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Abstract 

This paper is concerned with distributed detection of central nodes in complex net-
works using closeness centrality. Closeness centrality plays an essential role in network 
analysis. Distributed tasks such as leader election can make effective use of centrality 
information for highly central nodes, but complete network information is not locally 
available. Evaluating closeness centrality exactly requires complete knowledge of the 
network; for large networks, this may be inefficient, so closeness centrality should be 
approximated. Here, situations for decentralised network view construction where a 
node has zero knowledge about other nodes on the network at initial and there is no 
central node to coordinate evaluations of node closeness centrality are considered. 
Unlike centralized methods for detection of central nodes, in decentralized methods 
an approximated view of the network must be available at each node, then each 
node can evaluate its own closeness centrality before it can share it with others when 
applicable. Based on our knowledge, there is no much work done under this setting 
where the leading approach consists of running the breadth-first search Skiena (1998) 
on each node with a limited number of iterations (which is less than the diameter 
of the graph into consideration), as done by You et al. (2017), Wehmuth and Ziviani 
(2012), before each node evaluates its centrality. Running the breadth-first search 
on each node in a decentralized fashion requires high cost in terms of communica-
tion. Our contribution is to consider a better way of constructing network view in a 
decentralised manner with less communication cost. This paper refines a distributed 
centrality computation algorithm by You et al. (2017) by pruning nodes which are 
almost certainly not most central. For example, in a large network, leave nodes can not 
play a central role. This leads to a reduction in the number of messages exchanged to 
determine the centrality of the remaining nodes. Our results show that our approach 
reduces the number of messages for networks which contain many prunable nodes. 
Our results also show that reducing the number of messages may have a positive 
impact on running time and memory size.

Keywords:  Distributed systems, Network analysis, Closeness centrality, Leader election

Introduction
Centrality metrics play an essential role in network analysis (Lam and Reiser 1979). For 
some types of centrality metrics such as betweenness centrality, evaluating network 
centrality exactly requires complete knowledge of the network; for large networks, this 
may be too costly computationally, so approximate methods (i.e. methods for building a 
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view of a network to compute centrality) have been proposed. Centrality information for 
highly central nodes can be used effectively for distributed tasks such as leader election, 
but distributed nodes do not have complete network information. The relative centrality 
of nodes is important in problems such as selection of informative nodes, for example, 
in active sensing (Nelson and MacIver 2006)—i.e. the propagation time required to syn-
chronize the nodes of a network can be minimized if the most central node is known 
(Ramírez and Santoro 1979; Kim and Wu 2013). Here we consider closeness centrality—
We wish to detect most central nodes in the network.

Not all nodes ultimately need to build a view of the network formed in their interac-
tion since some nodes may realize quickly that they are not suitably central, i.e. they have 
small closeness centralities. The question is how to identify such insignificant nodes in a 
decentralised algorithm? This paper tackles this problem by introducing a pruning strat-
egy which reduces the number of messages exchanged between nodes compared to the 
algorithm from You et al. (2017). When a leader is chosen based on closeness centrality, 
we observe that in the algorithm of You et al. (2017), even nodes which can not play a 
central role, for example leaves, overload communication by receiving messages.1

This work proposes modifications to You et al’s decentralised method to construct a 
view of a communication graph for distributed computation of node closeness central-
ity. Since we consider an approximate and decentralised method to construct a view of 
a communication graph, inevitably nodes will construct different topologies describing 
their interaction network. We will use the term view as shorthand for view of a commu-
nication network.

Our proposed method can be applied to arbitrary distributed networks, and is most 
likely to be valuable when nodes form very large networks: reducing the number of mes-
sages will be a more pressing concern in large-scale networks. Such applications include 
instrumented cars, monitoring systems, mobile sensor networks or general mobile ad-
hoc networks. There are many reasons for reducing the number of messages in distrib-
uted systems. Here, we consider the following reason. A careful treatment of network 
communication of agents under weak signal conditions is crucial (Tomic et al. 2012).

