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Abstract 

Understanding the causes and consequences of, and devising countermeasures 
to, global warming is a profoundly complex problem. Network representations are 
sometimes the only way forward, and sometimes able to reduce the complexity of 
the original problem. Networks are both necessary and natural elements of climate 
science. Furthermore, networks form a mathematical foundation for a multitude of 
computational and analytical techniques. We are only beginning to see the benefits of 
this connection between the sciences of climate change and network science. In this 
review, we cover the wide spectrum of network applications in the climate-change 
literature—what they represent, how they are analyzed, and what insights they bring. 
We also discuss network data, tools, and problems yet to be explored.

Introduction
Stating the obvious, studying climate change is challenging because it is so complicated. 
Not only are climatological factors coupled into a complex causal web, but humanity’s 
response to this challenge also depends on a multitude of entangled processes (Odum 
and Odum 1976; Donges et al. 2017; Schellnhuber 1999; Claussen et al. 2002). Looking 
closer at any component of this network of causes and consequences, there are yet more 
networks: Climate subsystems are teleconnected (Tsonis et al. 2008; Glantz et al. 1991) 
and climate tipping elements can amplify each other exacerbating warming (Lenton 
et al. 2019). The photochemical reaction network of the atmosphere determines the con-
centration of greenhouse gasses (Centler and Dittrich 2007). The in- and outflows to this 
system are affected by the bio-, geo- and technospheres’ chemical networks (Lal 2008). 
Furthermore, the adoption of green technologies (Lal 2008), change of beliefs (Dunlap 
and Brulle 2015; Farrell 2016), the adoption of norms or political polarisation (Tokita 
et  al. 2021) are all social-network phenomena that impact climate change. Finally, in 
addition to networks of people, society is built by another great network—the global 
economy (Schweitzer et al. 2009) (See Fig. 1).

In this review, we argue that meeting the scientific challenges of climate change will 
require a network reinterpretation of problem formulation and its potential solutions. We 
aim to showcase the benefits of using network perspectives in studying climate change and 
highlight promising avenues for future research. The audience, as the problem at hand, is 
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interdisciplinary in nature, from climate researchers, social scientists, and environmental 
scholars in general. Regardless of disciplinary background, network approaches can offer 
a boundary object to study the relationships between and within climate systems and soci-
ety. In this review, we will survey applications of network theory to the science of climate 
change and discuss the future of integrating network modeling into climate research. How 
are climate subsystems interconnected? How does the structure of networks influence sta-
bility or amplify nonlinearities? How does the multilayer nature of social, economic, trade, 
and climate networks affect each other? These are central research questions that a network 
science perspective can contribute to climate research.

Network theoretical methods have entered the study of climate change late and are 
yet to be employed to their full potential. Today’s network science carries the legacy of 
1970’s systems theory (Odum and Odum 1976; Forrester 1971), which is also an ante-
cedent of much of today’s climate modeling (Edwards 2011). The similarities are easy 
to see, starting from the emphasis on an integrative, holistic view. The main difference 
is perhaps that network theory stresses how things are connected. In Fig. 2A, we show 
a diagram of the components and interdependencies of a state-of-art climate model 
(adapted from Ref. Knutti and Rugenstein (2015)). In Fig. 2B, we plot the same diagram 
by a force-directed algorithm to highlight its network structure. This network will be a 
standing example of our paper.

In the remainder of this review, we start with an exposé of the tools and techniques 
of network science, intended for non-network scholars, and the questions they are 
designed to answer that pertain to climate change. Then we will review how these tools 
have been used in the science of climate change, organized by topics roughly sorted 
from causal to consequential (even if we recognize that is not strictly meaningful, cf. 
Fig.  1). We aim to cover all issues directly related to the causes and consequences of 
climate change. The area just outside of our scope includes network science of sustain-
ability (Sayles et al. 2019).

Topics and tools of network science
The mathematics of networks is a common language to describe the large-scale struc-
ture of vastly different systems throughout the natural, social, and formal sciences. 
From power grids to the neural system; from the narrative structure of novels to subway 

Fig. 1 Overview of topics related to climate change that have been studied by networks. Most topics in the 
science of climate change are causally coupled. Still, in the discourse, some have more the flavor of causes, 
some are more consequences
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systems; from friendship contacts to money-flows in banks; all these systems can be 
understood as networks (Newman 2018). The function of these systems is, to some 
extent, determined by the way they are connected (Newman 2018). A first step to ana-
lyze them is representing them as graphs—mathematical objects consisting of nodes 
pairwise connected by edges. Once you can represent a complex system by a network, 
you can choose from an abundance of methods to analyze it (Newman 2018; Barabási 
2016). This section will overview these methods, and explain how to adapt these meth-
ods to specific needs. It is organized around four typical questions that network science 
can help to answer. As a working example, Fig. 2A shows a diagram of the components 
and interdependencies of a state-of-art climate model (adapted from Ref. Knutti and 
Rugenstein (2015)). In Fig. 2B, we plot the same diagram by a force-directed algorithm 
to highlight its network structure. This network will be a standing example of our paper. 
Code for the non-standard methods we use, and the data, can be found at https:// github. 
com/ pholme/ ncc.

