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Abstract 

The share and variants of coupling points (CPs) between different energy carrier net-
works (such as the gas or power grids) are increasing, which results in the necessity of 
the analysis of so-called multi-energy systems (MES). One approach is to consider the 
MES as a graph network, in which coupling points are modeled as edges with energy 
efficiency as weight. On such a network, local coalitions can be formed using multi-
agent systems leading to a dynamic graph partitioning, which can be a prerequisite for 
the efficient decentralized system operation. However, the graph can not be consid-
ered static, as the energy units representing CPs can shut down, leading to network 
decoupling and affecting graph partitions. This paper aims to evaluate the effect of 
network adaptivity on the dynamics of an exemplary coalition formation approach 
from a complex network point of view using a case study of a benchmark power 
network extended to an MES. This study shows: first, the feasibility of complex network 
modeling of MES as a cyber-physical system; second, how the coalition formation 
system behaves, how the coupling points impact this system, and how these impact 
metrics relate to the CP node attributes.

Keywords:  Energy application, Multi-energy system, Complex systems, Complex 
networks, Coalition formation

Introduction
In energy grids, three crucial short- and mid-term developments are observable: an 
increase of distributed energy resources (DER), especially renewable energy resources 
(RER), in the power network, an increase of multi-energy system (MES) forming cou-
pling points (e.g., gas turbines) and the ongoing digitalization of the energy systems. 
Coupling points can connect various energy carrier networks and create the possibil-
ity to transfer energy between different networks, leading to more operational flexibil-
ity from the power grid point of view, as energy can be stored more manageably in the 
form of, for example, hydrogen. However, this comes with the disadvantage of introduc-
ing new dependencies between the energy systems. Moreover, the two effects are con-
nected; higher shares of renewable resources need increased system flexibility, which 
can lead to deploying more coupling points to use other energy carrier networks’ flex-
ibility (Mancarella 2014).
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Further, coupling points create a necessity to evaluate control strategies with 
regard to the effects on the coupled networks (Shahidehpour et  al. 2005; Xu et  al. 
2017), and the network topology will be less static with many deployed coupling 
points, as they can be viewed as energy-transforming links between networks, which 
can shut down on demand. As a result, coupled networks don’t only have to operate 
as a whole but could get decoupled as well.

Coalition formation (CF) approaches can help to cope with the increasing com-
plexity of the coupled networks and the increase of DERs, their generally small siz-
ing, and their attribute to generate energy mainly in a non-controllable (e.g., due to 
weather dependencies) way. CF can support in different ways, a) reduce the com-
plexity of distributed control systems and b) allow for small weather-dependent 
DERs to compete with big power plants like coal or gas plants. For example, either 
Virtual Power Plants (VPP) (Bitsch et  al. 2002; Nieße and Sonnenschein 2015), or 
clusters of microgrids can be formed to create dynamic optimization approaches 
which can cope with uncertainty, aggregate flexibility, or even execute distributed 
optimal power flow (OPF) variations (Zhou et al. 2021; Khavari et al. 2020).

Due to the increase of couplings across different energy sectors, grid topologies 
are more complex and dynamic than ever. Additionally, the physical energy systems 
get coupled with information and communication technology (ICT) to enable com-
munication between the different parts of the network. This leads to the extension 
of MES to multi-energy cyber-physical systems (ME-CPS) (Azzouzi et  al. 2019) or 
more general cyber-physical energy systems (CPES).

As a result, the overall system and its operation methods gain in complexity. Fur-
ther, distributed operating systems require a communication topology. Therefore, 
investigating coupled multi-carrier networks and their informational topologies, 
which significantly impact the solution quality in distributed optimization (Holly 
and Nieße 2021), from a complex systems point of view, seems natural.

In this paper, the research focuses on the dynamic coalition formation behavior in 
CPES while altering the network and its topology. This leads to the following general 
research questions we will tackle in this paper. 

1.	 How can a CPES be modeled to conduct research from the complex systems point of 
view?

2.	 What is the influence of topology adaptations on coalition formation in CPES, and 
how do the dynamics relate to important graph metrics representing topology prop-
erties?

The paper is structured as follows: First, related work regarding coalition dynamics 
and complex network applications in energy systems is discussed, and the contri-
butions of this paper are highlighted. Then, we introduce our model and strategy 
foundations. After the simulation setup is described, we present and discuss the 
results of the case study. Finally, a conclusion is drawn, and ideas for future work are 
presented.
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Related work
Applying complex network theory is common in investigations of the related electri-
cal grid resilience research area. Also, dynamics of coalition formation considering 
topology adaptations have been considered in more general settings. However, to our 
best knowledge, this is the first work that researches large-scale multi-energy (cyber-
physical) systems using complex network methods focusing on coalition formation 
behavior.

A basis for the multi-energy topology analysis has been investigated in Li et al. (2021), 
in which improved edge weights calculations, metrics, and a case study for a small IEEE 
test network have been conducted. However, the authors don’t focus on adaptive CPs, 
large-scale networks, or cyber-physical topologies.

