·�Hn]2 is 
defined as

with C Ln([H1�H2� · · ·�Hn]2) = [H1�H2� · · ·�Hn]2 where, C Li([H1�H2� · · ·

�Hn]2) =
∑i

j=1 Knj, Knj is the jth skeleton of clique complex. Here the ith complex is the 
set of all simplices o dimension less than or equal to j. Filtration is from 0 to ∞ . That is 
adding vertices at the parameter, η = 0 , edges at η = 1 and so on.

Theorem  3.6 Let H1 and H2 are the filtrations of two simple unweighted connected 
hyper graphs H1 and H2 with Cartesian product H1�H2. If H1�H2 be the filtration of 
H1�H2, then

Proof H1 and H2 are the filtrations of two simple unweighted connected hyper graphs 
H1 and H2 with Cartesian product H1�H2 and [H1]2, [H2]2 are 2 sections of H1 and H2 
respectively. Let

and

C L0([H]2) → C L1([H]2) → · → C Ln([H]2) = [H]2

C L0([H1�H2]2) → C L1([H1�H2]2) → · → C Ln([H1�H2]2) = [H1�H2]2

C L0([H1�H2� · · ·�Hn]2) → C L1([H1�H2� · · ·�Hn]2) → · · · → C Ln([H1�H2� · · ·�Hn]2)

bcd0(H1�H2) = {I ∩ J | I ∈ bcd0(H1), J ∈ bcd0(H2)}.

bcd0(H1) = {(0, a1), (0, a2) . . . (0, an) = (0,∞)} with a1 ≤ a2 ≤ · · · ≤ an
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Suppose a1 ≤ ai, bj for all i = 2, 3, . . . n, j = 1, 2 . . . n. While doing filtration, if η = a1, 
there will be n number of (0, a1) intervals in bd0(H1�H2). We can represent it as

Now if a2 ≤ ak , bj for all k = 3, 4, . . . , n, j = 1, 2, . . . , n, there will be again n number of 
(0, a2) intervals in bcd0(H1�H2). It can be written as

If b1 ≤ am, bp for allm = 3, 4, . . . , n and p = 2, 3, . . . , n, then there we have to consider 
only (n− 2) components of H1 and so that (n− 2) times the interval (0, b1) will be there 
in bcd0(H1�H2). It can be represented as

Continuing like this we will get

  �

Corollary 3.7 Let H1,H2, . . . ,Hn are the filtrations of n simple unweighted con-
nected hyper graphs H1,H2, . . . , Hn with Cartesian product H1�H2� · · ·�Hn . If 
H1�H2� · · ·�Hn be the filtration of H1�H2� · · ·�Hn, then

Proof Let

Without loss of generality, assume that a11 ≤ aij for all i = 1, 2, . . . , n, j = 1, 2, . . . , n. 
Then during filtration there will be nn−1 number of intervals of the form (0, a11) and we 
can represent it as

If a12 ≤ aij for all i = 2, 3, . . . , n.j = 1, 2, . . . , n and a12 ≤ ajj for all j = 1, 2, . . . , n, then 
there will be again nn−1 intervals of the form (0, a12) and we can represent it as

bcd0(H2) = {(0, b1), (0, b2) . . . , (0, bn) = (0,∞)} withb1 ≤ b2 ≤ · · · ≤ bn.

(0, a1) = (0, a1) ∩ (0, bj) for all j = 1, 2, . . . , n.

(0, a2) = (0, a2) ∩ (0, bj) for all j = 1, 2, . . . , n.

(0, b1) = (0, am) ∩ (0, b1) for allm = 3, 4, . . . , n.

bcd0(H1�H2) = {I ∩ J | I ∈ bcd0(H1), J ∈ bcd0(H2)}.

bcd0(H1�H2� · · ·�Hn) = {I1 ∩ I2 ∩ · · · ∩ In | I1 ∈ bcd0(H1), I2 ∈ bcd0(H2), . . . , I1 ∈ bcd0(Hn)}.

bcd0(H1) = {(0, a11), (0, a12), . . . , (0, a1n)}

bcd0(H2) = {(0, a21), (0, a22), . . . , (0, a2n)}

...

bcd0(Hn) = {(0, an1), (0, an2), . . . , (0, ann)}.

(0, a11) = (0, a11) ∪ (0, a2j ) ∪ · · · ∪ (0, anj ) for all j = 1, 2, . . . , n.

