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Abstract 

In this paper, we address the problem of earthquake declustering, and propose a 
k-nearest neighbors approach based on the selection of multiple-parent nodes with 
respect to each of the given earthquakes, which can be regarded as a natural extension 
of the conventional correlation-metric method based on the selection of a single-
parent node. Based on this approach, we develop a centrality measure that exploits 
link weight assigned by a logarithmic-distance scheme and a technique of individu-
ally visualizing each set of child nodes with respect to given target earthquakes. For 
experimental evaluation, we used an earthquake catalog covering Japan and selected 
24 earthquakes that caused considerable damage or casualties. We first show that our 
proposed centrality measure using a logarithmic-distance scheme can rank these 24 
major earthquakes higher than four link-weighting schemes (i.e., uniform, magnitude, 
inverse-distance, and normalized-inverse-distance weighting) and conventional single-
parent selection. We then show that unlike the conventional approach to simultane-
ously visualizing all the events in the catalog, our proposed technique can produce a 
naturally interpretable classification result for these 24 major earthquakes, by individu-
ally visualizing each set of the first to k-th child nodes with different colored markers 
plotted in the directly interpretable spatio and temporal metrics. As a consequence, we 
confirm that our approach based on multiple-parent selection is vital and promising.

Keywords:  Correlation-metric, Multiple-parent selection, Centrality measure, 
Visualization

Introduction
In seismology, the relationships between earthquakes collected in an extensive catalog 
must be unveiled. In particular, earthquake declustering, which classifies an earthquake 
as foreshock, mainshock, or aftershock (van Stiphout et al. 2012), is essential for appli-
cations such as earthquake prediction and seismic activity modeling. The key in earth-
quake declustering lies in identifying pairs of strongly interacting earthquakes.

In this paper, we address the problem of earthquake declustering, and propose a 
k-nearest neighbors approach based on the selection of a multiple-parent node with 
respect to each of the given events, which can be regarded as a natural extension of the 
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conventional correlation-metric method based on the selection of a single-parent node. 
Specifically, we construct a network containing multiple-parent nodes, with each node 
(vertex), link (edge), and weight corresponding to an earthquake (event), the interaction 
between two earthquakes, and interaction strength, respectively. In addition, we aim 
to find empirical regularities and explain basic properties of the resulting complex net-
works. To this end, we can use various techniques developed for large-scale complex 
networks, such as centrality analysis and community extraction. Finding regularities can 
unveil structures and trends and lead to new knowledge and insights underlying interac-
tions between earthquakes.

Based on this proposed approach, we first derive a centrality measure that exploits link 
weight assigned by a logarithmic-distance scheme. Considering different link-weighting 
schemes, we evaluated the networks constructed using the proposed approach regarding 
ranking accuracy given by the centrality measure. Next, we also developed a technique 
of individually visualizing each set of child nodes with respect to given target events. 
This method visualizes the set of the first to k-th child nodes with different colors in 
the directly interpretable spatio and temporal metrics. In our experiments, unlike the 
conventional approach, we show that our technique is expected to uncover the types of 
major events by individually visualizing each set of child nodes. For experimental evalu-
ation of the centrality measure and the visualization technique, we used an earthquake 
catalog covering Japan and selected 24 earthquakes that caused considerable damage or 
casualties.

Below, we summarize the contributions of this paper compared to the conference ver-
sion  (Yamagishi et al. 2022). As the methodological differences, we (1) formalized our 
proposed algorithms based on a k-nearest neighbors approach as a network construc-
tion method, a centrality measure, and a visualization technique and (2) proposed a 
technique of individually visualizing the set of the child nodes for given target earth-
quakes, unlike the conventional approach to simultaneously visualizing all the events 
in the catalog. As the experimental differences, we (1) showed that our proposed visu-
alization technique can produce a naturally interpretable classification result for some 
major earthquakes, and (2) demonstrated that our visualization results using different 
colored markers for the first to k-th child nodes plotted in the directly interpretable spa-
tio and temporal metrics can uncover some remarkable characteristics of these major 
earthquakes.

The remainder of this paper is organized as follows. In section  "Related work", we 
describe conventional algorithms for earthquake declustering. Section  "Proposed 
method" details the proposed network construction, centrality measure, and visualiza-
tion technique. Section "Experimental evaluation" reports the experimental results using 
the earthquake catalog and an analysis of the proposed method. Finally, we draw conclu-
sions and present future research directions in section "Conclusion".