Contributions.
We consider situations for decentralised network view construction where a node has 

zero knowledge about other nodes on the network at initial and there is no central node 
to coordinate evaluations of node closeness centrality. Unlike centralized methods for 
detection of central nodes, in decentralized methods an approximated view of the net-
work must be available at each node, then each node can evaluate its own closeness cen-
trality before it can share it with others when applicable. Based on our knowledge, there 
is no much work done under this setting where the leading approach consists of running 
the breadth-first search (Skiena 1998) on each node with a limited number of iterations 
(which is less than the diameter of the graph into consideration), as done by You et al. 
(2017), Wehmuth and Ziviani (2012), before each node evaluates its centrality. Running 
the breadth-first search on each node in a decentralized fashion requires high cost in 
terms of communication. Our contribution is to consider a better way of constructing 

1  Except in special cases, a leaf node should not play a central role.
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network view in a decentralised manner with less communication cost. At each itera-
tion of view construction, each node prunes some nodes in its neighbourhood once and 
thereafter interacts only with the unpruned nodes to construct its view. We refer to this 
approach as pruning. The more of these prunable nodes a network contains the better 
our algorithm performs relative to the algorithm in You et al. (2017) in terms of number 
of messages. We empirically evaluate our approach on a number of benchmark networks 
from Leskovec et al. (2005) and Leskovec et al. (2007), as well as some randomly gener-
ated networks, and observe our method outperforms the benchmark method (You et al. 
2017) in terms of number of messages exchanged during interaction. We also observe 
some positive impact that pruning has on running time and memory usage.

We make the following assumptions as in You et al. (2017):

–	 nodes are uniquely identifiable;
–	 a node knows identifiers of its neighbours;
–	 communication is bidirectional, FIFO and asynchronous;
–	 each agent is equipped with its own round counter.

The rest of the paper is organised as follows: Section 2 discusses the state of the art for 
decentralised computation of closeness centrality distribution of networks. The new 
algorithm will be discussed in Section 3. Section 4 discusses the results. In Section 5, we 
conclude and propose further work.

Background and related work
In a distributed system, the process of building a view of the network can be central-
ised or decentralised. It is centralised when the construction of the view of a network 
is performed by a single node, known as an initiator. Once the initiator has the view of 
a network, it may send it to the other nodes (Naz 2017). If the initiator is not known in 
advance, the first stage of constructing a view of a network will involve a selection of the 
initiator.

Decentralised methods to construct views can be exact or approximate. Recent lit-
erature on methods to construct views can be found in Naz (2017). Exhaustive meth-
ods build the complete topology of the communication graph—they involve an all-pairs 
shortest path computation. As a consequence, exact approaches suffer from problems 
of scalability (Naz 2017). This can be a particular issue for large networks of nodes with 
constrained computational power and restricted memory resources.

To overcome the problem mentioned above that exhaustive methods suffer from, 
approximate methods have been proposed. Unlike exhaustive methods, approximate 
methods do not result complete knowledge of the communication graph.

Many distributed methods for view construction are centralised, i.e. they require a 
single initiator in the process of view construction. The disadvantage of approximate 
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methods is that the structure of a view depends on the choice of the initiator. An inter-
esting distributed approach for view construction can be found in Kim and Wu (2013), 
where an initiator constructs a tree as the view.

To the best of our knowledge and according to Naz (2017), decentralised approximate 
methods for view construction are very scarce because many methods for view con-
struction assume some prior information about the network, so centralised methods 
are more appropriate. The method proposed by You et al. (2017) seems to be the state 
of the art for decentralised approximate methods for view construction, i.e. views are 
constructed only from local interactions. This method simply runs breadth-first search 
(Skiena 1998) on each node.

We next show the decentralised construction of a view using the algorithm in You 
et al. (2017).

Decentralised view construction

We consider the method proposed in You et al. (2017)—the “YTQ method”—as the state 
of the art for decentralised construction of a view of a network. The YTQ method was 
proposed for decentralised approximate computation of centrality measures (closeness, 
degree and betweenness centralities) of nodes in arbitrary networks. As treated in You 
et  al. (2017), these computations require a limited view. At the end of the interaction 
between nodes, each node can estimate its centrality based on its own view. In the fol-
lowing, we show how nodes construct views using the YTQ method. Here we consider 
connected and unweighted graphs, and we are interested in computation of closeness 
centrality.

Let δij denote the path distance between the nodes vi and vj in an (unweighted) graph 
G with vertex set V and edge set E . The path distance between two nodes is the length of 
the shortest path between these nodes.