(0, a12) = (0, a12) ∪ (0, a2j ) ∪ · · · ∪ (0, anj ) for all j = 1, 2, . . . , n.
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If akl ≤ aij for all i = 1, 2, . . . , n, j = 1, 2, . . . , n with a11 ≤ a12 ≤ akl for some 
k = 1, 2, . . . , n, l = 1, 2, . . . , n , then there will be nn−1 − 2 possibilities. We can represent 
this interval as

Continuing like this we will get

  �

Theorem  3.8 Let H1,H2,H3, andH4 be the filtrations of hyper graphs 
H1,H2,H3 and H4 respectively with 0-dimensional persistence diagrams 
P

0
H1
,P 0

H2
,P 0

H3
andP

0
H4

.   If H1�H2,H3�H4 be the filtrations of Cartesian products 
H1�H2 and H3�H4 with 0-dimensional persistence diagrams P 0

H1�H2
,P 0

H3�H4
, then

Proof We have

and

Which means the 0-dimensional of Cartesian product of two hyper graphs is same as the 
Cartesian product of topological spaces. So by the above theorem,

  �

The minimum value intervals in one dimensional persistence diagrams will be 
always greater than zero since at zero there won’t be any one dimensional hole. So it 
is enough to consider dmin.

Theorem  3.9 Let H1,H2,H3, andH4 be the filtrations of hyper graphs 
H1,H2,H3 and H4 respectively with 1-dimensional persistence diagrams 
P

1
H1
,P 1

H2
,P 1

H3
andP

1
H4

.   If H1�H2,H3�H4 be the filtrations of Cartesian products 
H1�H2 and H3�H4 with 1-dimensional persistence diagrams P 1

H1�H2
,P 1

H3�H4
, then

(0, akl ) = (0, a1j ) ∪ (0, a2j ) ∪ · · · ∪ (0, akl ) ∪ · · · ∪ (0, anj ) for all j = 1, 2, . . . , n, a1j �= a11 , a12 .

bcd0(H1�H2� · · ·�Hn) = {I1 ∩ I2 ∩ · · · ∩ In | I1 ∈ bcd0(H1), I2 ∈ bcd0(H2), . . . , I1 ∈ bcd0(Hn)}.

dB(P
0
H1�H2

,P 0
H3�H4

) ≥ min
v=3,4

{dBmin(P
0
H1
,P 0

Hv
), dBmin(P

0
H2
,P 0

Hv
)}.

bcd0(H1�H2) = {I ∩ J | I ∈ bcd0(H1), J ∈ bcd0(H2)}

bcd0(H3�H4) = {I ∩ J | I ∈ bcd0(H3), J ∈ bcd0(H4)}.

dB(P
0
H1�H2

,P 0
H3�H4

) ≥ min
v=3,4

{dBmin(P
0
H1
,P 0

Hv
), dBmin(P

0
H2
,P 0

Hv
)}.

dB(P
1
H1�H2

,P 1
H3�H4

) ≥ min
u=1,2, v=3,4

{dBmin(P
0
Hu

,P 0
Hv
), dmin(P

1
Hu

,P 1
Hv
)}.
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Proof Consider the two sections of hyper graphs H1,H2,H3 and H4. Let {v1, v2, . . . , vn} 
be the vertices of [H1]2 and {v′1, v

′
2, . . . , v

′
n} be the vertices of [H2]2. Then for any v′j ∈ [H2]2 

the [H1]2 fibre in [H1�H2]2 is defined as

and for any vj ∈ [H1]2 the [H2]2 fibre in n copies of [H1]2 is defined as

Clearly [H1]2 fibre is isomorphic to [H1]2 and [H2]2 fibre is isomorphic to [H2]2. So there 
will be n copies of [H1]2 and n copies of [H2]2 in H1�H2 . Which means all the 1-dimen-
sional holes in H1 and H2 will be there in H1�H2 n times. Some other loops also will 
be there and which will be of the form (t,∞), 0 ≤ t ≤ ∞ with t = max{t1, t2} where 
(0, t1) ∈ bcd0(H1) and (0, t2) ∈ bcd0(H2). If we are considering all these cases, we can 
conclude that

  �

Definition 3.10 Let H1 and H2 two simple unweighted connected hyper graphs with 
Cartesian product H1 ⊠H2. Also we have [H1 ⊠H2]2 be the 2-section of of H1 ⊠H2. 
Now for any n ∈ Z, the clique complex of [H1 ⊠H2]2 is defined as

where C Li([H1 ⊠H2]2) =
∑i

j=1 k
′
j , k

′
j is the jth skeleton of clique complex. Here the 

ith complex is the set of all simplices of dimension less than or equal to j. Here also filtra-
tion is from 0 to ∞ . Which means adding vertices at the parameter, ζ = 0 , edges at ζ = 1 
and so on.