Identifying important nodes and edges

One approach is to zoom into individual nodes and edges and investigate their function. 
Often one would seek a ranking of the nodes or edges in order of importance. These 
would then be a priority list of what nodes to protect (in, e.g., an ecological network 
(Allesina and Pascual 2009)) or influence (in, e.g., a network of stakeholders in green-
house-gas-emitting industries (Bergsten 2019; Liu et al. 2015; Sayles et al. 2019)).

The meaning of importance ultimately depends on several factors: what the network 
represents, what dynamics are coupled by the network, how one would like to influence 
the system, and what kind of interventions are at hand. However, even though there are 
innumerable answers to these questions, the measures typically fall into a few different 
categories: centrality, vitality, and controllability measures.

Fig. 2 The causal structure of a climate model. The network in panel A, adapted from (Knutti and Rugenstein 
2015), illustrates some components and their interdependencies in a typical large-scale climate simulation 
model. In panel B, we show the same network as a directed graph where we keep the color coding of the 
initial illustration

https://github.com/pholme/ncc
https://github.com/pholme/ncc
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The simplest importance measure is the degree—the number of neighbors of a node. 
As the name suggests, centrality measures interpret a network as a geometric object and 
use distances and imaginary flows to rank the nodes. One prominent example is Pag-
eRank—the approach to ranking webpages that became the starting point for Google 
(Barabási 2016). Assume a walker jumps from node to node across the network. With a 
probability α (traditionally α—the “attenuation factor”—is set to 0.85), the walker follows 
a random link out from the node where it is. Otherwise, the walker goes to any node of 
the network at random. The PageRank of node i is then proportional to how often the 
walker visits i. PageRank has been applied to directed networks far beyond web pages, 
such as identifying keystone species in foodwebs (Allesina and Pascual 2009). Figure 3A 
shows the PageRank values of the network in Fig. 2.

Another common approach to centralities is to look at the shortest paths between 
pairs of nodes in the network. The betweenness centrality of node i is essentially the 
count of shortest paths between all pairs of nodes that pass through i. Several works 
related to climate change have used this measure to rank nodes (Rocha et al. 2018; Far-
rell 2016; Krönke et al. 2020; Donges et al. 2009a, b).

To illustrate the kind of reasoning that goes into the development of new central-
ity measures, let us modify betweenness to suit better the purpose of climate models 
such as the one shown in Fig. 2. Such models have always emphasized cycles (Edwards 
2011)—closed paths rather than shortest paths between distinct node pairs. So, rather 
than counting the latter, we can consider all the simple cycles of the graph—cycles 
where a node appears at most once. Figure 3B shows the counts of simple cycles passing 
through the nodes and edges of our climate-model dependency graph.

Both PageRank and our cycle betweenness rank node 20 (fossil fuel use) the highest, 
but some other nodes are ranked remarkably differently. Node 15 (fossil fuel reserves) 

Fig. 3 Some applications of network-science methods to the network in Fig. 2. Panel A shows the PageRank 
values of the nodes by color. Panel B shows counts of simple cycles by size for both nodes and edges. Panel 
C illustrates a motif analysis. We show all isomorphically distinct three-node subgraphs and their Z-score with 
respect to a degree-preserving null model. A large Z-score means that the subgraph is overrepresented in 
the original graph. Panel D uses the community detection algorithm InfoMap (Rosvall and Bergstrom 2008) 
to split the network into well-defined clusters



Page 5 of 20Holme and Rocha  Applied Network Science            (2023) 8:10  

has a high PageRank but low cycle betweenness, whereas the situation is reversed for 
node 16 (mitigation and adaptation). This shows that one needs to be careful in choosing 
a centrality measure that is readily interpretable in one’s investigation. Better still would 
be to validate centralities before picking one—i.e., to pick the measure with the highest 
predictive or explanatory power regarding some observed or simulated outcome.

Mesoscopic structures (modules, motifs, clusters, or communities)

If we zoom out from the node- and edge-centric perspective of importance measures, 
we come to mesoscopic structures. At this scale, network methods typically concern 
finding subgraphs that could represent functionally or conceptually clear subsystems.

Methods to discover network motifs are a common mesoscopic analysis tool (see Refs. 
Krönke et al. (2020); Lubell et al. (2014); Jasny et al. (2015) for applications to climate 
change). Motifs are statistically overrepresented subgraphs compared to the average of 
a null model (Alon 2007). Often one can interpret motifs analogously to components of 
electronic circuitry. For example, the three-node subgraph of nodes 1 and 2 both point-
ing to 3 and 1 also pointing to 2, could function as a logical AND-gate (Milo et al. 2002). 
To keep the calculation fast and the result interpretable, motif analysis is often restricted 
to subgraphs of just three or four nodes.