Definition 0.1  The closeness centrality (Bavelas 1950) of a node is the reciprocal of the 
average path distance from the node to all other nodes. Mathematically, the closeness 
centrality ci is given by

Nodes with high closeness centrality score have short average path distances to all 
other nodes.

Each node’s view is gradually constructed based on message passing. Each node sends 
its neighbour information to all of its immediate neighbours which relay it onward 
through the network. Communication between nodes is asynchronous, i.e. there is no 
common clock signal between the sender and receiver.

(1)ci =
|V| − 1

j δij
.
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The YTQ method (You et al. 2017) that each node vi uses to construct its view is given 
in Algorithm 1.

Let Ni be the set of neighbours of vi and N (t)
i  the set of nodes at distance t + 1 from a 

node vi , so N (0)
i = Ni . The initial set of neighbours, Ni , is assumed to be known.
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During each iteration, each node sends its neighbourhood information to all its imme-
diate neighbours. We are restricted to peer-to-peer communication because nodes have 
limited communication capacity. Each node waits for communication from all of its 
direct neighbours after which it updates an internal round counter. A node vi stores mes-
sages received in a queue, represented by Mi . After round t ≥ 1 , the topology of vi ’s view 
is updated as follows

where

The algorithm terminates after at most D iterations, where D is an input of the algo-
rithm.2 In this paper, we consider a pre-set value of D. However, some nodes can also 
reach their equilibrium stage before the iteration D (e.g. nodes which are more central 
than others). Such nodes need to terminate when equilibrium is reached (see Line 57 in 
Algorithm 1). A node vi reaches equilibrium at iteration t when

At the end, every node has a view of network, and so the required centralities can be 
calculated locally. This view construction method is approximate when the total number 
of iterations D is less than the diameter of the graph, otherwise the method is exhaus-
tive, i.e. all views correspond to the exact correct information, assuming a failure-free 
scenario. With a decentralised approximate method, nodes may have different views at 
the end. Each node will evaluate its closeness centrality based on its own view of the 
network.

Decentralised view construction
The idea behind pruning technique is that, during view construction, some nodes can be 
pruned (i.e. some nodes will stop relaying neighbour information). Pruned nodes are not 
involved in subsequent steps of the algorithm and their closeness centralities are treated 
as zero.

Our approach thus applies pruning after each iteration t of communication of the 
YTQ method. During the pruning stage, each node checks whether it or any nodes in its 
one-hop neighbourhood should be pruned. Nodes can identify the other nodes in their 
neighbourhood being pruned so that they do not need to wait for or send messages to 
them in subsequent iterations. This reduces the number of messages exchanged between 
nodes.

Given two direct neighbours, their sets of pruned nodes are not necessarily the same, 
and nodes do not need to exchange such information between themselves.

(2)N
(t)
i ←

⋃

vj∈Ni

N
(t−1)
j \Ni,t ,

(3)Ni,t ←

t−1
⋃

k=0

N
(k)
i .

N
(t)
i = ∅.

2  It can also be set or determined in a distributed manner (i.e. the value of D can be determined by nodes during interac-
tion) as in Garin et al. (2012).
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Pruning

Before describing our proposed pruning method, we argue that pruning preserves infor-
mation of most central nodes of a graph using closeness centrality.

Theoretical justification

While we are aiming to estimate closeness centrality distribution on a graph using prun-
ing, the concept of pruning can directly be related to eccentricity centrality (Hage and 
Harary 1995). The eccentricity of a node is the maximum distance between the node and 
another node. Eccentricity and eccentricity centrality are reciprocal to each other. We 
consider the following points to achieve our goal.

–	 Pruned nodes have relatively high eccentricities (as will be discussed later in 
Lemma 0.3).

–	 Previous studies show that eccentricity and closeness centralities are strongly posi-
tively correlated for various types of graphs (Batool and Niazi 2014; Meghanathan 
2015). This is partly due to the fact that they both operate on the concepts of paths.

From what precedes, our proposed pruning method is then recommended for approxi-
mations of closeness centralities for categories of graphs where eccentricity and close-
ness centralities are highly correlated.