Definition 3.11 Let H1,H2, . . . , Hn are simple unweighted connected hyper graphs 
with Cartesian product H1 ⊠H2 ⊠ · · ·⊠Hn. Also we have [H1 ⊠H2 ⊠ · · ·⊠Hn]2 
be the 2-section of of H1 ⊠H2 ⊠ · · ·⊠Hn. Now for any n ∈ Z, the clique complex of 
[H1 ⊠H2 ⊠ · · ·⊠Hn]2 is defined as

with C Ln([H1 ⊠H2 ⊠ · · ·⊠Hn]2) = [H1 ⊠H2 ⊠ · · ·⊠Hn]2 where, C Li([H1⊠

H2 ⊠ · · ·⊠Hn]2) =
∑i

j=1 K
′
nj
, K ′

nj
 is the jth skeleton of clique complex. Here the ith 

complex is the set of all simplices o dimension less than or equal to j. Our filtration start-
ing from 0 to ∞ . That is adding vertices at ζ ′ = 0 , edges at ζ ′ = 1 and so on. Where ζ ′ is 
the parameter of filtration.

Theorem  3.12 Let H1 and H2 two simple unweighted connected hyper graphs with 
strong product H1 ⊠H2. If [H1 ⊠H2]2 be the 2-section of of H1 ⊠H2, then

[H1]2v
′
j = {(vi, v

′
j)|vi ∈ [H1]2, i = 1, 2, . . . , n}, j = 1, 2, . . . , n

vj[H2]2 = {(vj, v
′
i)|vi ∈ [H1]2, i = 1, 2, . . . , n}, j = 1, 2, . . . , n.

dB(P
1
H1�H2

,P 1
H3�H4

) ≥ min
u=1,2, v=3,4

{dBmin(P
0
Hu

,P 0
Hv
), dmin(P

1
Hu

,P 1
Hv
)}.

C L0([H1 ⊠H2]2) → C L1([H1 ⊠H2]2) → · → C Ln([H1 ⊠H2]2) = [H1 ⊠H2]2

CL0([H1 ⊠H2 ⊠ · · ·⊠Hn]2) → C L1([H1 ⊠H2 ⊠ · · ·⊠Hn]2) → · · · → C Ln([H1 ⊠H2 ⊠ · · ·⊠Hn]2)

bcd0([H1 ⊠H2]2) = {I ∩ J | I ∈ bcd0([H1]2), J ∈ bcd0([H2]2)}.
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Proof When considering 0-dimensional persistent homology, the aim is to identify 
connected components at each stage of filtration. Consequently, in both the Cartesian 
product and the strong product of hyper graphs, the collection of zero-dimensional bar-
codes remains the same. Hence by theorem 3.5 we can conclude,

  �

Theorem  3.13 Let H1,H2,H3, andH4 be the filtrations of hyper graphs 
H1,H2,H3 and H4 respectively with 0-dimensional persistence diagrams 
P

0
H1
,P 0

H2
,P 0

H3
andP

0
H4
.   If H1 ⊠H2,H3 ⊠H4 be the filtrations of Cartesian products 

H1 ⊠H2 and H3 ⊠H4 with 0-dimensional persistence diagrams P 0
H1⊠H2

,P 0
H3⊠H4

, then

Proof We have

Hence by theorem 3.7,

Theorem  3.14 Let H1,H2,H3, andH4 be the filtrations of hyper graphs 
H1,H2,H3 and H4 respectively with 1-dimensional persistence diagrams 
P

1
H1
,P 1

H2
,P 1

H3
andP

1
H4

.   If H1 ⊠H2,H3 ⊠H4 be the filtrations of strong products 
H1 ⊠H2 and H3 ⊠H4 with 1-dimensional persistence diagrams P 1

H1⊠H2
,P ,

H3⊠H4
 then

Proof Consider the two sections of hyper graphs H1,H2,H3 and H4. Let {v1, v2, . . . , vn} 
be the vertices of [H1]2 and {v′1, v