Furthermore, there are publications about the influence of coupling points in energy 
systems from a network planning and control perspective. For example, in Sansawatt 
et al. (2009), the authors consider the integration of micro-CHPs (micro combined heat 
and power) and their impact on the distribution power grid. In Xu et  al. (2017), it is 
shown that the coupling of the natural gas and power network can cause significant 
pressure losses, considering multiple operational modes.

Research on the power grid is also conducted from a complex systems point of view. 
Pagani and Aiello (2013) present a comprehensive overview of complex network power 
grid research. This review included research on power grids with 30 to 31,400 nodes 
with a mean of  4800 and a median of 2100 nodes. Further, much research focuses on 
reliability analysis (Afzal et  al. 2020) using metrics like betweenness centrality (Free-
man 1977) or a degree distribution. In these area, the network construction is of a great 
importance. Complex network methods has shown useful especially for designing and 
analyzing resilient power grids. For example, the Barabási–Albert scale-free network 
model Barabasi and Albert (1999) has been applied to the North American electric grid 
(Chassin and Posse 2005). The authors were able to confirm the accuracy of the model in 
terms of predicted reliability.

Regarding the coalition formation in adaptive topologies of complex networks, Auer 
et al. (2015) investigate the formation dynamics using a so-called adaptation rate. This 
rate determines the speed of topology changes and, at the same time, the speed of the 
coalition formation. A higher adaptation rate leads to fast topology adaptations with low 
coalition formation speed and vice versa. This behavior is applied to a network over time 
to investigate the coalition size and degree distribution, determining the influence of the 
adaptation rate on the network structure. In contrast to our approach, the adaptations 
of the topology can occur on every node and edge of the network, so there is no general 
topology the adaptations are applied to.

The authors of Hasan and Raja (2013) study the emergence of multi-agent coalition 
formation in complex networks, focusing on its dynamics. However, they did not con-
sider the application to agents in a coupled energy infrastructure, and they naturally had 
another focus regarding the dynamics of the coalition formation approach. In Feng et al. 
(2020), the authors introduce a coalition formation approach for energy management 
in local energy communities. For this, the locality of the agents is utilized to build the 
neighborhood. This type of local coalition formation is not limited to the energy domain 
and has also been applied in other areas (Sims et al. 2003).
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In this paper, we conduct research to find correlations between coalition formation 
dynamics and graph theoretical attributes in a multi-energy system. That said, the core 
novelties and contributions provided by this paper are: 

1.	 A CPES model including different coupling points across three different carrier net-
works for conducting research using complex network theory, and

2.	 first insights into the relation between topology adaptation and coalition dynamics 
using a case study of four multi-energy network variants.

System model
To quantify the influence of coupling points on a coalition formation approach in a 
CPES, a suitable system model, fulfilling the following requirements, is necessary: (1) 
the model includes a topology definition to calculate theoretical graph metrics, (2) this 
graph has to represent the actors and their topology in the coupled grids, (3) the dis-
tances in the grid have to be included to limit the neighborhood for the CF, (4) the CF 
should rely, as it can be part of the grid operation, on the most critical grid objective w.r.t 
the stability of the isolated grid, balancing the demand and supply, and (5) the coalition 
formation has to be able to react to topology changes due to the shut down of CPs, so we 
need to define the splitting behavior of a coalition on a topology change.

As we don’t focus on the communication technology, we generally assume a perfect 
communication infrastructure. Further, all actors know their local physical states and 
neighborhood perfectly.

The system model is described in four different parts. First, the graph network con-
struction and formalization are presented. Second, the node neighborhood is defined, 
including the weighting of the edges. Third, we introduce the exemplary coalition for-
mation method and model. Moreover, the systems adaptivity model and the subsequent 
coalition split strategies are explained.

Network graph

This section presents the methodical approach for defining the network topology using a 
multi-energy network.

We consider a CPES topology as directed weighted multigraph G = (V , E) with 
e = (u, v, j, ψ , ω) ∈ E, u, v ∈ V  with V ⊂ N× N . An edge e is a directed link between 
two nodes u and v . The characteristic ψ describes the edge type, ω is the edge weight, and 
j is the edge id to enable multiple edges between two nodes. A node u = (κ , β) is a pair of 
natural numbers. The first is an identifier of an actual network unit, and the second identi-
fies the energy carrier network to which it belongs. A coupling point can be modeled as two 
nodes with different network affiliations and a directed edge between them. Every produc-
ing or consuming energy unit will be represented by a node. Nodes are connected if there 
is a direct physical connection (a pipe, line,...). If two nodes u, v ∈ V  are in the same energy 
carrier network, there are two edges (u, v, ω, ψ) and (v, u, ω, ψ) . Between nodes of dif-
ferent networks, there exists exactly one direction, depending on the type of the coupling 
point, represented by ψ . As this graph represents the communication topology based on 
the grid topology, buses and junctions are generally not represented by nodes. However, if 
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it is necessary to maintain the connected graph (e.g., empty buses), a so-called virtual node 
will be inserted, representing a bus or junction. This model has the advantage that most 
nodes are directly connected to their relevant neighbors without considering their bus or 
junction. Also, using edge weights, the physical properties of the network can be included 
as well.