Description

We will first show how a node identifies prunable nodes after each iteration. There are 
two types of objects (leaves, and nodes causing triangles) that a node can prune after 
the first iteration. When a node is found to be of one of these types, it is pruned. Since 
nodes have learnt about their 2-hop neighbours after the end of the first iteration, a node 
vi knows the neighbours Nj of each of its direct neighbours vj . Our pruning method is 
decentralised, so each node is responsible to identify prunable nodes in its neighbour-
hood, including itself. Let di denote the degree of node vi.

Definition 0.2  (A node causing a triangle) A non-leaf node vj causes a triangle if 
dj = 2 and its two immediate neighbours are immediate neighbours to each other.

Let F (t)
i  denote the set of pruned nodes known by a node vi at the end of iteration t 

(with t ≥ 1).
Let N up

i,t = Ni\F
(t−1)
i  denote the set of neighbours of vi which have not yet been 

pruned at the beginning of iteration t. Functions that a node vi applies to detect prunable 
elements in its neighbourhood after the first iteration are given in Algorithm 2 (see func-
tions leavesDetection and triangleDetection).

Note that for complete graphs, pruning is not involved because, after the first iteration 
each node will realise that it its current view of the graph is complete.

So far, we have described how elements of F (1)
i  are identified by node vi . We now con-

sider the case of further pruning which is straightforward: new nodes should be pruned 
when they have no new information to share with their other active neighbours. Thus a 
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node stops relaying neighbouring information to neighbours from which it receives no 
new information.

At the end of iteration t, a node vi considers itself as element of F (t)
i  if it gets all its new 

information from only one of its neighbours at that iteration. Also, node vi prunes vj if 
the neighbouring information N (t)

j  sent by vj to vi does not contain new information, i.e.

Our hope is that the most central node is among the nodes which are not pruned on ter-
mination of the algorithm. Equation 4 indicates for a node vj to be pruned, there must be 
another node vi which is unpruned because a comparison needs to be done. This is true 
because there are always unpruned nodes which remain after the first iteration, except a 
complete graph of at most three nodes in which case pruning is not invoked. This means 
that at the end of our pruning method, there will always remain some unpruned nodes.

Nodes in F (t)
i  for t ≥ 2 could be viewed as leaves or nodes causing triangles in the 

subgraph obtained after the removal of all previously pruned nodes. Recall that an 
unpruned node only interacts with its unpruned neighbours and the number of the 
unpruned neighbours of a node may get reduced over iterations. So at some iteration an 
unpruned node can be viewed as leaf if it remains only with one unpruned neighbour.

Let

The procedure for how a node vi detects elements of F (t)
i  at the end of each iteration 

t ≥ 2 is given in Algorithm 2 (see function furtherPruningDetection).
After describing pruning, we now connect it to eccentricity (see Lemma 0.3) as men-

tioned above. Let ecci denote the eccentricity of a node vi , i.e.

Lemma 0.3  If vj ∈ Ni such that

then

Proof
A node vj is pruned if it has a direct neighbour vi from which it can receive new informa-
tion while at the same time it can not provide new information to that neighbour. Given 
two direct neighbours vj and vi where vj has been pruned at iteration t by vi , we have Eq. 4. 
From the definition of N (t)

i  and Eq. 4, it is straightforward that eccj ≥ ecci . �

(4)N
(t)
j ⊆

⋃

l<t

N
(l)
i .

Fi,t =

t
⋃

l=1

F
(l)
i .

(5)ecci = max
vj∈V

δij .

vj ∈
⋃

t≥1

F
(t)
i ,

eccj ≥ ecci.
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From Lemma 0.3 it can be seen that prunable nodes are nodes with relatively high 
eccentricities. So pruning can not introduce errors when searching for a node of max-
imum eccentricity centrality.
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Example 1

Consider execution of Algorithm 2 on the communication graph in Fig. 1, with D = 4 . The 
results of our pruning method on this graph are presented in Table 1 and discussed below.

After the first iteration, each node needs to identify prunable nodes in its neigh-
bourhood, including itself. Using Algorithm  2, F (1)

1 = {v1} , v1 will prune itself. Also, 
F

(1)
2 = F

(1)
3 = {v1} , v2 and v3 will also prune v1 . At the first iteration, all the leaves 

(i.e. v5, v6, v9 and v10 ) are pruned; they all have ecci = 6 . But, a non-leaf node, v1 (with 
ecci = 4 ), is also pruned on the first iteration.