′
2, . . . , v

′
n} be the vertices of [H2]2. Then for any v′j ∈ [H2]2 

the [H1]2 fibre in [H1 ⊠H2]2 is defined as

and for any vj ∈ [H1]2 the [H2]2 fibre inn copies of [H1]2 is defined as

Clearly [H1]2 fibre is isomorphic to [H1]2 and [H2]2 fibre is isomorphic to [H2]2. So there 
will be n copies of [H1]2 and n copies of [H2]2 in n copies of [H1]2. Which means all the 
1-dimensional holes in H1 and H2 will be there in H1 ⊠H2 n times. There won’t be any 
other loops in strong product of hyper graphs. So

bcd0([H1 ⊠H2]2) = {I ∩ J | I ∈ bcd0([H1]2), J ∈ bcd0([H2]2)}.

dB(P
0
H1⊠H2

,P 0
H3⊠H4

) ≥ min
v=3,4

{dBmin(P
0
H1
,P 0

Hv
), dBmin(P

0
H2
,P 0

Hv
)}.

bcd0([H1 ⊠H2]2) = {I ∩ J | I ∈ bcd0([H1]2), J ∈ bcd0([H2]2)}.

dB(P
0
H1⊠H2

,P 0
H3⊠H4

) ≥ min
v=3,4

{dBmin(P
0
H1
,P 0

Hv
), dBmin(P

0
H2
,P 0

Hv
)}.

dB(P
1
H1⊠H2

,P 1
H3⊠H4

) ≥ min
v=3,4

{dmin(P
1
H1
,P 1

Hv
), dmin(P

1
H2
,P 1

Hv
)}.

[H1]2v
′
j = {(vi, v

′
j)|vi ∈ [H1]2, i = 1, 2, . . . , n}, j = 1, 2, . . . , n

vj[H2]2 = {(vj, v
′
i)|vi ∈ [H1]2, i = 1, 2, . . . , n}, j = 1, 2, . . . , n.
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  �

In the case of weighted hyper graph, we are doing filtration on hyper edge weights. 
Here we have to consider only 0 and 1 dimensional holes. While doing filtration, for 
any particular weight δ > 0 the number of intervals (0, δ) in 0-dimensional barcode 
will represents the number of vertices in a hyper edge. If there are k number of (0, δ) 
intervals, then the corresponding hyper edge will contain (k + 1) vertices. If we are 
comparing two hyper graphs, we can compare 0-dimensional persistence diagram 
which will give the idea of connected components and if that bottle neck distance is 
greater than zero, we can say that these two hyper graphs not topologically similar. 
Additionally, we are using the same concept 2-section of the weighted hypergraph 
as in the unweighted case. Adding the simplex of 2-section which corresponds to the 
hyper edge according to their weight as parameter.

Definition 3.15 Let H = (VH ,EH ) be a simple connected weighted hyper graph with 
weight function WH : EH → R. Consider the 2-section [H]2 = (V[H ]2 ,E[H ]2) of H. For 
any ε > 0 the 1-skeleton ([H]2)ε = ((V[H ]2)ε , (E[H ]2)ε) is defined as the sub graph of [H]2 
where (V[H ]2)ε = VH and its edge set (E[H ]2)ε) ∈ E[H ]2 includes only the two sections of 
hyper edges whose weight is less than or equal to ε. Then for any ε ∈ R, we define the 
Vietoris-Rips complex Hv as the clique complex of 1-skeleton of ([H]2)ε , , CL([H]2)ε , and 
the vietoris-Rips filtration in weighted hypergraph is defined as

The filtration starts with vertex set and the hyper edge weight is assumed to be 0 to ∞. 
For each step two sections of hyper edges are added and the corresponding complex is 
found.

Definition 3.16 Let H1 = (VH1 ,EH1) and H2 = (VH2 ,EH2) be two edge weighted sim-
ple connected hyper graphs with weight functions WH1 and WH2 respectively. Then 
the Cartesian product H1�H2 of H1 and H2 is defined as H1�H2 = (VH1�H2

,EH1�H2
) 

where

and

with weight function WH1�H2
: EH1�H2

→ R defined by,

and

dB(P
1
H1⊠H2

,P 1
H3⊠H4

) ≥ min
v=3,4

{dmin(P
1
H1
,P 1

Hv
), dmin(P

1
H2
,P 1

Hv
)}.

{CL([H]2)ε → CL([H]2)ε′ }0≤ε≤ε′ .