Related work
Zaliapin et al. (2008; 2013a; b; 2016; 2020) have shown the effectiveness of using near-
est neighbor (single-parent) earthquake selection and the correlation metric described 
below. On the other hand, Yamagishi  et  al.  (2020; 2021b; a) used single-parent earth-
quake selection and the mean shift algorithm to experimentally demonstrate the 
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limitations of this approach. To overcome the limitations of existing approaches, we aim 
to enhance unweighted single-parent networks by describing weighted multiple-parent 
ones. In this section, we first introduce fundamental algorithms of seismicity decluster-
ing, and then review studies on link-based declustering and k-nearest neighbors (kNN) 
algorithm that rely on networks with k parent nodes.

Fundamental declustering algorithms

Seismicity declustering has been widely studied (van Stiphout et al. 2012) as a method 
to separate a catalog into subsets based on a specific relationship (e.g., foreshocks, main-
shocks, and aftershocks) between earthquakes. Most of these declustering algorithms 
are based on a deterministic spatio-temporal window method  (Knopoff and Gardner 
1972; Gardner and Knopoff 1974) or stochastic model (Kagan and Jackson 1991; Zhuang 
et  al. 2002), which suitably represents large earthquakes characterized by a series of 
aftershocks. Remarkably, the basis of several stochastic declustering methods is the epi-
demic-type aftershock sequence model (Ogata 1988, 1998) using likelihood analysis and 
considering space, time, and magnitude.

The window method is widely recognized as a straightforward way of identifying 
mainshocks and aftershocks. The origins of this technique can be traced to the proposal 
of window lengths and durations by Knopoff and Gardner  (1972; 1974). Subsequently, 
Uhrhammer proposed alternative window parameter settings  (Uhrhammer 1986), and 
Molchan and Dmitrieva conducted comparative experiments  (Molchan and Dmitrieva 
1992). Meanwhile, the algorithm devised by Reasenberg  (1985), known as the clus-
ter method, assumes an interaction zone centered on each earthquake. This method is 
based on the prior research of Savage (1972), and Molchan and Dmitrieva (1992) suc-
cinctly summarize the work of Reasenberg in their paper. As an alternative to the deter-
ministic declustering methods above, the concept of probabilistic separation appeared 
in the research conducted by Kagan et al. (1991). Zhuang et al. (2002; 2004; 2006) sug-
gested the stochastic declustering method, also called stochastic reconstruction, to bring 
such a probabilistic treatment into practice based on the ETAS (epidemic-type after-
shock sequence) model (Ogata 1988, 1998). The generalization of stochastic declustering 
proposed by Marsan and Lengline (2008; 2010) is model-agnostic and can employ any 
(additive) seismicity model.

Link‑based declustering algorithms

In other studies, Frohlich and Davis (1990; 1991) proposed the single-link cluster analysis 
based on a spatio-temporal metric between two earthquakes. As another cluster analysis 
with links, Baiesi and Paczuski (2004) proposed a simple spatio-temporal correlation metric 
to connect earthquakes, and Zaliapin et al. (2008) defined the rescaled distance and time. 
Such methods directly consider a tree of earthquakes, with an earthquake being a parent 
(i.e., foreshock) of subsequent earthquakes or a child (i.e., aftershock) having a single ear-
lier earthquake. The parent can be identified as the nearest neighbor using the proximity 
function of the spatio-temporal metric based on the Gutenberg–Richter law (1954), which 
relates the magnitude and frequency of aftershocks, and modified Omori’s law  (1894; 
1961; 1995), which relates the time after the mainshock and occurrence rate of after-
shocks. This metric follows a bimodal distribution related to the background seismicity 
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and aftershocks, and methods to obtain two separate distributions are being actively stud-
ied Aden-Antoniów et al. (2022). Furthermore, the correlation metric is promising because 
it resembles the epidemic-type aftershock sequence model. Using this metric, Zaliapin and 
Ben-Zion  (2013a; b) determined statistical properties of earthquake clusters describing 
bursts and swarms. They found a relationship between the predominant cluster and heat 
flow in a seismic region.