At the beginning of iteration t = 2 , v1, v5, v6, v9 and v10 are no longer involved since 
they have been identified as prunable nodes at the end of the previous iteration; 
F

(2)
2 = F

(2)
4 = {v4} and F (2)

7 = F
(2)
8 = {v8} ; and the node v3 does not identify any 

prunable node after this iteration. At this iteration, the remaining nodes with high ecci 

Fig. 1  Illustration of graphs with prunable nodes

Table 1  Table indicating pruned nodes, identified at each node after each iteration using the graph 
in Fig. 1

⊥ indicates that the corresponding node has pruned itself and ⊤ indicates that the node has reached an equilibrium

Node sets ecci t = 1 t = 2 t = 3 t = 4

F
(t)
1

4 v1 ⊥ ⊥ ⊥

F
(t)
2

4 v1 v4 v2 ⊥

F
(t)
3

3 v1 ∅ v2, v7 ⊤

F
(t)
4

5 v5, v6 v4 ⊥ ⊥

F
(t)
5

6 v5 ⊥ ⊥ ⊥

F
(t)
6

6 v6 ⊥ ⊥ ⊥

F
(t)
7

4 ∅ v8 v7 ⊥

F
(t)
8

5 v9, v10 v8 ⊥ ⊥

F
(t)
9

6 v9 ⊥ ⊥ ⊥

F
(t)
10

6 v10 ⊥ ⊥ ⊥
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(i.e. nodes v4 and v8 ) are pruned. The results for the remaining iterations are shown in 
Table 1.

In our proposed distributed system, at the end of each iteration each node is aware 
of whether each of its direct neighbour is pruned or not). A pruned node neither 
sends a message nor waits for a message. So when a node is still unpruned, it knows 
which immediate neighbours to send messages to and which to wait for messages 
from. This prevents the nodes from suffering from starvation or deadlock in failure-
free scenarios (Coulouris et al. 2005).

Communication analysis

In this section, we evaluate the impact of pruning on the communication require-
ments for view construction. Let u(t)i  denote the number of neighbours of vi which 
have been pruned at the end of iteration t. Let Y (D)

i  and P(D)
i  be the number of mes-

sages that the node vi receives according to Algorithm 1 and the number of messages 
vi receives through the use of pruning in Algorithm 2 for D rounds respectively. We 
expect the number of messages any node vi saves due to pruning to satisfy

A node vi receives di messages at the end of each iteration using the YTQ method. Recall 
that our proposed pruning and the YTQ methods can also terminate when an equilib-
rium is reached. Let Hi denote the iteration after which a node vi applying the YTQ and 
our pruning methods reaches an equilibrium. This value is the same for both algorithms 
because at iteration t, a node vi (which should be an unpruned node using our proposed 
method) has the same view using both algorithms. Note that for our pruning method, 
a pruned node does not reach an equilibrium and it is not possible to prune all nodes 
before equilibrium. Let h(t)i  be the number of neighbours of vi which have reached equi-
librium at the end of iteration t. If at least one neighbour of an unpruned node vi has 
reached equilibrium by iteration t, then vi will reach equilibrium by iteration t + 1 . For 
the YTQ method,

Let Li denote the round at which a node vi is pruned ( Li = +∞ for unpruned node vi).

Lemma 0.4  The number of messages received by a node vi ∈ V in Algorithm 2 is

(6)∆
(D)
i ≡ Y

(D)
i − P

(D)
i ≥ 0 .

(7)Y
(D)
i =

min(D,Hi)
∑

t=1

(

di −

t−1
∑

l=0

h
(l)
i

)

.

P
(D)
i =

min(D,Hi ,Li)
∑

t=1

(

di −

t−1
∑

l=0

(

h
(l)
i + u

(l)
i

)

)

.
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Proof
At the end of each iteration t, the node vi receives 

(

di −
∑t−1

l=0

(

h
(l)
i + u

(l)
i

))

 messages. 