VH1�H2
= VH1 × VH2

EH1�H2
= {{x} × e : x ∈ VH1 , e ∈ EH2}

⋃

{e × {y} : e ∈ EH1 , y ∈ VH2}

WH1�H2
(x, e1) = WH2(e1) for all e1 ∈ EH2

WH1�H2
(e2, y) = WH1(e2) for all e2 ∈ EH1 .
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Definition 3.17 Let H1 = (VH1 ,EH1) and H2 = (VH2 ,EH2) be weighted simple, con-
nected and weighted graphs with weight functions WH1 and WH2 respectively. Con-
sider the Cartesian product H1�H2 of weighted hyper graphs H1 and H2 with its 2-sec-
tion [H1�H2]2. For any υ > 0 the 1-skeleton (H1�H2)υ = ((VH1�H2

)υ , (EH1�H2
)υ) 

is defined as the sub graph of H1�H2 where (VH1�H2
)υ = VH1�H2

 and its edge set 
(E[H1�H2]2)υ ∈ E[H1�H2]2 includes only the two sections of hyper edges whose weight is 
less than or equal to υ. Then for any υ ∈ R, we define the Vietoris-Rips complex H1�H2v 
as the clique complex of 1-skeleton of ([H1�H2]2)υ , (CL([H1�H2]2)υ , and the vietoris-
Rips filtration is defined as

The filtration starts with vertex set and the hyper edge weight is assumed to be 0 to ∞. 
For each step two sections of hyper edges are added and the corresponding complex is 
found.

Theorem 3.18 Let H′
1 and H′

2 are the filtrations of two simple weighted connected hyper 
graphs H1 and H2 with Cartesian product H1�H2. If H′

1�H′
2 be the filtration of H1�H2, 

then

Proof H′
1 and H′

2 are the filtrations of two simple weighted connected hyper graphs 
H1 and H2 with Cartesian product H1�H2 and [H1]2, [H2]2 are 2 sections of H1 and H2 
respectively. Let

and

Here each ai and bj represents weight of each hyper edge and intervals (0, ai) and (0, bj) 
may repeat according to the number of vertices in each edge for all i, j = 1, 2, . . . , n.

Without loss of generality, assume a2 ≤ ak , bj for all k = 3, 4, . . . , n, j = 1, 2, . . . , n, 
there will be again n number of (0, a2) intervals in bcd0(H′

1�H′
2). It can be written as

If b1 ≤ am, bp for allm = 3, 4, . . . , n and p = 2, 3, . . . , n, then there we have to consider 
only (n− 2) components of H1 and so that (n− 2) times the interval (0, b1) will be there 
in bcd0(H′

1�H′
2). It can be represented as

Continuing like this we will get

{CL([H1�H2]2)υ → CL([H1�H2]2)υ ′ }0≤υ≤υ ′ .

bcd0(H
′
1�H′

2) = {I ∩ J | I ∈ bcd0(H
′
1), J ∈ bcd0(H

′
2)}.

bcd0(H
′
1) = {(0, a1), (0, a2) . . . (0, an) = (0,∞)} with a1 ≤ a2 ≤ · · · ≤ an

bcd0(H
′
2) = {(0, b1), (0, b2) . . . , (0, bn) = (0,∞)} with b1 ≤ b2 ≤ · · · ≤ bn.

(0, a2) = (0, a2) ∩ (0, bj) for all j = 1, 2, . . . , n.

(0, b1) = (0, am) ∩ (0, b1) for allm = 3, 4, . . . , n.
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  �

Here also in Vietoris-Rips filtration, we are considering parameters from 0 to ∞. 
Hence the minimum value of each interval in zero dimensional barcode will be zero. 
In Bottleneck distance we are taking maximum distance. So in the case of zero dimen-
sional persistence diagrams in weighted hyper graph also we have to consider the fal-
lowing terms,

and

Theorem  3.19 Let H′
1,H

′
2,H

′
3, andH′

4 are the filtrations of weighted hyper 
graphs H1,H2,H3 and H4 respectively with 0-dimensional persistence diagrams 
P0
H1

,P0
H2

,P0
H3

and P0
H4

. If P0
H1�H2

 and P0
H3�H4

 are the 0-dimensional persistence dia-
grams of Cartesian products H1�H2 and H3�H4 then

Proof We have

and

Which means the 0-dimensional of Cartesian product of two weighted hyper graphs is 
same as the Cartesian product of topological spaces. So by theorem 3.6,