A crucial step when identifying motifs is to choose a relevant null model. To make 
the motifs meaningful, the model should sample all graphs with the same basic con-
straints as the original graph with equal probability. The most common null model are 
graphs with the same number of nodes and edges and the same degree profile (i.e., the 
same number of nodes with in-degree ki and out-degree ko ) as in the original graph. 
Since our example graph represents a circulation model constructed to be strongly con-
nected (there is a path from every node to every other node), we add the constraint of 
strong connectivity to our null model. We display the result for three-node subgraphs in 
Fig. 3C. The most overrepresented subgraph consists of two mutually dependent nodes 
that both influence a third node. Even though there is only one such subgraph—16 
(mitigation and adaptation) and 17 (climate impacts) influence each other while both 
pointing at 18 (GDP)—such a configuration is so rare in the null model that the motif is 
highly unlikely to appear by chance. Straight feedforward paths like 3 (atmospheric CO2 
concentrations) pointing to 4 (instantaneous radiative forcing) pointing to 5 (effective 
radiative forcing) are so common in the null model that it comes out as an anti-motif (a 
subgraph suppressed by the network-forming forces). Presumably, this could be because 
the middle node could be merged with either of the end nodes when building a climate 
model.

Another mesoscopic methodology in network science is to detect communities (Prager 
and Pfeifer 2015; Peter et al. 2009; Silva et al. 2021)—loosely defined as subgraphs with 
intricate inner circuitry and relatively few in- and output terminals. There is a vast num-
ber of methods for this purpose. The probably most common one, the Louvain method 
(Blondel et al. 2008), heuristically optimizes the Newman-Girvan modularity (Newman 
2018)—a measure of partitions of graphs that increase if many links are within the par-
titions rather than between them. In Fig. 3D, we show the result of another approach, 
InfoMap (Rosvall and Bergstrom 2008), building on an information-theoretic idea that 
algorithms could use relevant communities to compress the description of random 
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walks on the network. From the network structure alone, this method roughly recreates 
the anthropogenic component of the original graph as one community (IV), whereas it 
splits the rest of the network into three communities.

Mechanisms driving the network evolution

Real-world networks are rarely completely random. Instead, they have regularities, 
network structure, that can tell us something about the system’s evolution. A common 
approach is to look at quantities at a network-wide level—thus completing our zooming 
out from node-centric analysis via mesoscopic structures to global properties. The most 
common such inquiry is the study of the probability distribution of degree (Krönke et al. 
2020; Silva et al. 2021; Sugiarto et al. 2015; Tsonis and Roebber 2004; Tsonis et al. 2008; 
Solé and Munteanu 2004). Such are often is heavy-tailed in empirical networks (Barabási 
2016), and there are several mechanisms proposed generating such structures. Fat-tailed 
degree distributions are only one example of interesting global network measures; see 
Refs. Newman (2018); Barabási (2016) for more examples.

Finally, we note there are methods of going straight to inferring the growth mecha-
nisms of networks without trying to reproduce a known network structure (Overgoor 
et al. 2019). Such methods are yet unused in the climate change literature.

How network structure affects the system dynamics

Another common research question in network science is to relate the structure of a 
network to some dynamics occurring on the network (like opinion dynamics—to take 
an example from the climate change literature (Jasny et al. 2015)). Social networks typi-
cally have an overabundance of triangles (Kossinets and Watts 2006), which tend to slow 
down the spreading of opinions or information than spearing on a random network of 
a similar size. Assume A spreads climate-denial sentiments to B and C. Then, if B were 
connected to another node, D, the spreading would have been more efficient since D 
would not necessarily have the same opinion as B.

Another example is the observation that non-normal networks can affect the inertia 
and stability of the dynamics of the system (Asllani et al. 2018). Non-normal means that 
a suitable basis of eigenvectors does not exist (e.g., AAT  = ATA ). Most applications of 
networks in climate science are correlational (see, e.g., Donges et al. (2009a); Boers et al. 
(2017, 2019); Donges et al. (2009b)), meaning that the actual structure and its influence 
on climate dynamics or its impact on the economy are unknown.

Finding a method that suits your project

How network methods enter a research project depends both on the research questions 
and available data. Often one is faced with a choice between using simpler or more com-
plex network representations. Suppose one decides to include information about direc-
tionality, weights of nodes or edges, how these vary in time, etc. Then the predictive 
and explanatory power should, in principle, increase, but the number of available meth-
ods that can handle the complexity of the data would be much fewer. Often, however, 
it is reasonably straightforward to extend a concept to suit your needs—like our cycle 
betweenness (Fig. 3B) or the specialized null-model when calculating motifs (Fig. 3C).
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Finally, network methods do not exclude other approaches)—regression analysis, 
differential-equation modeling, machine learning, etc. One would often use network 
methods to complement, or as a complement to, other methods.