Note that u(0)i = h
(0)
i = 0 . Also a node can stop interacting with other nodes after it is 

pruned. If the node vi is pruned at the end of iteration min(D,Hi, Li) , then it stops receiv-
ing messages. �

Theorem 0.5  The number of messages saved by a node vi ∈ V in a failure-free scenario 
is

Proof
This is straightforward by Eqs. 6 and 7, and Lemma 0.4. �

It is clear that pruned nodes build very limited views as they stop interacting with 
others once they are pruned. These nodes would have built broader views using the 
YTQ method (You et al. 2017). Thus if considering applications where all nodes are 
required to build broader views, our pruning method is not recommended.

Communication failure

We also extend our pruning method to take into account communication failures dur-
ing view construction. For failure management, we simply incorporate the neighbour 
coordination approach proposed by Sheth et al. (2005) into our pruning method. We 
found the coordination approach for failure management most suitable for our prun-
ing method because each node can monitor the behaviour of its immediate neigh-
bours and report failures and recoveries if detected, which suits our decentralised 
approach well. Details of the extended version of pruning with communication failure 
can be found in Masakuna (2020). (It should be noted that we exclude details of fail-
ure management so that we can focus on the main contribution of this work).

Experimental investigation
For the comparison of our proposed method with the YTQ method (You et al. 2017) 
in terms of the number of messages, we consider the total and the maximum number 
of messages received per node. We wish to see the impact of our pruning method on 
message complexity in the entire network. We wish to reduce the maximum number 
of messages per node because if the communication time per message is the bottle-
neck, reducing only the total number of messages may not be helpful.

Our experiments considered the following cases, in an attempt to comprehensively 
test the proposed approach: 

∆
(D)
i =

min(D,Hi ,Li)
∑

t=1

t−1
∑

l=0

u
(l)
i +

min(D,Hi)
∑

t=min(D,Hi ,Li)+1

(

di −

t−1
∑

l=0

h
(l)
i

)

.
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(1)	 Comparison of the number of messages received by nodes for each method on vari-
ous networks. We also used a Wilcoxon signed-rank (Wilcoxon 1992) test and the 
effect size (Cohen 1962) to verify whether the mean differences of the number of 
messages between pruning and the YTQ method are significantly different.

(2)	 Comparison of the approximated most central nodes obtained with our method to 
the YTQ method. A good approximation should choose a most central node with a 
small distance to the exact most central node. We also used a Wilcoxon signed-rank 
test and the effect size to verify whether the mean differences of shortest path dis-
tances between approximate central nodes obtained using the YTQ and our prun-
ing methods with respect to the exact most central node on some random graphs 
are significantly different.

	 In Section 3, we showed that pruning is related to node eccentricity which allows us 
to ensure approximation of closeness centrality using pruning because eccentric-
ity and closeness centralities are positively and strongly correlated for various types 
of graphs (Batool and Niazi 2014; Meghanathan 2015). We run simulation experi-
ments to determine the Spearman’s ρ (Spearman 1961) and Kendall’s τ (Kendall 
1938) coefficients between eccentricity and closeness centralities. We consider the 
Spearman’s ρ and Kendall’s τ coefficients because they are appropriate correlation 
coefficients to measure the correspondence between two rankings.

For the hypothesis tests, the significance level we use is 0.01.

Experimental setup

We implemented our pruning method using Python and NetworkX (Hagberg et  al. 
2013). Our simulation was run on two HPC (High Performance Computing) clusters 
hosted by Stellenbosch University. Our code can be found at https://​bitbu​cket.​org/​jmf-​
mas/​codes/​src/​master/​netwo​rk.

We ran several simulations with random graphs (generated as discussed below), as 
well as some real-world networks.

Randomly generated networks

We used a 200x200 grid with integer coordinates and generated 50 random connected 
undirected graphs as follows: We generated N uniformly distributed grid locations (sam-
pling without replacement) as nodes. The number of nodes, N, was sampled uniformly 
from [50, 500]. Two nodes were connected by an edge if the Euclidean distance between 
them was less than a specified communication range d = 8 . The number of edges and 
the diameter for these graphs were in the intervals [50, 2000] and [20, 60] respectively—
see Fig. 2.