  �

Here also in weighted hyper graphs, the minimum value intervals in one dimensional 
persistence diagrams will be always greater than zero since at zero there won’t be any 

bcd0(H
′
1�H′

2) = {I ∩ J | I ∈ bcd0(H
′
1), J ∈ bcd0(H

′
2)}.

dBmin(P
k ,Qk) = min

i,j=1,2,...,k
{|bil − b′jt |, l, t = 1, 2, . . . , n}

dBmin(P
k ,Q′k) = min

i,j=1,2,...,k
{|bil − d′jt |, l, t = 1, 2, . . . , n}

dBmin(P
′k ,Qk) = min

i,j=1,2,...,k
{|b′jt − diq |, q, t = 1, 2, . . . , n}

dBmin(P
′k ,Q′k) = min

i,j=1,2,...,k
{|b′jt − d′iq |, q, t = 1, 2, . . . , n}, for k = 0, 1.

dB(P
0
H1�H2

,P0
H3�H4

) ≥ min
v=3,4

{dBmin(P
0
H1

,P0
Hv
), dBmin(P

0
H2

,P0
Hv
)}.

bcd0(H
′
1�H2) = {I ∩ J | I ∈ bcd0(H

′
1), J ∈ bcd0(H

′
2)}

bcd0(H
′
3�H′

4) = {I′ ∩ J′ | I′ ∈ bcd0(H
′
3), J

′ ∈ bcd0(H
′
4)}.

dB(P
0
H1�H2

,P0
H3�H4

) ≥ min
v=3,4

{dBmin(P
0
H1

,P0
Hv
), dBmin(P

0
H2

,P0
Hv
)}.
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one dimensional hole. Also when considering the 2-section, we are giving weights for 
each k-cliques.

Theorem  3.20 Let H′
1,H

′
2,H

′
3, andH′

4 are the filtrations of weighted hyper 
graphs H1,H2,H3 and H4 respectively with 1-dimensional persistence diagrams 
P1
H1

,P1
H2

,P1
H3

and P1
H4

.   If H′
1�H′

2,H
′
3�H′

4 be the filtrations of Cartesian products 
H1�H2 andH3�H4 with 1-dimensional persistence diagrams P1

H1�H2
,P1

H3�H4
, then

Proof Consider the two sections of weighted hyper graphs H1,H2,H3 and H4. Let 
{v1, v2, . . . , vn} be the vertices of [H1]2 and {v′1, v

′
2, . . . , v

′
n} be the vertices of [H2]2. Then 

for any v′j ∈ [H2]2 the [H1]2 fibre in [H1�H2]2 is defined as

and for any vj ∈ [H1]2 the [H2]2 fibre in n copies of [H1]2 is defined as

Clearly [H1]2 fibre is isomorphic to [H1]2 and [H2]2 fibre is isomorphic to [H2]2. So there 
will be n copies of [H1]2 and n copies of [H2]2 in n copies of [H1]2. Which means all the 
1-dimensional holes in H1 and H2 will be there in H1�H2 n times. Some other loops also 
will be there and which will be of the form (t,∞), 0 ≤ t ≤ ∞ with t = max{t1, t2} where 
(0, t1) ∈ bcd0(H

′
1) and (0, t2) ∈ bcd0(H

′
2). If we are considering all these cases in H3 and 

H4 , we can conclude that

  �

Definition 3.21 Let H1 = (VH1 ,EH1) and H2 = (VH2 ,EH2) be two edge weighted sim-
ple connected hyper graphs with weight functions WH1 and WH2 respectively. Then the 
strong product H1 ⊠H2 of H1 and H2 is defined as H1 ⊠H2 = (VH1⊠H2

,EH1⊠H2
) with 

weight function WH1⊠H2
 where

and a subset e = {(v1, v
′
1), (v2, v

′
2), . . . , (vn, v

′
n)} of VH1 × VH2 is an edge in edge set 

EH1⊠H2
 of H1 ⊠H2 if, 

1. {v1, v2, . . . , vn} is an edge of H1 and v′1 = v′2 = · · · = v′n ∈ VH2 , or
2. {v′1, v

′
2, . . . , v

′
n} is an edge of H2 and v1 = v2 = · · · = vn ∈ VH1 , or

3. {v1, v2, . . . , vn} is an edge of H1 and there is an edge f ∈ EH2 such that {v′1, v
′
2, . . . , v

′
n} 

is a multi set of elements of f, and f ⊆ {v1, v2, . . . , vn} , or

dB(P
1
H1�H2

,P1
H3�H4

) ≥ min
u=1,2, v=3,4

{dBmin(P
0
Hu

,P0
Hv
), dmin(P

1
Hu

,P1
Hv
)}.