Causes: flows of matter, energy, and opinions
A simple explanation of the causes of global warming does not need more than a 
sentence—gases injected by humans into the atmosphere shield the thermal radia-
tion into space, raising the Earth’s mean temperature. However, going just one level 
deeper, we are hit by a wall of complexity, as alluded to above. In this section, we will 
take a network view of these explanations.

Global circulation models

We start our discussion of concrete networks with large-scale climate models that 
inform the Intergovernmental Panel on Climate Change (IPCC) and decision-mak-
ers worldwide. These are primarily simulation models made with prediction and sce-
nario testing in mind. They are built around a dynamic simulation of fluid motion 
across a physical model of the Earth (Edwards 2011). This fluid simulation is coupled 
with other physical feedback mechanisms and sometimes social components (Fig. 2). 
These couplings are causal—changing a variable at one end of a link can change the 
state of the node at the other end. The causation could happen through meteorolog-
ical flows (of matter, energy, or some other thermodynamic entity), economic cou-
plings, or political influence.

Some design principles of general circulation models are:

• Increasing accuracy by adding missing components and increasing spatial and 
temporal resolution.

• Increasing computational performance and eliminating computational bottle-
necks (Washington et al. 2009).

• Increasing extensibility and facilitating validation by standardizing the compo-
nents of the models.

Simplifying these models has never been a main objective, meaning that they have, 
after over 60 years in the making, reached a degree of complexity beyond what a sin-
gle research group or even a single organization could handle (Krönke et  al. 2020). 
This also means that they represent, relatively completely, our mechanistic under-
standing of climate processes. Furthermore, since these models are meticulously vali-
dated (Flato et al. 2014), they constitute proofs of concept that few other theories, in 
all of science, can match (Holme and Liljeros 2015).

Critics may say that general circulation models are so complicated that they no 
longer represent a scientific explanation (Claussen et  al. 2002). Understanding the 
models (and thus climate) calls for a network analysis, which closes the loop to the 
systems diagrams of yesteryear (Odum and Odum 1976).
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Chemical reaction systems

The primary cycles of atmospheric greenhouse gasses are part of much larger chemi-
cal reaction systems (Centler and Dittrich 2007). To understand the organization 
of these larger systems, one can use network approaches (Silva et al. 2021; Solé and 
Munteanu 2004).

Figure  4 shows a chemical reaction network of the Earth’s atmosphere. Note that 
this network is integrated with the chemical processes of the oceans and land. When 
it comes to CO2 capture, these other global chemistries could aid the biosphere (Lal 
2008). Given the versatility of whole-system network modeling in the ‘omics disci-
plines and biochemical modeling (Barabási 2016; Newman 2018; Alon 2007), it would 
be interesting to construct a database with all reactions on Earth, outside of the 
biosphere.

There are several established ways of analyzing chemical reaction systems. These 
can incorporate more chemical constraints than a pure network-science approach. 
For instance, flux-mode analysis (Orth et al. 2010) is a technique assuming both an 
underlying reaction network and additional restrictions from mass conservation, but 
not reaction kinetics.

It is worth mentioning that chemical reactions lend themselves well to higher-
order network representations (Battiston et al. 2020)—one of the hottest topics at the 
moment in network science. In such abstractions, more than two nodes can interact 
at one time. For chemical reactions, we can, e.g., use this to encode the restriction 
that molecules of two different species need to meet at a point in space and time for a 
reaction to occur. These directions are, at the time of writing, largely unexplored.

Fig. 4 Network structure of Earth’s atmospheric reaction system. Panel A shows a minimal reaction 
system comprising of two reactions. Panel B illustrates a representation with two types of reaction nodes 
(photochemical and non-photochemical). Panel C shows the most common projection to a simple graph. 
Panel D displays a higher-order network representation (Battiston et al. 2020) where the molecular species 
involved in one reaction form a hyperedge—a generalization of edges to represent the interactions of an 
arbitrary number of elements. Panel E shows the atmospheric reaction network of Earth (data from Ref. Solé 
and Munteanu (2004)) in a representation similar to panel B
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Climatic teleconnections

The presence of long-distance correlations in weather patterns has been known since 
the 19th century (Glantz et  al. 1991)—the emblematic example being the El Niño 
Southern Oscillation (ENSO) that connects weather in the equatorial Pacific Ocean. 
Rather than studying the full correlation patterns, one can reduce them to a network 
(Steinhaeuser et  al. 2010). A cell in such a network typically represents a region of 
relatively cohesive weather patterns. Different cells are linked if the condition in one 
cell predicts the weather (technically, authors use pressure (Tsonis and Roebber 2004; 
Tsonis et  al. 2008), temperature (Fan et  al. 2017; Gozolchiani et  al. 2011; Yamasaki 
et al. 2008), rainfall (Boers et al. 2019), or sea currents (Dijkstra et al. 2019)) in the 
other (Tsonis and Roebber 2004). Since we can expect the weather dependency pat-
terns to change because of global warming, understanding the dynamics of climate 
networks could inform climate models and improve our forecasting of climate change 
(Fan et al. 2018).