Real‑world networks

The 34 real-world graphs we consider are a phenomenology collaboration network 
(Leskovec et al. 2007), a snapshot of the Gnutella peer-to-peer network (Leskovec et al. 
2007), and 32 autonomous graphs (Leskovec et al. 2005). The phenomenology collabo-
ration network represents research collaborations between authors of scientific articles 
submitted to the Journal of High Energy Physics. In the Gnutella peer-to-peer network, 
nodes represent hosts in the Gnutella network and edges represent connections between 

https://bitbucket.org/jmf-mas/codes/src/master/network
https://bitbucket.org/jmf-mas/codes/src/master/network
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the Gnutella hosts. Autonomous graphs are graphs composed of links between Inter-
net routers. These graphs represent communication networks based on Border Gateway 
Protocol logs. Some characteristics of some of these networks are given in Table 2.

Results and discussion

Average and maximum number of messages

Our experiments illustrate the improved communication performance over the YTQ 
method in You et  al. (2017) resulting from pruning. Figure  3 shows differences in the 
averages and in the maximum number of messages per node between the YTQ and our 
pruning methods on the 32 autonomous graphs. We see that the approach reduced com-
munication by 30− 50% on average for all network, with over 75% of networks reducing 
their maximum number of messages by 30% or more.

Table  2 shows the average and the maximum number of messages per node for 
five real-world networks respectively. The number of messages per node for each 

Fig. 2  Diameters of random graphs. We use a binwidth of 2

Fig. 3  Differences in the number of messages between the YTQ method and our pruning method on the 
32 autonomous graphs. Positive values indicate that our pruning method outperfoms the YTQ method. (3a): 
Reduction in the average number of messages. (3b): Reduction in the maximum number of messages
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technique on one random network are contrasted in Fig. 4. The results confirm that 
the pruning method is better than the YTQ method (Fig. 3).

Furthermore, it can be seen that for the same type of network (e.g. the three auton-
omous networks in Table 2), pruning is more involved on the second network than 
on the other two. Loose nodes have relatively high eccentricities. The number of 
prunable nodes which is shown by the pruning method is proportional to the struc-
ture of the graph considered, but not directly on the number of nodes or edges or 
any particular relationship between numbers of nodes and edges. This means the 
more loose nodes or nodes causing cycles found, the more pruning is involved. For 
instance, a ring and a path graph of n nodes both have almost the same number 
of edges. However, path graphs contains a larger number of prunable nodes ( n− 1 
nodes in total) then rings. Thus, for particular structures including networks with 
multiple paths as subgraphs as well as many cut vertices, pruning is more expressed.

Hypothesis test

We observed a p-value of 7.96× 10−90 and an effect size of 21.1140 between the num-
ber of messages obtained with our pruning and the YTQ methods on 50 random graphs 
containing 500 nodes each. The p-value is less than the threshold 0.01, so the means of 

Fig. 4  Numbers of messages per node using each method on a random graph with D = 10 . On the 
horizontal axis Y and P denote the YTQ and pruning methods respectively

Table 2  Graph properties and the number of messages with each approach for five real-world 
networks (the phenomenology collaboration network, the Gnutella peer-to-peer network, and three 
autonomous networks)

Y(Ymax) and P(Pmax) denote average(maximum) number of messages for the YTQ and pruning methods respectively

Nodes Edges Diameter Y P Ymax Pmax

Three autonomous networks

1486 3422 9 28.0 8.8 7005 1413

2092 4653 9 27.2 7.9 3312 552

6232 13460 9 25.4 6.9 7295 1459

Phenomenology collaboration network

10876 39994 9 52.2 14.3 721 120

Gnutella peer-to-peer network

9877 25998 13 63.0 8.3 3705 787
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the number of messages using the YTQ method against pruning are significantly differ-
ent. In terms of effect size, according to the classification in Gail and Richard (2012), the 
effect size between our pruning and the YTQ methods is large ( e ≥ 0.8 ). So the means of 
the number of messages using the YTQ method against pruning differ markedly.

We also observed a reduction in total running time and memory usage from our 
approach. So no adverse effect on power usage from the approach.

Quality of selected most central node

First, for various graphs considered here, the averages and standard deviations of the 
Spearman’s ρ and Kendall’s τ coefficients between eccentricity and closeness centralities 
are 0.9237± 0.0508 and 0.7839± 0.0728 respectively, and the correlation coefficients 
were all positive. This shows that there is predominantly a fairly strong level of correla-
tion between eccentricity and closeness centralities for various graphs considered here. 
This confirms the results by Batool and Niazi (2014), and Meghanathan (2015). Note that 
we chose real-world graphs and random graphs modelled on what might be realistic for 
a sensor network—so no attempt to choose graphs from models with high correlation.