kNN algorithm

Yamagishi et al. (2020; 2021b) grouped earthquakes by link disconnection based on their 
average magnitudes using link-based declustering. By selecting a parent node from the 
earthquakes that occurred before a child node, single-parent earthquake selection, which 
is equivalent to the nearest neighbor graph (Preparata and Shamos 1985), was guaran-
teed to be the minimum spanning tree (or minimum weight spanning tree)  (Kruskal 
1956; Prim 1957). Proximity graphs have well-known extensions. For example, the kNN 
graph (Altman 1992; Eppstein et al. 1997) naturally extends the nearest neighbor graph, 
which is a kNN graph with k = 1 . In addition, the relative neighborhood graph (Tous-
saint 1980) and the Gabriel graph (Gabriel and Sokal 1969) naturally extend the mini-
mum spanning tree. However, the relative neighborhood and Gabriel graphs have 
O(N 3) time complexity. Hence, the kNN graph is fast and relatively simple in concept 
and implementation, despite having O(N 2) time and space complexities. In the kNN 
approach, a similarity or distance metric is used to find the k ≥ 1 nearest neighbors (par-
ents) of each child node. Thus, a weighted network (Wasserman and Faust 1994) using a 
similarity or distance metric is a natural extension with high expected performance.

Proposed method
Let D = {(xi, ti,mi) | 1 ≤ i ≤ N } be a set of observed earthquakes, where xi , ti and mi are 
the location vector, time, and magnitude of earthquake i, respectively. Every earthquake 
(event) represents a single point in a spatio-temporal dimension, like in representative 
declustering methods  (van Stiphout et  al. 2012). We assume that the earthquakes are 
ordered from the oldest to the most recent (i.e., ti < tj if i < j ). We describe the pro-
posed method based on kNN, and it consists of three components: (1) constructing a 
network of observed earthquakes (events) in D by selecting multiple-parent nodes per 
event; (2) a centrality measure per event, where a weight to each link is assigned over 
the constructed network based on a link-weighting scheme; and (3) a visualization tech-
nique per set of child nodes with respect to given target earthquakes.

Network construction

Among the available seismicity declustering algorithms, we consider the correlation 
metric (Baiesi and Paczuski 2004). For every pair of earthquakes i and j such that i < j , 
spatio-temporal metric n(i, j) is defined as

where df  is the fractal dimension set to df = 1.6 , b is the parameter of the Gutenberg–
Richter law (1954) set to b = 0.95 , and the spatial and temporal metrics are expressed 
in kilometers and seconds, respectively. Earthquake j is regarded as an aftershock (child 

(1)n(i, j) = (tj − ti)�xi − xj�
df 10−b mi ,
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node) of i(j) if n(i,  j) is minimized, that is, i(j) = arg min{n(i, j) | 1 ≤ i < j}. Using the 
correlation metric, we construct directed network G = (V , E) with a single-parent node, 
where V = {1, · · · ,N } and E = {(i(j), i) | 2 ≤ j ≤ N } are the sets of nodes and links, 
respectively.

Next, we construct a network with multiple-parent nodes. For a given k and every 
earthquake j ∈ {k , · · · ,N } , we select a set of multiple-parent nodes Ik(j) such that j ≥ k 
and |Ik(j)| = k . After initializing Ik(j) ← ∅ , we iterate the following two operations 
as |Ik(j)| < k holds: 1) î = arg min{n(i, j) | 1 ≤ i < j, i �∈ Ik(j)}. and 2) update Ik(j) 
by Ik(j) ← Ik(j) ∪ {î} . The resulting network with multiple-parent nodes is given by 
G(k) = (V , E(k)) , where E(k) = {(i, j) | k ≤ j ≤ N , i ∈ Ik(j)}.

Centrality measure

We enhance the constructed network by assigning a weight to every link. We introduce 
a scheme based on logarithmic-inverse-distance (LID) weighting to assign the following 
weight to link (i, j) ∈ E:

where n(i,  j) is the spatio-temporal distance computed by Eq. (1) based on the corre-
lation metric. As variants, we consider four weighting schemes: uniform, magnitude, 
inverse-distance, and normalized-inverse-distance weighting. These schemes are defined 
by w(i, j) = 1 , w(i, j) = mj , w(i, j) = 1/n(i, j) , and w(i, j) = 1/(1+ n(i, j)) , respectively, 
where mj is the magnitude of earthquake j. We experimentally evaluated the effective-
ness of networks constructed considering these link-weighting schemes, as detailed in 
section "Experimental evaluation".