Once we have established the links of such a climate network, we can describe the 
dynamics of a climatic episode (Gozolchiani et al. 2008). For example, Gozolchiani et al. 
characterized the El Niño phase of ENSO by the El Niño basin (Gozolchiani et al. 2011), 
at the onset, losing its influence on the rest of the networks. After some months, the 
situation reverses, so a large part of the weather network becomes influenced by the El 
Niño basin. A potential area of future research is how changes in network structure pre-
dict the onset of ENSO or other climate oscillations. ENSO, for example, appears where 
an area of the Pacific ocean presents a temperature anomaly large enough to influence 
rain patterns in Asia and South America. In network terms, the ocean cells connect to a 
giant component that synchronizes and reinforces each other.

How to derive meaningful weather and climate networks is an area of active research 
(Fountalis et al. 2014; Ebert-Uphoff and Deng 2012a, b; Donges et al. 2009a, b; Hlinka 
et al. 2013; Runge et al. 2019b, a; Steinhaeuser et al. 2010). In Fig. 5, we show an example 
of a network of Granger causality of weather patterns from Hlinka et al. (2013). Several 
papers on this topic focused on how to derive meaningful networks of weather depend-
encies, others showed that climate networks reflect well-known features of synoptic 
scale meteorology (Wang et  al. 2013; Yamasaki et  al. 2008; Sonone and Gupte 2021), 
or that climate network can help in predicting extreme events (Boers et al. 2014, 2019; 
Malik et al. 2012), or the function of regions in the atmospheric circulation (Wunderling 
et  al. 2022). Some studies focuses on weather events rather than locations—Fan et  al. 
(2017) considered a network where nodes are El Niño events, linked by their similarity. 
Yang et  al. (2021) used extreme events in tree-ring records to construct a network of 
locations experiencing simultaneous extreme weather. Finally, Steinhaeuser et al. (2012) 
presented an unusual climate network study in that it builds on multilayer networks—
networks where there are different classes of nodes and edges (Newman 2018).

Managing common‑pool resources

We can understand many kinds of climate decisions through game theory. Even though 
humans are not necessarily well-informed or relentlessly selfish—as typically assumed 
in economic modeling—game theory can clarify what is at stake in a particular decision.
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Many goods related to climate change are common-pool resources. This means they 
are non-excludable (in principle, everyone has access to it) and rivalrous (the used 
part of the resource becomes unusable or degraded for the future). Most game-the-
oretical studies do not rely on networks, but some do. When agents interact through 
a social network, the network structure can substantially affect the dynamics. For 
example, Chung et  al. (2013) showed that once the social network compels people 
to follow norms (like conserving common-pool resources), more social interaction 
promotes cooperation. This finding was explored in a dynamic setting by Sugiarto 
et al. (2015), who found that such norm-enforcing social interactions could create a 
hysteresis effect and thus the possibility of sudden behavioral (and related ecological) 
changes. On a positive note, social networks could be susceptible to governmental 
interventions (Sugiarto et al. 2017), even though they fail to manage a common pool 
resource when operating in isolation. Furthermore, systems of reinforcement learning 
agents could also sustain limited shared resources (Pretorius et al. 2020).

Fig. 5 Teleconnections in the Earth’s climate. The figure is adapted from Figs. 1 and 7 of Ref. Hlinka et al. 
(2013), and slightly simplified. Panels A and B show regions where the ground temperatures are highly 
correlated. The dots marking the most representative grid point. Panels C and D show Granger causality links 
between these regions. I.e., an arrow from region i to j means that the temperatures at i are correlated to 
those at j if they are shifted forward in time. We omit regions without arrows
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Consequences: impact on nature and society
Now we turn to studies focusing primarily on the consequences of climate change. Such 
consequences are, of course, coupled back to the causative factors, and all cited stud-
ies duly regard themselves as contributing to our understanding of a minor part of this 
grand cycle.