[H1]2v
′
J = {(vi, v

′
j)|vi ∈ [H1]2, i = 1, 2, . . . , n}, j = 1, 2, . . . , n

vJ [H2]2 = {(vj , v
′
i)|vi ∈ [H1]2, i = 1, 2, . . . , n}, j = 1, 2, . . . , n.

dB(P
1
H1�H2

,P1
H3�H4

) ≥ min
u=1,2, v=3,4

{dBmin(P
0
Hu

,P0
Hv
), dmin(P

1
Hu

,P1
Hv
)}.

VH1⊠H2
= VH1 × VH2
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4. {v′1, v
′
2, . . . , v

′
n} is an edge of H2 and there is an edge f ∈ EH1 such that {v1, v2, . . . , vn} 

is a multi set of elements of f, and f ⊆ {v1, v2, . . . , vn}

with weight function WH1⊠H2
: EH1⊠H2

→ R defined by,

is an edge of H1 and f ⊆ {v1, v2, . . . , vn} and

is an edge of H2 and f ⊆ {v′1, v
′
2, . . . , v

′
n}.

Definition 3.22 Let H1 = (VH1 ,EH1) and H2 = (VH2 ,EH2) be weighted simple, con-
nected and weighted graphs with weight functions WH1 and WH2 respectively. Con-
sider the strong product H1 ⊠H2 of weighted hyper graphs H1 and H2 with its 2-sec-
tion [H1 ⊠H2]2. For any υ > 0 the 1-skeleton (H1 ⊠H2)υ = ((VH1⊠H2

)υ , (EH1⊠H2
)υ) 

is defined as the sub graph of H1 ⊠H2 where (VH1⊠H2
)υ = VH1⊠H2

 and its edge set 
(E[H1⊠H2]2)υ ∈ E[H1⊠H2]2 includes only the two sections of hyper edges whose weight 
is less than or equal to υ. Then for any υ ∈ R, we define the Vietoris-Rips complex 
(H1 ⊠H2)v as the clique complex of 1-skeleton of ([H1 ⊠H2]2)υ , (CL([H1 ⊠H2]2)υ , and 
the vietoris-Rips filtration is defined as

The filtration starts with vertex set and the hyper edge weight is assumed to be 0 to ∞. For 
each step two sections of hyper edges are added and the corresponding complex is found.

Theorem 3.23 Let H1 and H2 two simple weighted connected hyper graphs with strong 
product H1 ⊠H2. If [H1 ⊠H2]2 be the 2-section of of H1 ⊠H2, then

Proof When considering 0-dimensional persistent homology in weighted hyper 
graphs, in both the Cartesian product and the strong product of hyper graphs, the col-
lection of zero-dimensional barcodes remains the same. Hence by theorem 3.15 we can 
conclude,

Theorem  3.24 Let H′
1,H

′
2,H

′
3, andH′

4 are the filtrations of weighted hyper 
graphs H1,H2,H3 and H4 respectively with 0-dimensional persistence diagrams 
P0
H1

,P0
H2

,P0
H3

and P0
H4

. If P0
H1⊠H2

 and P0
H3⊠H4

 are the 0-dimensional persistence dia-
grams of strong products H1 ⊠H2 and H3 ⊠H4 then

WH1⊠H2
((v1, v

′
1), (v2, v

′
1), . . . , (vn, v

′
1)) = WH2(v1, v2, . . . , vn) for all (v1, v2, . . . , vn) ∈ EH1 ,

WH1⊠H2
((v1, v

′
1), (v1, v

′
2), . . . , (v1, v

′
n)) = WH2(v

′
1, v

′
2, . . . , v

′
n) for all (v

′
1, v

′
2, . . . , v

′
n) ∈ EH2 ,

WH1⊠H2
((v1, v

′
1), (v1, v

′
2), . . . , (v1, v

′
n)) = min{WH2(v1, v2, . . . , vn),WH1(f)} if {v1, v2, . . . , vn}

WH1⊠H2
((v1, v

′
1), (v1, v

′
2), . . . , (v1, v

′
n)) = min{WH1(f),WH2(v

′
1, v

′
2, . . . , v

′
n)} if {v1, v2, . . . , vn}

{CL([H1 ⊠H2]2)υ → CL([H1 ⊠H2]2)υ ′ }0≤υ≤υ ′ .