We performed the evaluations using the most basic centrality measure, namely, weighted 
degree ranking. Let Jk(i) be the set of child nodes defined by Jk(i) = {j | j ∈ V , i ∈ Ik(j)} . 
The weighted degree ranking is given by

Centrality value ck(i) represents the number of aftershocks (i.e., child nodes) of earth-
quake i for the uniform scheme and the correspondingly weighted aftershocks for the 
other schemes.

Visualization technique

We first revisit a visualization technique of events in D proposed by Zaliapin et al. (2008) 
in the framework of the correlation-metric (CM) method. More specifically, for each pair 
of two events i and j such that i < j , the rescaled distance R(i, j) and time T(i, j) is defined as

where note that the spatio-temporal metric n(i,  j) in Eq. (1) is computed as 
n(i, j) = R(i, j)× T (i, j) . Then, for each event j > 1 , by defining the vertical and hori-
zontal coordinates as v(j) = R(i(j), j) and h(j) = T (i(j), j) , respectively, we can obtain a 

(2)w(i, j) = log 1+
1

n(i, j)
,

(3)ck(i) =
∑

j∈Jk (i)

w(i, j).

(4)R(i, j) = �xi − xj�
df 10−b mi/2, T (i, j) = (tj − ti)10

−b mi/2,
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visualization result where it is expected that the aftershocks are reasonably separated 
from the other background events.

Let ∆Jk(i) be the set of newly-added child nodes at k defined by 
∆Jk(i) = Jk(i)\Jk−1(i) , where J0(i) = ∅ . Then, with respect to a given target event i, 
we consider visualizing each set of child nodes Jk(i) by using different colored markers 
for each ∆Jk ′(i) where k ′ ≤ k . Here note that since the value 10−b mi/2 are the same for 
all the child nodes in Jk(i) , we propose to use a pair of simplified coordinates defined by 
v′(j) = �xi − xj� and h′(j) = tj − ti.

Experimental evaluation
We constructed a dataset using an earthquake catalog that contains source parameters 
collected by the Japan Meteorological Agency 1 and covering all Japan, as in Yamagishi 
et al. (2021b, 2021a). The dataset contains N = 104, 343 earthquakes that occurred from 
October 1, 1997 to December 31, 2016 with minimum magnitude mmin = min1≤i≤N {mi} 
and maximum depth of 3.0 and 100 km, respectively. In addition, we considered 24 
major earthquakes that caused considerable damages or casualties in Japan, as in Yamag-
ishi et al. (2021a). Table 1 lists the information of the 24 major earthquakes. Hereafter, 