Tables 3 shows the shortest path distances between the exact most central node and 
approximated most central nodes using our pruning method and the YTQ method (You 
et al. 2017) for two random graphs. Figure 5 shows differences of shortest path distances 
between the exact most central node and approximated central nodes obtained with the 
YTQ and our pruning methods on two random graphs. For each of the graphs, we ran-
domly vary D in a range of values smaller than the diameter of the graph.

The evaluation of node centrality based on a limited view of the communication graph 
has an impact on the choice of the most central node. When using our pruning and the 
YTQ methods to choose a leader based on closeness centrality, the methods can yield 
different results under the same conditions. We found that (Table 3 and Fig. 5) our prun-
ing method generally gave better approximations to closeness centrality than the YTQ 
method when D is considerably smaller than the diameter, with the results of the YTQ 
method improving as D increases. This supports our claim that our pruning method 
effectively identifies nodes which should not be chosen as leaders as they are highly 
unlikely to have the highest closeness centrality. Note that, even though the two meth-
ods sometimes give the exact most central nodes for some D (for example for D = 26 in 
Table 3), these exact most central nodes are not guaranteed.

Table 3  Shortest path distances between the exact most central node and approximated most 
central node using pruning and the YTQ method

We use two random graphs, one with 70 nodes and diameter of 35, and another with 72 nodes and diameter of 32. One 
method achieves better approximations than another if the distance of the selected node from the true most central node is 
smaller. Y i  and P i  indicate shortest path distances for the YTQ and pruning methods on the i-th random graph respectively

D Y1 P1 Y2 P2

2 5 5 14 14

6 14 10 19 5

10 13 1 20 0

14 14 4 19 2

18 8 0 0 0

22 0 0 0 2

26 0 0 0 0
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The reason why the YTQ method yields poor results when D is smaller than the diameter 
of the graph is as follows. When some of the nodes have different views of the communica-
tion graph and each evaluates its closeness centrality based only on its own view, a node 
with small but unknown exact closeness centrality may have a high estimated closeness cen-
trality. This can lead to poor conclusions. In the YTQ method, the central node is selected 
from all nodes. The advantage of the pruning method is that only unpruned nodes compute 
their approximate closeness centralities, i.e. the many nodes that are pruned are no longer 
candidates for central nodes. This reduces the chance of yielding poor performance as the 
central node is selected from a shorter list of candidates, i.e. the unpruned nodes.

Hypothesis test

We observed a p-value of 0.1197 between the results obtained with our pruning and 
the YTQ methods on 50 random graphs of 500 nodes each. The p-value is greater than 
the threshold 0.01, so there is no significant difference between the means for the two 
approaches. This means that the qualities of the selected most central nodes using both 
methods are almost the same. This is beneficial to pruning—though they both provide 
almost the same qualities of selected most central nodes, pruning reduces the number of 
messages significantly compared to the YTQ method (You et al. 2017).

Conclusion
We proposed an enhancement to a benchmark method (You et al. 2017) for view con-
struction. The main motivation of this enhancement was to reduce the amount of com-
munication: we aim to reduce the number of messages exchanged between nodes during 
interaction. Given a network, some nodes can be identified early as being unlikely to be 
central nodes. Our main contribution was noting that we can identify such nodes and 
reduce communication by pruning them.

Our proposed method improves the benchmark method in terms of number of mes-
sages. We found that reduction of the number of messages has a positive impact on run-
ning time and memory usage (Masakuna 2020).

Fig. 5  Differences of shortest path distances between approximated central nodes obtained using the YTQ 
and our pruning methods with respect to the exact most central node on two random graphs: (5a): the 
first (diameter of 26, 125 nodes and 180 edges) and (5b): second (diameter of 36, 289 nodes and 597 edges)
random graphs. Positive values indicate that our method is better than the YTQ method
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Future work. Our message counting model ignores the fact that in large networks, 
messages comprise multiple packets. Analysis of the savings of our approach in terms 
of the actual amount of data communicated could be investigated in future. Further, it 
may be possible to identify further types of prunable nodes and consider richer classes of 
graphs for assessment.
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