Impact on ecological network structure

Traditionally, ecologists have used networks to study species interactions such as preda-
tion or mutualism (e.g. pollination). Network representations of ecological systems have 
helped assess the potential impacts of climate change on community assembly and its 
stability (Morris 2010), both in modeled (Saavedra et  al. 2013) and empirical mutual-
istic networks (Bascompte et al. 2019), as well as foodwebs (Gilarranz et al. 2016). We 
can expect climate change to affect the niche and geographical range of species distribu-
tions and, with them, the strength of species relationships. Network science has been 
useful in predicting the probability of secondary extinctions given climate disturbance 
(Bascompte et al. 2019) or the effect of warming in fitness depression in host-associated 
microbiomes (Greenspan et  al. 2020). Climate change can cause a shift from bottom-
up to top-down regulation of herbivorous communities in Arctic foodwebs (Legagneux 
et  al. 2014), which implies tracking the change over time of link strength in ecologi-
cal networks. Furthermore, Gilman et al. (2010) used a very detailed model of ecosys-
tem response to climate change and found that ecosystems with more links were more 
robust to global warming. In a similar vein, Schleuning et al. (2016) studied pollination 
and seed-dispersal networks with over 700 species. In a hybrid approach—with cli-
matic niche-breadth estimates coupled to simulations—they concluded that ecological 
networks are more sensitive to plant than to animal extinction under climate change. 
Finally, Yang et al. (2022) gives a good example of how the change in habitat connectivity 
following climate change can be investigated using weighted networks, with applications 
to the mountain frog Quasipaa boulengeri.

Tipping points in ecological networks

Networks have also been used to analyze tipping points in ecological systems, their 
interactions with climate, and potential cascading effects.

Ecosystems at large scales can undergo pervasive and abrupt changes if they trans-
gress tipping points. We can expect climate change to increase the rate of such critical 
transitions (Bolt et al. 2018). For example, the shift from rain forest to savannas has been 
estimated from remote sensing data to have a tipping point at around 1500 mm of pre-
cipitation per year (Verbesselt et al. 2016) or a reduction of more than 40% of area. Cli-
mate change projections for marine ecosystems predict unprecedented abrupt changes 
in global oceans (Beaugrand et al. 2019). The climate system has at least 15 of these tip-
ping elements identified (Lenton et  al. 2019, 2008), and the list readily grows to over 
30 types of critical transitions if we include local and regional ecosystems (Rocha et al. 
2018). While climate-related processes (e.g., temperature increase, changes in precipita-
tion, or drought) are one of the main causes of irreversible change in ecosystems, it is 
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seldom the only one. A network study that exploited the bipartite structure of drivers 
and regime shifts showed that climate-related variables often interact with food produc-
tion (e.g., agriculture, fishing), changes in nutrient flow, and urbanization (Rocha et al. 
2015).

Some systems with tipping points have connectivity features where networks can 
enrich the analysis. For example, shifts from rainforests to savannas are mediated by 
moisture recycling feedbacks, i.e., rain transport dynamics from one place to another. 
Networks have been used to make such connections explicit in space and time. For 
example to assess how regime shifts in a region of the Amazon can affect the likelihood 
of regime shifts in another area (Krönke et al. 2020).

Tipping points have also been hypothesized to be interconnected across different cli-
mate (Lenton et al. 2019) and ecological systems (Hughes et al. 2013; Steffen et al. 2018). 
The network literature already offers some tools that might be adequate to address 
potentially cascading tipping effects. For example, an increase in connectivity and a 
decrease in modularity can amplify tipping cascades (Brummitt et al. 2015, 2012). Ref. 
Krönke et  al. (2020) showed that some network motifs can destabilize interconnected 
tipping elements, and high clustering (many triangles) exacerbates the systemic vulner-
ability to regime shifts. Feedforward loops can decrease the coupling strength necessary 
to initiate cascades, a finding applied in models of the Amazon rainforest (Wunderling 
et al. 2020) and some climate tipping points (Wunderling et al. 2020). Yet, these models 
assume a small number of systems and a known coupling mechanism. The analysis of 
high-order motifs on causal networks, such as feedback cycles, has enabled the explora-
tion of alternative mechanisms that couple tipping elements (Rocha et al. 2018).

We still lack empirical evidence of cascading tipping points (Scheffer and van Nes 
2018), which is thus one of the most pertinent open questions. Combining network-
based causal inference methods with climate simulations or Earth system observations 
are likely fruitful avenues for future research.

Impact on socio‑ecological systems

Predicting anthropogenic responses is perhaps the most challenging task in climate sci-
ence. That much said, it is maybe not hopeless—sometimes humans behave very pre-
dictably. Mitigating climate change is maybe not hopeless either—sometimes humans 
collectively solve emergencies with exceptional efficiency.

Models of human response to climate change are very diverse, but many focus on 
feedback effects from the climate to human behavior. For example, Peter et  al. (2009) 
studied how a warmer climate would affect biofuel production. They construct a com-
plex Bayesian model of South African agriculture, including around a hundred variables 
(like “soybean water use”) and their dependencies. Mandel et al. (2020) constructed and 
analyzed a network of countries where edges represent a likely transmission assuming 
climate-friendly technologies spreads by contagion. Yletyinen et al. (2021) used a simu-
lation of ecological decision-makers to argue that oversimplifying social interactions be 
gravely misleading about environmental outcomes. A yet more complex simulation plat-
form, including networked human decision-makers and ecosystems alike, was presented 
by Donges et al. (2020). We note that the authors call the model simple, and given all 
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components they seek to include, it is a fair description. Still, compared to, e.g., the net-
worked game-theoretical models discussed above, it is very intricate.