Table 1  Information of 24 major earthquakes selected for evaluation

ID Time Longitude Latitude Depth Mag. Name

1 10/6/2000 13:30 133.349 35.2742 8.96 7.3 2000 Tottori

2 12/18/2001 13:02 122.8152 23.8935 8.00 7.3 2001 Yonaguni Island inshore

3 9/26/2003 4:50 144.0785 41.7785 45.07 8 2003 Tokachi-oki

4 9/5/2004 19:07 136.7977 33.0332 37.58 7.1 2004 Kii Peninsula 1

5 9/5/2004 23:57 137.1413 33.1375 43.54 7.4 2004 Kii Peninsula 2

6 10/23/2004 17:56 138.8672 37.2925 13.08 6.8 2004 Chuetsu

7 3/20/2005 10:53 130.1763 33.7392 9.24 7 2005 Fukuoka

8 8/16/2005 11:46 142.2778 38.1495 42.04 7.2 2005 Miyagi

9 3/25/2007 9:41 136.686 37.2207 10.70 6.9 2007 Noto

10 7/16/2007 10:13 138.6095 37.5568 16.75 6.8 2007 Chuetsu offshore

11 6/14/2008 8:43 140.8807 39.0298 7.77 7.2 2008 Iwate-Miyagi Nairiku

12 8/11/2009 5:07 138.4993 34.7862 23.32 6.5 2009 Shizuoka

13 2/27/2010 5:31 128.68 25.9187 37.00 7.2 2010 Ryukyu Islands

14 3/9/2011 11:45 143.2798 38.3285 8.28 7.3 2011 Tohoku 1

15 3/11/2011 14:46 142.861 38.1035 23.74 9 2011 Tohoku 2

16 3/11/2011 15:08 142.7668 39.8207 32.02 7.4 2011 Iwate offshore

17 3/11/2011 15:15 141.2525 36.1208 42.70 7.6 2011 Ibaraki offshore

18 3/11/2011 15:25 144.751 37.9143 11.00 7.5 2011 Sanriku offshore

19 3/12/2011 3:59 138.5978 36.986 8.38 6.7 2011 Nagano

20 4/7/2011 23:32 141.9202 38.2042 65.89 7.2 2011 Miyagi

21 4/11/2011 17:16 140.6727 36.9457 6.42 7 2011 Fukushima

22 4/14/2016 21:26 130.8087 32.7417 11.39 6.5 2016 Kumamoto 1

23 4/16/2016 1:25 130.763 32.7545 12.45 7.3 2016 Kumamoto 2

24 11/22/2016 5:59 141.6042 37.3547 24.50 7.4 2016 Fukushima

1  https://www.data.jma.go.jp/svd/eqev/data/bulletin/hypo.html
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we simply refer to the major earthquake with ID = i as earthquake i, and the j-th event 
in our earthquake catalog as event j.

Evaluation of centrality measure

In our first part of the experiments, we evaluated our proposed centrality meas-
ure, i.e., weighted degree ranking of the selected 24 major earthquakes, which should 
be ranked highly. Let A be the set containing the major earthquakes and BG(k)(h) 
the set of the top h events weighted over constructed network G(k). For a given 
h ∈ {1, · · · ,N } , we compute the precision and recall as PG(k)(h) = |A ∩ BG(k)(h)|/h and 
RG(k)(h) = |A ∩ BG(k)(h)|/|A| , respectively. For network G(k), the area under the curve 
for the precision–recall curve is given by

where tie breaks are performed adequately.
Figure 1 shows the evaluation results for the k-th parent nodes considering the pro-

posed LID link weighting, no-distance schemes of uniform (UNI) and magnitude (MAG) 
weighting (Fig.  1a), and distance-based schemes of inverse-distance (ID) and normal-
ized-inverse-distance (NID) weighting (Fig. 1b), where k ∈ {1, · · · , 4} . The results show 
that ranking can substantially improve by considering multiple-parent nodes for all the 
weighting schemes except for ID weighting. The proposed LID scheme works well, and 
the ID scheme has the worst performance, while the other schemes show similar perfor-
mance. Compared with the single-parent network without link weights in Zaliapin and 
Ben-Zion (2020) (i.e., UNI scheme with k = 1 ), the ranking performance improves when 
considering multiple-parent nodes, as shown by the UNI scheme with k = 2 or 3. The 
performance can be further improved by employing link weights, as shown by the pro-
posed LID scheme with k = 2 or 3. In addition, link weighting selection is important for 
ranking. Hence, we analyze the high performance of some types of weighted networks 
with multiple-parent nodes.

Figure  2 shows the results based on weighted degree centrality for the 24 major 
earthquakes and the k-th parent nodes using UNI (Fig.  2a) and LID (Fig.  2b) 

(5)AUCG(k) =

N−1
∑

h=1

PG(k)(h)+ PG(k)(h+ 1)

2
(RG(k)(h+ 1)− RG(k)(h)),

Fig. 1  Ranking accuracy using different weighting schemes
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weighting, where k ∈ {1, · · · , 4} . The centrality values slightly increase with num-
ber k of parents. For earthquake 18 (2011 Sanriku offshore), the centrality for k = 1 
is substantially smaller than the values for k > 1 . Earthquake 15 (2011 Tohoku 2) 
had magnitude 9.0, which is the largest magnitude registered in the evaluated earth-
quake catalog. Earthquakes 15 and 18 occurred at close periods in a specific region. 
Thus, for most aftershocks of these earthquakes, the parent node was earthquake 15 
for k = 1 , and earthquake 18 was the next parent node for k > 1 . This can explain 
the centrality of earthquake 18 increasing rapidly when k = 2 . Similar trends can be 
observed for earthquakes 4, 14, 16, 20, and 22. These trends support the use of net-
works with multiple-parent nodes.