Neighborhood definition

In this paper, we will require locality for the coalition formation. This will be imple-
mented with the definition of a fixed-size neighborhood for every single node based on 
the physical losses between their represented units. Consequently, the neighborhood 
Nk(u) of a node u is defined as the nearest k connected nodes from u as starting point. 
Note that the influence of k is neglected in this paper, as the whole coalition formation 
methodology is assumed to be a constant in the system.

Here, d(u, v) is the distance between two nodes and µi(u) is the ith neighbor of x. The 
weight ω of an edge e ∈ E is defined, depending on the carrier network affiliation. It is 
defined as relative power loss for edges in the power network.

The power values P are calculated using the steady-state solver pandapower based on 
the Newton–Raphson method (Thurner et al. 2018). In gas networks, the mass loss will 
be calculated similarly.

The mass flow rates M are calculated using the steady-state solver pandapipes, which is 
also based on the Newton–Raphson method (Lohmeier et al. 2020). At last, the heat loss 
calculation will be executed using the heat transfer equations (Baehr and Stephan 1994).

Here, Hloss is the heat power loss, Hall is the heat power flow through the edge, d is the 
inner diameter of the pipeline, l denotes the length, δambient is the temperature differ-
ence between the water inside the pipeline and the ambient temperature outside, and 
α denotes the heat transfer coefficient for the pipeline insulation. Further Tambient is the 
ambient temperature, Tin and Tout are the temperatures at the start and the end of the 
pipe, m is the volume of water in the pipeline, C is the specific heat capacity, and finally, 

(1)
Nk(u) = {µ1(u), . . . , µk(u)}

with d(u, µi(u)) ≤ d(u, µj(u)) for i < j ∈ N

(2)ωpower =
Pin − Pout

Pin

(3)ωgas =
Min −Mout

Min

(4)

ωheat =
Hloss

3600 ·Hall

Hloss = d · π · l · δambient · α

δambient = Tambient −
Tin + Tout

2

Hall = m · C · δT

δT = |Tin − Tout|
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δT denotes the temperature difference between the starting- and the endpoint of the 
pipeline.

Coalition formation

As we aim to investigate the effect of dynamic local coalition formation (DLCF), a forma-
tion method has to be implemented. However, a minimal method, with a protocol similar 
to Ramos et al. (2013), will be used in this work for simplicity and purity. Furthermore, this 
paper is not about the quality of the coalitions and more about the influence of topology 
adaptations on existing coalitions over time. The approach could easily be transferred to 
more complex coalition formation methods to examine their dynamics once the versatility 
of the modeling approach has been shown.

We define a coalition as set ζ ⊆ V  . Virtual nodes can not be part of a coalition. The coali-
tion formation used here has two essential attributes: (1) locality, as described in the previ-
ous subsections A and B; (2) it is dynamic in the sense that coalitions can adapt to topology 
changes every time step when the DLCF conditions are fulfilled.

The following paragraph describes the protocol of the formation process in a multi-agent 
system. Further, a coalition objective is defined.

To implement the protocol, a multi-agent system will be set up. There is an agent a for 
every productive node u ∈ V  . A node is productive if it represents a unit that transfers 
energy into or consumes energy from the system. Therefore, e.g., slack nodes, transformers, 
and compressors are excluded from being represented by an agent for the CF. The agent can 
observe its unit and knows the consumed and fed amount of energy. As we consider heat-
ing, gas, and electric networks, every agent maintains a vector

representing the energy balances of u.
Every time step, every agent a will search its neighborhood for acceptable coalitions. The 

agent topology is identical to the network G in subsection A. Given that a is part of coali-
tion ζa , another coalition ζ is acceptable if and only if

A is the attraction of an agent to a node based on the energy balance contribution of 
the represented node. If multiple coalitions in the neighborhood are acceptable the 
coalition with the highest A(ζ , a) will be picked. After a decision has been made, 
the coalition determines whether it will accept the request of the agent if and only if 
A(ζ ) ≤ A(ζ ∪ {a}) . If these checks hold, the requesting agent will be part of the coalition.

(5)ea =





bheat
bpower
bgas





(6)

A(ζ , a) > A(ζa, a)

withA(ζ , a) = −σ(ea) ·





�

b∈ζ

eb + ea





with σ(x) =
x

||x||
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Systems adaptivity

The fundamental idea is to consider coupling points in a multi-energy network as a volatile 
edge between different energy carrier networks. Therefore the system has to adapt itself 
when a coupling point is switched off. We consider an adaptation-rate α , which is the prob-
ability of being switched on/off at a given time step. If the coupling point is switched off, the 
CP nodes and all connected edges are removed from the topology graph. As a result, the 
CP can no longer be part of any coalition (due to the enforcement of locality) and will no 
longer be considered a part of the energy flow calculation. If it is switched on, the removal 
will be reverted, and the CP will create a singleton coalition as a starting point.

We have to define the behavior of any coalition which contains a shut-down CP. Espe-
cially as coalitions can contain participants across network borders, the locality property 
may be violated after the removal of the CP. This can result in the necessity to split the coa-
lition into parts. Two different splitting strategies will be considered.