Several studies concern the impact of global warming on the management of limited 
resources. Prager and Pfeifer (2015) took a network approach to understand rainwater 
management among Ethiopian smallholders and its resilience to climate change. The 
authors constructed a multilayer network representation with separate nodes for peo-
ple and plots. Links in the plot-plot networks represented water flow from one field 
to another. The social network of smallholders reflected the fields in that downstream 
farmers would depend on their upstream neighbors. Mina et al. investigated the man-
agement of forests by a combined spatial simulation and network analysis (Mina et al. 
2021). Many studies used similar social-network approaches to understand the resilience 
of governance of shared resources, but less directly related to climate change. For exam-
ple, Janssen et  al. (2006) used a network approach to analyzing irrigation in Darwin, 
Australia, and Lubell et al. (2014) employed exponential-random graph models (van der 
Pol 2019; Newman 2018) to understand water management in the Bay Area, California.

A vastly different type of social impact is population displacements in response to 
global warming (Faist and Schade 2013). Cattaneo (2019) pointed at the role of existing 
social networks in the demographic changes from people seeking environmental refuge 
likely ahead of us—a paper without explicit network analysis but hinting at the need for 
such. Researchers have also studied the climate-change impacts of networked infrastruc-
tures like roads (Galbraith et al. 2005; Chinowsky et al. 2013) and power grids (McColl 
et al. 2012). However, so far, without explicitly quantifying the implications in terms of 
network structure.

Opinion dynamics

Climate action is a consequence of social information spreading, both in the networks 
of stakeholders and politicians and among the general public. In other contexts, social 
influence over networks of friendships is a well-studied topic (Lehmann and Ahn 2018). 
Typically, articles either present analyses of social media data (Cann et al. 2021) or simu-
lation studies (Sugiarto et al. 2017, 2015).

In network studies of social-media posts about climate change, the nodes are indi-
viduals, and links represent information sharing from one person to another. We will 
mention four examples, all drawing data from Twitter. The boundaries of the data set 
then define the scope of the study. For example, Cann et al. analyzed a Twitter network 
to understand public sentiments around the announcement of the US withdrawal from 
the Paris Agreement. Using community detection (Blondel et al. 2008), they discovered 
a binary split (although far from complete) into supporters and antagonists of the US 
action. Vu et al. (2020) also used Twitter data, but (rather than gleaning tweets about 
a specific topic within a particular time window) they gathered the follower network 
within a set of NGOs in the climate change sector. Their analysis focused on employ-
ing centrality measures to identify key actors. Tyagi et al. (2020), used a richer network 
representation—a so-called “signed network” where positive links represent agreement 
and negative represent antagonism. They could characterize polarization by analyzing 
the boundary represented by negative links. In our final example, Goritz et al. argue that 
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one can use network analysis of discussions on social media in teaching topics on cli-
mate change (Goritz et al. 2019).

Policy networks

The study of policy networks is a well-established field within political science. A pol-
icy network consists of actors—organizations or individuals—linked by common inter-
ests or beliefs concerning policymaking (Rhodes 2014; Kim 2020). Whereas the actors 
are typically officially recognized entities, links could be anything from informal to 
institutionalized.

How the scientific information about climate reaches decision-makers can be stag-
geringly complex. Broadbent and Vaughter investigated how information the IPCC 
enters the information flow of policy networks in New Zealand and Japan (Broadbent 
and Vaughter 2014). In a similar study, but focusing on information spreading by climate 
denialists, Farrell Farrell (2016) used official statements, press releases, and news arti-
cles to study the network of information spreading intended to hinder climate action. 
Furthermore, by employing topical modeling techniques from natural language process-
ing and network centrality measures, Farrell concluded that top corporate actors are the 
drivers of this movement. In addition, he noted a trend of actors deliberately obscuring 
this network. A few papers studied the network of information sharing among policy 
actors (Jasny et al. 2015; Williams et al. 2015). Using motif analysis (presented above), 
they found evidence of echo chambers that effectively align the information that reaches 
the actors. If the communication happens between agents of different viewpoints, to 
could, however, mitigate some environmental crises (Barnes et al. 2016).

Researchers have also used questionnaires to map the connections between policy-
makers. Howe et al. focused on the Canadian climate policy network (Howe et al. 2021). 
Using an exponential random graph framework (Newman 2018), they studied how the 
position of actors in the network predicted their stance on specific issues like oilsand 
exploitation. Lee and van de Meene used the same approach—analyzing questionnaire 
data by exponential random graphs—to elucidate how cities learn climate action from 
each other (Lee and van de Meene 2012). Ylä-Antilla et  al. argue for an international 
perspective for interorganizational policy network research on climate change compar-
ing Canadian and Finnish data (Ylä-Anttila et al. 2018). Papin (2020) and Bansard et al. 
(2017) take an international perspective on networks of cities and their policies with 
respect to climate change. Another data source is event participation, where companies 
and governmental institutions are connected to the climate related meetings they attend. 
Heikkinen et al. (2022) uses such a time-resolved event data together with tailor made 
network analysis methods to summary of the structural changes to this phenomenon.