Figure  3 shows examples of precision–recall curves for LID and UNI weighting 
with k = 1 (Fig.  3a) and k = 3 (Fig.  3b). Regarding the performance of the con-
structed networks, LID weighting outperforms UNI weighting. On the other hand, 
as UNI weighting has a high performance for a small region with rank h, we may 
need to explore more sophisticated weighting schemes. Nevertheless, constructing 
weighted networks with multiple-parent nodes seems promising.

Fig. 2  Weighted degree centrality values

Fig. 3  Examples of precision–recall curves
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Evaluation of visualization technique

In our second part of the experiments, we evaluated our proposed visualization tech-
nique by using the 24 major earthquakes shown in Table  1 as our target ones. Here 
recall that as the typical visualization results, the conventional CM method produces 
two clearly-separated clusters of events, which are interpreted as aftershocks and the 
other background ones, respectively. According to this characteristic, we first classified 
our results into two groups whether such clearly-separated clusters are observed or not. 
Hereafter, the group of those affirmative results is referred to as Type-A and the other 
one as Type-B. Next, we further classified our results of Type-A into two groups whether 
the cluster of aftershocks contains only the nearest neighbor child nodes in J1(i) or not. 
Hereafter, the group of those affirmative results is referred to as Type-A1 and the other 
one as Type-A2. Table  2 shows the classification labels for the 24 major earthquakes 
where the numbers of elements in Type-A1, Type-A2, and Type-B are 13, 6, and 5 in this 
order.

In order to more closely examine our results, we selected some samples belonging to 
each group as sown in Fig. 4. Here we depict these events belonging to ∆J1(i) , ∆J2(i) , 
∆J3(i) , and ∆J4(i) by markers of red circle, green left-pointing triangle, blue right-
pointing triangle, and magenta upward triangle, in this order. Note also that we employ 
the scales of ’km’ and ’day’ with respect to the horizontal and vertical axes, respectively. 
Here it should be emphasized that although most visualization results are omitted, they 
were reasonably comparable to the corresponding results of each type shown in Fig. 4.

In Fig. 4a, we show the visualization result of earthquake 1, as an example of Type-
A1. As expected, we can observe two clearly-separated clusters of events, which are 
interpreted as aftershocks and the other background ones, respectively, where the 
former and latter clusters spread horizontally around the bottom part and diago-
nally around the upper-right part, respectively, and we can see that the former clus-
ter contains almost only the events in ∆J1(i) depicted by red circle. Similarly, in 
Fig.  4b, we show the result of earthquake 4, as an example of Type-A2. Again, we 
can observe two clearly-separated clusters of aftershocks and the other background 
events, respectively, but the former cluster contains not only the events in ∆J1(i) 

Table 2  Classification labels for the 24 major earthquakes

Type id Mag. Name Type id Mag. Name

A1 1 7.3 2000 Tottori A2 4 7.1 2004 Kii Peninsula 1

2 7.3 2001 Yonaguni Island inshore 5 7.4 2004 Kii Peninsula 2

3 8 2003 Tokachi-oki 6 6.8 2004 Chuetsu

7 7 2005 Fukuoka 14 7.3 2011 Tohoku 1

8 7.2 2005 Miyagi 22 6.5 2016 Kumamoto 1

9 6.9 2007 Noto 23 7.3 2016 Kumamoto 2

10 6.8 2007 Chuetsu offshore B 15 9 2011 Tohoku 2

11 7.2 2008 Iwate-Miyagi Nairiku 16 7.4 2011 Iwate offshore

12 6.5 2009 Shizuoka 17 7.6 2011 Ibaraki offshore

13 7.2 2010 Ryukyu Islands 18 7.5 2011 Sanriku offshore

19 6.7 2011 Nagano 20 7.2 2011 Miyagi

21 7 2011 Fukushima

24 7.4 2016 Fukushima
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but also those in J4(i)\J1(i) = ∆J2(i) ∪∆J3(i) ∪∆J4(i) depicted by three types of 
triangles. On the other hand, in Fig.  4a, d, we show the results of earthquakes 15 
and 18, as examples of Type-B. Evidently, we cannot observe the two clearly-sepa-
rated clusters of events in the case of these examples, unlike the examples shown in 
Fig. 4a, b.