Disintegrate (DI) On removal of a CP, which is part of coalition ζ , this strategy results 
in the disintegration of the whole coalition if there is more than one connected subgraph 
with maximal size in the induced subgraph of ζ . If the coalition disintegrates, every affected 
agent immediately searches for a new coalition.

Connected components (CC) With this strategy, removing a CP, which is part of coalition 
ζ , results in splitting the coalition into the connected subgraphs of the induced subgraph ζ 
with maximal size. If there is precisely one maximal-sized subgraph, nothing happens.

Definition of coalition dynamics
One prerequisite for this study is to define the dynamics of coalition formation. We 
define the dynamics as the coalition progression over time and the topology’s spatial 
attributes. The coalition progression can be described using the coalition sizes and the 
member mixture regarding the energy unit type and their network affiliation. We will 
mainly use three functions to characterize and formally define the dynamics; first, the 
distribution of the coalition size over time, and second, the distribution of the network 
carrier affiliation mixtures over time will be used to describe the structure of the coali-
tions themselves. Third, because the spatial dynamics are relevant, a distribution over 
the group degree centrality of coalitions will be included. Regarding the spatial attrib-
utes, we assume that overall the centrality of the coalition has the most significant 
influence on the formation behavior, and the exact topological spatial attributes can 
be neglected. We define the three mentioned density distribution functions, which will 
form the model of the coalition dynamics.

(7)F size
t,θ (ζsize) =|Ds(Zt,θ , ζsize)|

(8)

F
mix
t,θ (ζel, ζgas, ζheat) =

(

|Dm(Zt,θ , ζel)|,

|Dm(Zt,θ , ζgas)|,

|Dm(Zt,θ , ζheat)|
)

with |Dm(Zt,θ , ζel)|+|Dm(Zt,θ , ζgas)| + |Dm(Zt,θ , ζheat)| = 1

(9)Fdc
t,θ (ζdc) =|Dc(Zt,θ , ζdc)|
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The index t represents the timestep and θ the used adaptation rate. In Eq. (7), F size
t,θ  is the 

region size distribution, ζsize represents the size of a coalition, Ds maps from the set of all 
coalitions Zt,θ to these coalitions with the size of ζsize . The equation (8) defines the mix-
ture distribution Fmix

t,θ  . Dm maps to a set of coalitions with the el/gas/heat mixture per-
centage ζel/ζgas/ζheat . The last Eq. (9) represents the centrality distribution Fdc

t,θ . Further, 
Dc maps to the coalitions with the centrality value ζdc.

To conclude, the coalition dynamics � are described as the combination of the 
Eqs. (7–9).

In the equation, T ∗ denotes the set of steps in time, and � is the set of adaptation rates 
evaluated within the system.

MES model
The multi-energy system uses a steady-state simulation using the Newton-Raphson 
method to solve the respective heat, power, and gas equations. The coupling points 
are modeled as connected components in the respective networks. For example, a 
power-to-gas (P2G) coupling point is represented by a load node in the power net-
work and a source node in the gas network. The CP is controlled using the loads’ 
demand as a reference set point, which will be converted to the appropriate gas 
volume to be injected with a given pressure. Therefore, the networks’ power- and 
pipeflow are solved independently, respecting the execution of the coupling point 
models to set the correct node values before the flow calculation.

As there is no sufficient grid data for coupled multi-energy networks, especially 
with the structure we assume to be important in the future, we will explain how our 
grid data is generated.

As a basis, power grid data from simbench (Meinecke et  al. 2020) is used. Sim-
bench datasets contain fully featured power grids and appropriate time-series data. 
It is a benchmark dataset for novel network planning and operation methods. Given 
an appropriate simbench network, the gas and heat networks must be generated. 
Considering medium to low-voltage networks, it is assumed that every power node 
could eventually be a heat and gas node. As more households and industries are 
connected to the power grid relative to the gas or heat network, deployment rates 
have been chosen. The heat and gas networks are generated along the power net-
work nodes. As a result, we have a heat and gas network with a similar topology 
but a smaller deployment density ρenergy of productive nodes. Further, after generat-
ing these networks, coupling points will be generated using constant coupling point 
densities ρcp for every CP-type: P2G, CHP, and P2H (power-to-heat).

As the coupling points mainly convert energy forms into another with constant 
efficiency, the technical details of these CPs are omitted.

(10)
� =

((

F size
t,θ , Fmix

t,θ , Fdc
t,θ

))

t∈T∗, θ∈�

with T ∗ ⊂ N and� ⊂ Q
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Implementation
The steady-state physical simulation is implemented using pandapipes and pandapower 
(Thurner et al. 2018; Lohmeier et al. 2020). These tools were chosen because they can 
calculate the steady-state variables necessary for calculating the network weights, and 
they further provide a possibility to implement coupling points utilizing the control 
loop. To model the agents, we used mango-agents1 due to its capabilities of first, asyn-
chronous agent execution and communication, and second, its modular programming 
model, which allows reusing implementations. For further implementation details, look 
into the published software artifact for the paper.2

Evaluation
To evaluate the introduced system, we conduct a case study based on the simbench 
(Meinecke et al. 2020) network 1-MV-urban–1-no_sw. The whole network is generated 
using the algorithms described in the previous section. Further, the simbench demand 
and generation profiles are used. Time series data from the dataset (Ong and Clark 2014) 
is used for the heat and gas network.