Policy networks are coupled with financial networks. Stolbova, Monasterolo, and Bat-
tiston used economic theory and data to analyze how shocks of new climate policies 
propagate through financial networks (Stolbova et al. 2018). Brulle studied another type 
of financial network—the network of money flow among organizations of the climate 
change counter-movement in the USA (Brulle 2013)—concluding that the most cen-
tral companies are the drivers of this system. I.e., the same conclusion reached by other 
methods by (Farrell 2016).
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Discussion
Summary

For over a decade, climate scientists have employed network methods—from govern-
ance studies via ecological tipping points to the web of climatic teleconnections. To net-
work scientists from other backgrounds, this seems obvious. The second of the Essential 
principles of climate literacy by the U.S. Global Change Research Program states that 
“climate is regulated by complex interactions among components of the Earth system.” 
The United States Global Change Research Program (2009) This almost directly portrays 
the Earth system as a complex network, so naturally, we need complex-network methods 
to understand it.

To a mainstream climate-change or Earth-system scientist (Schellnhuber 1999), net-
work science will feel like the familiar stranger you see on your commute every morn-
ing. All these fields share a great deal of intellectual ancestry. All recognize the failure of 
reductionist science to account for emergent phenomena like global warming and the 
human response to it. They also differ from machine-learning applications in that they 
rely on causal arguments rather than learning from examples. The latter is, of course, 
challenging when it comes to dealing with the current (and only known) anthropogenic 
global warming. On the other hand, we need data science too, as it is arguably a power-
ful tool for several questions related to climate change (Sugihara et al. 2012).

Climate science has had a strong causal grounding due to its mechanical modeling 
tradition and comprehensive estimates of uncertainty (Flato et al. 2014). Climate data, 
whether Earth system observations or scenario modeling output, usually comes as 
high dimensional arrays that lend themselves for further exploration of causal interde-
pendencies of the climate system (Runge et al. 2019b), and its interaction with the bio-
sphere (Krich et  al. 2019), technosphere (Donges et  al. 2017), or social systems (Otto 
et  al. 2020). Modern methods for causal inference offer new opportunities to explore 
causal connections by reducing the high dimensional space to a directed network (Sugi-
hara et  al. 2012; Runge et  al. 2019b; Krich et  al. 2019; Runge et  al. 2019a). Caution is 
needed, however, to ensure that observations are long enough to capture the time scales 
of the dynamics or that the resolution captures the fast and slow processes of the inter-
actions of interest. The interplay between climate and other spheres are fruitful areas of 
research, where networks as boundary objects are likely to play an important role. Net-
works can, thus, enter causal modeling in many ways: the input data could be a network 
(e.g., networks of information flow), the output could be a network of causal connections 
of the same types of units (e.g., climatic teleconnections), or a causal network connect-
ing model components to a greater whole (cf. Fig. 2).

Limitations of network approaches

Network-based methods are tools in the toolbox, not an entire toolbox. The problems 
that one could solve with a pure network approach are limited to those where the only 
available data is a network of binary, possibly weighted, interactions (e.g., policy net-
works). When other information is available, a network approach would typically also 
involve different types of modeling. For example, a differential equation system could 
be described by the network (leading to systems dynamic type models), or the network 
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could result from spatial data (like meteorological teleconnections). Indeed there is a 
full spectrum, from pure network problems to those where network methods only add a 
marginal value.

Conclusion and future directions

Applications of network science to climate change are still far from mature, and in all the 
topics mentioned in this review, there is more work to do. Recognizing the social factors 
behind many of the processes in play (Blok 2010; Venturini et al. 2023), we believe appli-
cations of social network analysis are particularly promising. One understudied issue 
is the impact of climate change on vulnerable populations (Jones et al. 2021). Another 
interesting focus area is migration triggered by environmental deterioration (Faist and 
Schade 2013). Social networks are thought to be a critical determinant of the migration 
flow, where international migration, in particular, is guided by existing social ties. Net-
worked infrastructures could also be sensitive to climate change (Kourtis and Tsihrintzis 
2021; Galbraith et al. 2005) and are relatively rarely studied by the methods of network 
science. Finally, we believe climate science itself and our understanding of climate 
changes in all its complexity also would benefit from network studies (cf. Fig. 2).

To summarize, network science has found its way into the toolbox of an increasing 
number of climate scientists. We envision that network approaches eventually become 
a network in itself, methodologically connecting different areas of the science of climate 
change.
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