Below we summarize the derivations from our visualization results. First, we can-
not observe the two clearly-separated clusters of events in the visualization results 
for the four earthquakes in Type-B, i.e., the 2011 Tohoku earthquake with magnitude 
9.0 and the other three ones that occurred after it within a quite short time-period. 
Second, child nodes in J4(i)\J1(i) play interesting roles to classify our visualiza-
tion results, i.e., as for the clusters of aftershocks in Type-A, only the nearest neigh-
bor child nodes belonging to ∆J1(i) appeared in the case of Type-A1, while those 
belonging to J4(i)\J1(i) appeared frequently in the case of Type-A2. In addition, as 
one advantage of our proposed visualization technique over the existing one pro-
posed by Zaliapin et al.  (2008), we can straightforwardly interpret each coordinate 
of visualized events as spatio-temporal distances from the target earthquakes in 
terms of the scales of ’km’ and ’day’. For instance, from Fig. 4a, b, we can see that the 
clusters of aftershocks spread around the distance of 10 km. We believe that these 
experimental results suggest the vitality of our proposed technique based on multi-
ple-parent nodes.

Fig. 4  Sample visualization results of each type
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Analysis of visualization results

In this section, we analyze our visualization results in comparison to those obtained 
by the conventional CM method. As mentioned earlier, the CM method first com-
putes a 2-dimensional vector (v(j),  h(j)) for every event j > 1 , and then divides 
X = {(v(j), h(j)) | 2 ≤ j ≤ N } into the aftershock and background components, AX  and 
BX  , i.e., X = AX ∪ BX  , by applying a Gaussian mixture clustering procedure, where 
recall that v(j) = R(i(j), j) and h(j) = T (i(j), j) , R(i, j) and T(i, j) are the rescaled distance 
and time described in Eq. (4), and the event i(j) = arg min{n(i, j) | 1 ≤ i < j} is the first 
parent node of j. Here, it should be mentioned that according to the standard machine 
learning approach, we classify the observed events into AX  and BX  by selecting the 
class with the largest posterior probability, rather than determining some threshold 
value to the metric n(i, j) = T (i, j)× R(i, j).

Figure 5 shows several types of visualization results obtained by the CM method for 
our dataset. Recall that the fractal dimension df  is set to df = 1.6 , and the parameter 
b of the Gutenberg-Richter law is set to b = 0.95 (Baiesi and Paczuski 2004). In Fig. 5a, 
we plot all the events belonging to aftershock and background components as blue and 
brown points, where the formers and latters spread horizontally around the bottom 
part and diagonally around the upper-right part, respectively. As naturally expected, we 
can recognize a bimodal distribution with respect to these classified events. Here, we 
can also affirmatively confirm this bimodality by using the heat map in Fig. 5b and the 

Fig. 5  Visualization results by the CM method
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contour map in Fig.  5c. In Fig.  5d, we show the distribution of these classified events 
based on the spatio-temporal metric, i.e., n(i(j), j). From this distribution, it can be natu-
rally indicated that even by using some threshold method based on the spatio-temporal 
metric n(i(j), j), we can also obtain a similar classification result.

For an analysis purpose, we construct a variant of our visualization method. More spe-
cifically, for a given target earthquake i, in our framework of focusing on the child node 
(event) j ∈ Jk(i) , we plot them by using the rescaled distance and time, i.e., v(j) = R(i, j) 
and h(j) = T (i, j) , as coordinates of vertical and horizontal axes, instead of our direct 
metric v′(j) = �xi − xj� and h′(j) = tj − ti . Figure  6 shows the visualization results by 
this variant method with respect to the Type-A earthquakes, together with the contour 
map by the original CM method shown in Fig.  5c. Specifically, by using earthquakes 
1 and 4, we show the visualization results corresponding to Fig.  4a, b, respectively, 
where the cases of k = 1 and k = 4 are separately, as shown in the pairs of Fig. 6a, b, 
and c, d. From these visualization results, we can confirm that in the case of the Type-
A1 earthquakes, the events in J1(i) locate in the regions of both aftershock and back-
ground (Fig. 6a), while those in Jk(i) with k ≥ 2 locate only in the region of background 
(Fig. 6b). On the other hand, in the case of the Type-A2 earthquakes, the events in J1(i) 
locate only in the region of aftershock (Fig. 6c), while those in Jk(i) with k ≥ 2 locate in 
the regions of both aftershock and background (Fig. 6d).