An agent topology is deployed as described in subsection A. Network graph. In every 
time step, every agent executes the self-organizing coalition formation routine described 
in subsection C. Coalition formation using a neighborhood defined in B. Neighborhood 
definition. Coupling points are toggled in every timestep using the employed adaptation 
rate (see subsection D. Systems adaptivity).

This system is executed with various adaptation and deployment rates. The parameters 
are shown in Table 1. The adaptation rate step size is 0.01 to increase the sample size 
as there is by nature a large variance in the system. The deployments are chosen such 
that various coupling densities can be compared while the shares of coupling points are 
reasonable.

Although, only some combination of these parameters are used. Regarding the deploy-
ment rates, four combinations will be used and named as listed in Table 2. The number 
of nodes, edges, the average degree, and the number of producers and consumers are 
listed in Table 3 to characterize these networks.

Table 1  Used parameter sets and deployment rates in the evaluation

Parameter Values

� {0, 0.01, ..., 0.99, 1}

T
∗ {1, 2, ..., 95, 96}

ρ
energy
heat

{0.5, 1}

ρ
energy
gas {0.4, 0.8}

ρ
cp
chp

{0.6, 1}

ρ
cp
p2h

{0.3, 0.6}

ρ
cp
p2g

{0.5, 1}

1  https://​gitlab.​com/​mango-​agents
2  https://​gitlab.​com/​digit​alized-​energy-​syste​ms/​scena​rios/​cf-​cn-​mes

https://gitlab.com/mango-agents
https://gitlab.com/digitalized-energy-systems/scenarios/cf-cn-mes
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Objective

The main objective of the evaluation is to investigate the change of dynamics of the 
coalition formation due to coupling point adaptivity in the system. Overall we want to 
answer the following questions: 

1.	 Does the modeling approach supports answering the research question and evalua-
tion questions (RQ1)?

2.	 What is the effect of the adaptations on the coalition dynamics, and can we relate 
these to the topology attributes (RQ2)? 

(a)	 What is the effect of the adaptation on the average coalition size itself?
(b)	 What is the effect of the splitting strategy?
(c)	 Can we estimate the influence of single coupling points using graph metrics?
(d)	 Can we estimate the participation force of single nodes using graph metrics?

Metrics

For the research, we need to define appropriate metrics which are able to answer the 
research objective. In the following, all non-trivial metrics used in the evaluation are 
introduced and motivated.

Coupling points impact The impact of a coupling point x on the coalition’s formation 
behavior can be described by the difference of some global metric m with x being active 
or inactive, respectively. We define the impact as

(11)Im(x) = mT (x, Tx,active)−mT (x, Tx,inactive)

Table 2  Named network variants used in the evaluation

Name Description ρ
energy

heat  , ρenergy
gas  , ρcp

chp , ρcp

p2h , ρcp
p2g

sparse The most sparse variant using a minimal amount of gas- and 
heat nodes and coupling points of all types

0.5, 0.4, 0.6, 0.3, 0.5

cp-dense Characterized by a high density of coupling points, but the 
general node density is equal to the sparse variant

0.5, 0.4, 1.0, 0.6, 1.0

net-dense Low density of coupling points, but high density of active 
nodes in all energy carrier networks

1.0, 0.8, 0.6, 0.3, 0.5

full-dense High coupling point density and high general active node 
density in all energy carrier networks

1.0, 0.8, 1.0, 0.6, 1.0

Table 3  Attributes of the network variants

Network #nodes #edges Average degree Producer Consumer

El. Gas Heat El. Gas Heat

sparse 396 617 2.45 134 3 27 139 44 26

cp-dense 395 616 2.52 134 2 42 139 48 24

net-dense 508 664 3.21 134 5 103 139 103 45

full-dense 520 690 3.65 134 6 137 139 113 23
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Here, Tx,active/inactive is a set of timesteps in which x is active/inactive, mT calculates the 
mean of the metric mT within the timesteps defined by Tx . For example, metric mT (x,T ) 
could be the average coalition size in the steps T of some coupling point node x.

Node participation force It is also possible to look at the attributes of a node, which 
enable participation in the coalition formation or the participation in coalitions with 
certain coalition attributes like mixture or centrality. In the subsequent sections, we will 
refer to that as participation force. It can be measured using averages over the coalition 
dynamics described in Definition of coalition dynamics and the following paragraphs.

Node betweenness centrality Measuring centrality is important in energy systems, as 
a removed high centrality node can lead to a significant lack of short paths in the sys-
tem, which also influences the neighborhood functions of the nodes. The betweenness 
centrality (Freeman 1977) defines centrality via the number of shortest paths passing 
through a node z. We calculate the shortest path using the edge weights described in 
System Model B, as the line and pipe distances are not able to describe the actual energy 
distance. Formally it can be defined as follows:

here, γ (u, v) is the shortest path from u to v while γ (u, v | z) is the shortest path from u 
to v passing through z.

Edge betweenness centrality The coupling point itself is described as a link between 
two or more networks; consequently, we also want to describe the centrality of edges. 
For this purpose, the edge betweenness centrality will also be used (Brandes 2008).