bcd0([H1 ⊠H2]2) = {I ∩ J | I ∈ bcd0([H1]2), J ∈ bcd0([H2]2)}.

bcd0([H1 ⊠H2]2) = {I ∩ J | I ∈ bcd0([H1]2), J ∈ bcd0([H2]2)}.

dB(P
0
H1⊠H2

,P0
H3⊠H4

) ≥ min
v=3,4

{dBmin(P
0
H1

,P0
Hv
), dBmin(P

0
H2

,P0
Hv
)}.
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Proof We have

and

Which means the 0-dimensional of strong product of two weighted hyper graphs is same 
as the Cartesian product of topological spaces. So by theorem 3.6,

Theorem  3.25 Let H′
1,H

′
2,H

′
3, andH′

4 be the filtrations of weighted simple and con-
nected hyper graphs H1,H2,H3 andH4 respectively with 1-dimensional persistence dia-
grams P1

H1
,P1

H2
,P1

H3
and P1

H4
.  If H′

1 ⊠H′
2,H

′
3 ⊠H′

4 be the filtrations of strong products 
H1 ⊠H2 andH3 ⊠H4 with 1-dimensional persistence diagrams P1

H1⊠H2
,P

H3⊠H4
, then

Proof Consider the two sections of weighted hyper graphs H1,H2,H3 and H4. Let 
{v1, v2, . . . , vn} be the vertices of [H1]2 and {v′1, v

′
2, . . . , v

′
n} be the vertices of [H2]2. Then 

for any v′j ∈ [H2]2 the [H1]2 fibre in [H1 ⊠H2]2 is defined as

and for any vj ∈ [H1]2 the [H2]2 fibre inn copies of [H1]2 is defined as

Clearly [H1]2 fibre is isomorphic to [H1]2 and [H2]2 fibre is isomorphic to [H2]2. So there 
will be n copies of [H1]2 and n copies of [H2]2 in n copies of [H1]2. Which means all the 
1-dimensional holes in H1 and H2 will be there in H1 ⊠H2 n times. There won’t be any 
other loops in strong product of hyper graphs. So

  �

Conclusion and future directions of research
This work defined and studied the Cartesian product as well as the strong product of 
weighted hypergraphs. Additionally, the paper introduces the notions of clique fil-
tration for the weighted and unweighted hypergraphs as well as for its Cartesian and 
strong products. Looking into the relation between the bottleneck distance of Cartesian 
products and the bottleneck distance of individual hypergraphs, the study revealed that 
the strong product of weighted and unweighted hypergraphs yielded similar results. In 
future studies, it is recommended to look in to the direct product and the lexicographic 

bcd0(H
′
1 ⊠H2) = {I ∩ J | I ∈ bcd0(H

′
1), J ∈ bcd0(H

′
2)}

bcd0(H
′
3 ⊠H′

4) = {I′ ∩ J′ | I′ ∈ bcd0(H
′
3), J

′ ∈ bcd0(H
′
4)}.

dB(P
0
H1⊠H2

,P0
H3⊠H4

) ≥ min
v=3,4

{dBmin(P
0
H1

,P0
Hv
), dBmin(P

0
H2

,P0
Hv
)}.

dB(P
1
H1⊠H2

,P1
H3⊠H4

) ≥ min
v=3,4

{dmin(P
1
H1

,P1
Hv
), dmin(P

1
H2

,P1
Hv
)}.

[H1]2v
′
J = {(vi, v

′
j)|vi ∈ [H1]2, i = 1, 2, . . . , n}, j = 1, 2, . . . , n

vJ [H2]2 = {(vj , v
′
i)|vi ∈ [H1]2, i = 1, 2, . . . , n}, j = 1, 2, . . . , n.

dB(P
1
H1⊠H2

,P1
H3⊠H4

) ≥ min
v=3,4

{dmin(P
1
H1

,P1
Hv
), dmin(P

1
H2

,P1
Hv
)}.
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product as potential methods to simplify the comparison of large hypergraph networks. 
Alternative methods for comparing and analyzing complex hypergraph networks, espe-
cially those that can be expressed as lexicographic or direct products, may be offered by 
these product operations.
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