Figure  7 shows the visualization results by this variant method with respect to 
the Type-B earthquakes, together with the contour map by the original CM method 

Fig. 6  Visualization results by variant method (Type-A)
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shown in Fig. 5c. Specifically, by using earthquakes 15 and 18, we show the visualiza-
tion results corresponding to Fig. 4c, d, respectively, where the cases of k = 1 and 4 
are also separately as shown in the pairs of Fig. 7a, b, and c, d. From these visualiza-
tion results, we can see that in the case of earthquake 15, the child nodes in Jk(i) 
locate in the regions of both aftershock and background (Fig.  7a, b). On the other 
hand, in the case of earthquake 18, the number of the child nodes in J1(i) is quite 
small, they locate in some spherical region of aftershock (Fig. 7c), while those in Jk(i) 
with k ≥ 2 locate around some region between aftershock and background (Fig. 7d).

According to Zaliapin  et  al.  (2020), for the sake of discussing our obtained 
results, we define the attractive domain of given target earthquake i as 
L(i) = {j | i = arg min{n(i′, j) | i ≤ i′ < j}} , i.e., L(i) is the set of child nodes for 

Fig. 7  Visualization results by variant method (Type-B)

Fig. 8  Comparison of the numbers of child nodes of J1(i) and L(i)
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earthquake i when excluding any earthquake or event that occurred before it. Then 
we compare the numbers of first child nodes and elements in the attractive domain, 
i.e., |J1(i)| and |L(i)| , where |J1(i)| ≤ |L(i)| from these definitions. Figure 8  shows the 
comparison of the numbers of child nodes of J1(i) and L(i) . Actually, in our cata-
log, the pairs of these numbers for earthquakes 1, 4, 15, and 18 were 609 and 723, 
198 and 198, 27,555 and 27,855, and 12 and 904, in this order. Namely, in the case of 
earthquake 18 of Type-B, we can naturally suppose that most events in the attrac-
tive domain became the first child nodes of earthquake 15, and thus the number 
of the first child nodes of earthquakes with 18 became quite small (Fig.  8c). Recall 
that earthquake 15 had a magnitude 9.0, which is the largest magnitude in our cata-
log. Conversely, we can suppose that the first child nodes of earthquake 15 must be 
formed by some complex union of the attractive domains of the other many earth-
quakes. This conjecture can partly explain the reason why the clearly-separated clus-
ters did not appear in the case of earthquake 15, unlike those observed in the Type-A 
earthquakes.

Conclusion
In this paper, as a natural extension of the conventional correlation-metric (CM) method, 
we proposed a k-nearest neighbors approach based on the selection of multiple-parent 
nodes with respect to each of the given earthquakes and addressed the problem of earth-
quake declustering. According to this approach, we proposed a centrality measure that 
exploits link weight assigned by a logarithmic-distance scheme and a technique of indi-
vidually visualizing each set of child nodes with respect to given target earthquakes.

We performed evaluations using an earthquake catalog covering Japan and selected 
24 major earthquakes that caused considerable damage or casualties. In short, we could 
confirm that our approach based on multiple-parent selection is vital and promising in 
terms of evaluations based on centrality measure and visualization. More specifically, 
the performance of our proposed centrality measure based on a logarithmic distance 
was better than those of four different link-weighting schema, i.e., uniform, magnitude, 
inverse-distance, and normalized-inverse-distance, as well as the conventional one that 
considers single-parent selection. In addition, by applying our visualization technique, 
we could obtain a naturally interpretable classification result for these 24 major earth-
quakes, by individually visualizing each set of the first to k-th child nodes with different 
colored markers plotted in the directly interpretable spatio and temporal metrics.

In future work, we will evaluate our proposed centrality measures and visualization 
technique by using a variety of datasets. In addition, we attempt to clarify the reason 
why these major earthquakes exhibit different characteristics in our visualization results.
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