This equation is nearly identical to the node betweenness centrality with the difference 
that γ (u, v | e) requires the path to pass through an edge e rather than a node.

Group degree centrality (normalized) A metric to calculate the centrality of a group 
of nodes is needed to describe a coalition’s centrality. For this purpose, the group 
degree centrality (Everett and Borgatti 1999) seems feasible, as it is fast to calculate and 
describes the number of connected nodes to the group. It is calculated by dividing the 
number of connected nodes to a group of nodes (a coalition) ζ by the number of nodes 
other than ζ.

Closeness vitality The closeness vitality (Brandes 2005) describes the positional attrib-
ute of a node for the participation force of single nodes. It is defined for a node v as the 
change of the sum of distances between all node pairs, which don’t include v. Formally it 
is defined by the authors of Brandes (2005) as

(12)cnodebetweenness(z) =
∑

u, v∈V

γ (u, v | z)

γ (u, v)
.

(13)c
edge
betweenness(e) =

∑

u, v∈V

γ (u, v | e)

γ (u, v)

(14)c
group
degree centrality(ζ ) =

degree(ζ )

|V \ ζ |

(15)cvitality(v) = IW (G)− IW (G \ {v}).
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IW  is the Wiener Index (Wiener 1947) of a graph G. The Wiener Index is the sum of dis-
tances between all node pairs.

Results
In this section, we will present the results split into five parts. First, we will introduce 
the degree distributions of each examined network. Second, the overall system behavior 
due to the adaptation is shown. Third, we will introduce the evaluation results of the 
coupling point influence study. Fourth, it is investigated whether graph attributes of sin-
gle nodes in the network can be used to sense whether and in which types of coalitions 
the node is included. Finally, the network and its overall node coalition attributes are 
depicted.

Degree distributions

This study uses four different deployment rate combinations, resulting in four different 
network variants, shown in Table 2. To show the difference in terms of the degree dis-
tribution, Figs.  1 and 2 present the distributions of all network variants, first decom-
posed by the network without topology changes (Fig. 1a–d), and second combined over 
all adaptation rates (Fig. 2a, b).

First, the shape of the single distributions can be divided into two different categories, 
(a) power law distributions and (b) normal distributions. Especially salient, Figs.  1a and 
d are nearly identical, which makes sense, as the only difference is additional edges in the 
cp-dense network. Also, net-dense and full-dense distributions look similarly structured, 
but due to the higher net density, the difference in additional coupling point deployment 

Fig. 1  Degree distribution decomposed by carrier
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is higher in this case. Therefore, from this data, we can predict that the degree distribu-
tion may not describe the behavior differences of coalition formation in these network 
variants.

The combined distribution (not separated by carrier) shown in Fig.  2 reveals that the 
adaptation rate does not influence the distribution. Further, interpreting the combined 
distribution can be misleading, as it does not catch the different degree distributions of 
the single carrier networks.

General behavior of the coalition formation

In this subsection, we want to get a grasp on the influence of the deployment rates (net-
work and coupling point density). In Fig.  3, each network’s development of the number 
of coalitions over time is shown at different adaptation rates. On the left, it is depicted 
using the DI strategy, and on the right using the CC strategy. It is apparent that the strat-
egy is of major influence. CC generally leads to smoother curves and fewer coalitions 
over all adaptation rates, time, and network variants. Further, higher adaptation rates 
lead to more coalitions, and they also increase the influence of the coupling point den-
sity. One detail to mention is that the influence of the CP share on the number of coali-
tions in the simulation with strategy DI is much greater than with using CC. This can be 
seen when comparing the cp-dense curves in Fig. 3f and e.

To dig deeper into the influence of the adaptation rate on the number of coalitions, 
Fig. 4 presents the effect of the adaptation rate and the time on the number of regions 
using the (1,1) network with strategy DI as an example. First, the number of coalitions 
declines, oscillating slightly over time. Second, the adaptation rate has a nearly linear or 
slight logarithmic impact on the number of coalitions. Finally, the variance of the impact 
stabilizes with increasing time, as can be seen in Fig. 4b.

As the last method to describe the system’s behavior, the dynamics of coalition dynam-
ics, described in section Definition of coalition dynamics, we discuss the distribution and 
density function regarding the group degree, region size, and mixtures.

The dynamics, shown in Fig. 4d–f, are relatively smooth and similarly distributed. All 
across these attributes, the adaptation rate influences the distribution smoothly but not 
linearly. The density function is generally shifted to the left with higher adaptation rates. 
The distribution of the relative power mixture is depicted as a cumulative distribution 

Fig. 2  Evaluation of the networks degree distributions over the adaptation rate
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function in Fig. 4c. The relative mixture generally considers only mixed coalitions for the 
sake of visual clarity.

Impact of single coupling points

This subsection presents the impact of single coupling points on the system’s behavior. 
For this, relevant graph metrics, as introduced in the evaluation section, are related to 
the average impacts of the coupling points over all adaptation rates and timesteps.

First of all, we introduce the methodology of the impact calculation. Figure 5 shows 
two examples of the raw impact per coupling point (colored and shaped by coupling 
type). The impact of a CP is defined as the difference between a system metric at times 
the CP is toggled on and the times it gets toggled off (see the previous “Metrics ” sec-
tion). Figure  5 depicts this impact value over the adaptation rate using two different 
metrics (average coalition size, left, and heat mixture percentage, right). Regarding the 

Fig. 3  Number of coalitions over time at different adaptations rate, showing the impact of the deployment 
rates
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Fig. 4  Influence of the adaptation on the system attributes

Fig. 5  Relation between the different impact types of a CP and its static graph attributes
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average size of a coalition (see Fig.  5a), the CHP and P2G agents appear to have a slightly 
higher impact overall. However, the impact decreases tremendously with an increase in 
adaptation. Noting that higher adaptation also equals to stronger side effects from other 
CPs on the CP impact calculation.

Regarding the heat-node mixture, the impact is negative initially. Following the defini-
tion, a negative impact is still a system impact. One could define the impact strength as 
equal to the impact’s absolute value. In this case, the P2H CPs show the highest impact, 
especially on high adaptation rates.

In the subsequent figures, these impact values are averaged over the adaptation rate 
for every CP and related to the CP graph metric, as defined in the previous section 
Evaluation.

In Fig.   6, two different metrics were considered, the group degree and the node 
betweenness centrality of the CP endpoints. Besides these two, the edge betweenness 
centrality has also been tested, but as it did not show any relation to the impact, the 
resulting figures are omitted here. Further, only the CC strategy and full-dense network 
results are shown, as the results for the other parameters are quite similar.

First, the coupling point type dramatically influences the impact, as seen in Fig. 5. Fur-
ther, with both metrics, group degree in Fig.  6a, b and node betweenness centrality in 
Fig. 6c, d the coupling point types clusters are distinguishable from each other. Besides, 
there is a clear relationship between the impact metrics (coalition size and mixed 

Fig. 6  Relation between graph attributes of CPs and their impact on the coalition formation; including 
overall Pearson correlation coefficient (PCC) (Pearson 1896) and p-value
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percentage) and the centrality metrics, especially when looking at the betweenness cen-
trality. The impact of the clusters CHP and P2H is decreasing with increasing central-
ity, while P2G impact is increasing. Note that the sample size for P2G is way too small 
for any valuable results. However, when looking at the overall trend of all three clusters 
combined, the relationship between the impact and the betweenness centrality is clear. 
To quantify, the Pearson correlation coefficient (Pearson 1896), and the p-value has been 
calculated (depicted in the captions). In both cases, the absolute coefficient exceeds 0.5 
while p ≪ 0.05 , which can be interpreted as a statistically significant moderate linear 
correlation (although a logarithmic correlation might be more precise due to the defini-
tion of the impact). The single trendlines are calculated using the OLS (ordinary least 
square) procedure.

The result that higher centrality leads to less impact seems counterintuitive. We 
explain that the less central coupling points might not have an impact on the maximal 
number of nodes, but it has a more substantial impact, as lower centrality leads, by defi-
nition (of the metric and the neighborhood used here), to a smaller set of nodes a node 
can realistically interact with. As a result, when a CP in such an area of the network is 
removed, the impact is more severe due to missing fallback alternatives.

Participation force of nodes

In this subsection, we will present the results of the influence of specific nodes and their 
attributes on the coalitions they participate in. This is referred to as the participation 
force of a node.

In Fig. 7, the results of this investigation are shown. Like before, only the full-dense 
network is considered. Further, specifically selected metric combinations are presented. 
The CC strategy is depicted on the left side of the figure, and the DI strategy is on the 
right.

The different network clusters are separable in most cases. Overall, all trendlines 
depict weak relations, primarily with R2 values smaller than 0.1. The strategies mainly 
influence the coalition sizes over all network clusters. The participation percentage has 
a more substantial influence on the heat network than the other two. Generally, the gas 
network nodes are more resilient to the change in strategies. Strong relations between 
the nodes’ graph attributes and their impact on the coalition formation process are not 
depicted. The most decisive visible impact would be the network variant; there is a very 
weak correlation between the node attributes and the coalition metrics of these specific 
nodes. We can assume that the attribute of a single node is neglectable for its participa-
tion in the coalition formation process.

In contrast, the attributes of the coupling points have a clear impact, so the CP dis-
tribution and the overall multi-energy system structure are more important for single 
networks. Furthermore, the attributes of the nodes as part of the energy system have yet 
to be considered. Therefore, these attributes may dominate the pure graph’s theoretical 
ones.

Graph visualization

To better grasp the fuzzy data obtained in the previous subsection, we continue to 
investigate the impact of a single node on the coalition formation using a less abstract 
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Fig. 7  Relation between the coalition’s participation force at specific nodes and their attributes
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approach. In this subsection, the coalition formation attributes of single attributes are 
displayed on the complex network itself.

Figure  8 shows the networks, their different types of nodes, and their participa-
tion attributes. Three attributes are considered: the average coalition size, participa-
tion, and mixed percentage. On the left side of each row, a low adaptation rate (0.1) 
is depicted, while a high rate (0.9) is on the right. The purple diamond nodes are the 
coupling points, the black circles are virtual nodes (empty junctions, buses, passive 
infrastructure nodes), the squares are nodes in the power system, the pentagons are 
the heating system, and the triangles depict nodes in the gas system. For simplicity, 
the sparse network with the CC strategy is depicted, layout using the Graphviz (Ellson 
et al. 2002) library, and its ’neato’ (Gansner et al. 2005) graph layout implementation.

Fig. 8  Node coalition formation participation statistics in a graph visualization, type: sparse with strategy CC; 
purple diamonds: coupling points; squares: power nodes; triangles: gas nodes; pentagons: heat nodes
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The main takeaway from these visualizations is that from the node point of view, 
centrality/being near coupling points is not the main impact point; it is more relevant 
to how the neighborhood structure and its attributes look. For example, the leftmost 
half-circle contains mainly the nodes with high participation and average coalition sizes 
despite not being as central as some nodes nearer to the coupling points and other net-
works. This could be because less centrally positioned nodes can be more independent 
and, therefore, less influenced by the coupling points. Besides, closeness to coupling 
points might increase the chance of being influenced by higher adaptation rates regard-
ing coalition participation.

Discussion
To conclude the presentation of the results, we will discuss the results with the questions 
as defined for the evaluation.

What is the effect of the adaptations on the distribution of the coalition size, participant 
mixture, and centrality metric? The effect on the distribution shape is negligible, looking 
at a single distribution. However, when taking a view over time, the adaptation leads to a 
minor oscillating behavior of the coalition formation and, therefore, to the mixture, aver-
age size, and coalition centrality. Further, higher adaptation generally results in smaller 
coalitions strongly influenced by the strategy.

What is the effect of the adaptation on the average coalition size itself? The average coa-
lition size decreases with an increasing adaptation rate.

What is the effect of the splitting strategy? The splitting strategy has two significant 
impacts: first, it directly influences and strongly affects the coalition sizes, and for the 
heat network, it leads to smaller participation percentages for some nodes. In general, 
CC preserves bigger coalitions, while DI leads to smaller coalitions. Second, DI leads to 
more extreme variance over time. The strategy has a significant impact on coalition for-
mation in adaptive multi-energy systems. These results largely matched our expectations 
before the experiments were executed.

Can we estimate the influence of single coupling points using graph metrics? In the third 
subsection of the results, we presented a clear relation between the betweenness cen-
trality and the impact of CPs regarding the coalition size and participation percentage. 
However, this estimation would not be valid for impact strength.

Can we estimate the participation force of single nodes using graph metrics? The results, 
described in the fourth and fifth subsections, don’t support the existence of a valid rela-
tion between the tested graph metrics and the actual participation force. The only usable 
property for this purpose would be the network as a whole. Further, we could estimate 
that the placement of the coupling points in the network relate to the participation force 
itself.

Does the modeling approach support answering the research question and evaluation 
questions? Analyzing the formation from a complex network perspective with the pro-
posed network model proved feasible for these kinds of analysis, as it abstracts from the 
complex energy models and network equations in a way that enables us to understand 
the dynamics and the system’s behavior. Furthermore, due to this abstraction, it is also 
not tied to a specific type of energy network. However, the presented analysis also shows 
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some limits of this technique. As a result, it might be even more feasible to combine net-
work metrics and energy metrics in the future.

Conclusion
In this work, we first introduced the problem of coalition formation in multi-energy 
systems and motivated and described its relevance and complexity for MES. Then, an 
MES modeling approach was presented, feasible to analyze the dynamics of an exem-
plary supply–demand matching local coalition formations algorithm. This algorithm has 
been described as a multi-agent system, including a neighborhood definition based on 
edge weighting in all system parts using estimated losses. Further, an adaptive system 
was presented in which, as an environment, the influence of the coupling points can be 
shown. These coupling points introduce one of the main challenges for handling multi-
energy systems. To deal with these coupling point adaptations, feasible strategies were 
presented to handle CP toggling behavior. As a prerequisite for analyzing this system, 
coalition dynamics in MES were defined, and a technical MES model was introduced to 
execute the simulation on the adaptive system. The evaluation included a description of 
the system setup, including system parameters, the used simbench network, and MES 
data. Further, we defined clear objectives, for which standard metrics were defined to 
capture and analyze the system behavior. After that, we presented the results of the sys-
tems simulation and gave interpretations and explanations of them. At last, the discus-
sion checked whether the evaluation objectives were fulfilled and on which parts other 
approaches could have been used.

The main finding is that the complex network methods and modeling approach were 
able to gather valuable information about the MES and the behavior of its coalition for-
mation process. However, it seems limited and needs more specialized hybrid analysis 
strategies. That could be another way of structuring the network or more energy-related 
hybrid metrics.

For future work, the next step could be to evaluate the influence of the different parts 
(objective, protocol, neighborhood definition) of the coalition formation method itself 
and to include the necessary energy attributes in the conducted research, such as the 
weights, energy distances, generation and load profile distribution, and node capability 
distributions. Moreover, success with respect to the coalition formations objective (here, 
supply–demand matching) can be an essential attribute.
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