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Abstract 

In this paper, we propose a general framework for the reconstruction of the underlying 
cross-regional transmission network contributing to the spread of an infectious disease. 
We employ an autoregressive model that allows to decompose the mean number of 
infections into three components that describe: intra-locality infections, inter-locality 
infections, and infections from other sources such as travelers arriving to a country 
from abroad. This model is commonly used in the identification of spatiotemporal pat-
terns in seasonal infectious diseases and thus in forecasting infection counts. However, 
our contribution lies in identifying the inter-locality term as a time-evolving network, 
and rather than using the model for forecasting, we focus on the network properties 
without any assumption on seasonality or recurrence of the disease. The topology of 
the network is then studied to get insight into the disease dynamics. Building on this, 
and particularly on the centrality of the nodes of the identified network, a strategy for 
intervention and disease control is devised.

Keywords: Network reconstruction, Betweenness centrality, Autoregressive model, 
COVID-19, Optimal control

Introduction
Modeling the evolution of infectious diseases with the goal of forecasting the numbers of 
infections answers a wealth of questions in a range of disciplines from medicine, genet-
ics, pharmacology to social and economic sciences [1, 2], and is at the heart of subse-
quent investigations on practical aspects: from management of resources (assessment 
of the preparedness for disease containment and readiness of the healthcare system) to 
possible intervention measures (vaccination and testing strategies [6], government con-
trol measures) and their consequences [7]. Some of these studies have a regional focus, 
investigating a disease propogation in countries, or regions of a country, while others 
have considered its dynamics in larger geographical contexts [3–5].

The different types of modeling that have been applied to investigate the dynamics of 
infectious disease have a long history in epidemic modeling. Compartmental models (e.g., 
SIR, SIER) are a well known class of models. They study the interplay between susceptible, 
infected and recovered individuals within communities, with different degrees of spatial 
refinement. For instance, in the so called networked compartmental models, interactions 
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between communities are encoded in a network [8], often to identify the spatial and tem-
poral origin of the disease [9]. In statistics, spatial/and/or temporal point processes are 
often employed to study the dynamics of the disease. Some models allow for the number 
of infections to be triggered by those at previous times, others can incorporate, as covari-
ates, additional available information such as demographics, human mobility, and policy 
decisions. Some recent work follows this direction [10–12]. Epidemic models can also be 
recast in a standard regression framework, where the time series of infection counts are 
fitted by specifying a distribution for the counts and the associated conditional mean func-
tion [13, 14]. In most of these studies, the goal is to predict and capture the spatio-temporal 
patterns of disease spread. The major contribution of [13, 14] is in the study of diseases 
which exhibit a certain periodicity or recurrence, like influenza for example. Recently, this 
approach was implemented on COVID-19 data [3–5] to mainly break down the contribut-
ing factors to the disease spread. We observe that this model’s richness is not fully explored 
as it has an underlying time-evolving transmission network, which was never fully identi-
fied and whose properties have never been explored.

In this paper, we propose a generic framework for the recovery of the transmission net-
work in infectious diseases. Our method does not assume any periodicity in the dynamics 
or any underlying recurrence. It hinges on the seminal work of [13, 14], which is a statistical 
regression analysis of infection counts over time and aggregated over localities, in a coun-
try, with a mean function that takes account of the spatial proximity of these localities. The 
fitted model is then used to reconstruct a weighted network, which constitutes the second 
component of our framework. The salient point of our method of network recovery is that 
smoothness conditions on the temporal data are not required [15], and neither is the near 
steady-state dynamics that is instead necessary for the perturbation/response approaches 
to work [16–18]. Our reconstruction is similar to that in [19], while it differs from proce-
dures that rely on the deterministic evolution of the disease [20, 21]. The third component 
of our framework is the study of the changes in the topology of the underlying recovered 
network and the computation of centrality measures (specifically the nodes’ betweenness 
centrality), from which the recommendation of optimal control measures ensues. We apply 
the method in the case of COVID-19 in Lebanon.

Model definition
Our starting point of the analysis is a statistical model that captures the spatio-temporal 
dynamics of the infections, under the statistical framework discussed in [13]. Namely, 
we consider the number Yit of infections recorded in a given locality i in a given day t, as 
independent, conditionally on the counts at previous times, random variables distributed 
according to a negative binomial distribution having a mean function decomposed into 
three terms as follows µit = E(Yi,t |Yj,t−1, ei):

The first two terms constitute the auto-regressive part of the model: one being the con-
tribution to the mean infection µit in locality i at time t, due to the infections within i at 
the previous day, the other being the contribution to µit due to positive cases from other 
localities j also at the previous day. The final term accounts for all other contributions not 

(1)E(Yi,t |Yj,t−1, ei) = �itYi,t−1 + φit
j �=i

ωijYj,t−1 + νit ei.
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captured by the first two, such as infected people who entered the country under study 
from abroad. For simplicity we will refer to the last term νit ei as the component due to 
travel and assume that it is proportional to the size of the population ei of the locality. 
The log-transforms of non-negative coefficients �it and φit , which quantify the contribu-
tion of the past observations to future counts, and the log-transform of the parameter νit 
are each modeled as a linear function of time, with a locality-specific slope to allow more 
flexibility across localities. Intercepts and slopes are estimated from the data. Finally, we 
model ωji as a power function of the geographical distance dij of the localities: ωji ∝ d

−f
ij  . 

This is assumed because previous studies have shown that mobility flows are governed 
by power-law functions of inter-localities distances [22–25].

Network identification and characterization
We wish to focus now on the inter-locality term and study it from a different perspective. 
To do so, observe that the second term in the mean equation (1) can be re-written as fol-
lows: 

∑
j  =i Aij(t)Yj,t−1 , where Aij(t) = φit · ωij . It can be interpreted as the contribution 

to the cases at time t in locality i from cases from locality j at the previous day. We can 
suggestively think of A = (Aij) as defining the weights of a network between localities: 
the transport network ω describes the traffic flow between localities, and thus predates 
the disease, while φit is the number of transported cases from i into neighboring locali-
ties. A(t) explicitly depends on t since the coefficients of log φit , which are linear func-
tions of t, and the power f in the definition of ω are estimated over each interval [0, t].

This complex network A drives the cross-localities dynamics. We will now suggest 
employing some useful summary metrics for A(t) and its time evolution in order to 
understand its properties, and accordingly prescribe adequate control measures.

One useful summary metric is the modularity, which is a measure of cluster formation 
in a network. More specifically, the modularity Q of a given network A is defined with 
respect to a given grouping of its nodes. We follow [27] where the grouping of the nodes 
is determined by a stochastic procedure that reveals densely connected subgraphs. An 
illustration of a grouping is given in Fig. 1.

Given this group membership, the modularity of A is then computed according to the 
formula:

Fig. 1 An example of modular network along with its detected communities (encircled) is shown. The nodes 
are color-coded based on their memberships to these communities
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where h denotes the total number of edges, ki and kj are the degree of nodes i and j 
respectively, ci labels the group to which i belongs, and δ is the Kronecker delta.

We also suggest to analyse additional topological measures for the networks: 
mainly, the clustering coefficient, the average path length , and the strength distribu-
tion [29, 30]. These are generally used to classify networks into random, scale-free, 
or regular. The clustering coefficient C of a network is a measure of transitivity that 
counts the ratio of the number closed triplets to the number of all (closed and open) 
triplets. A triplet is closed if all the three connections between the three nodes exist 
and is open if one of the links is missing. The average path length l of a network is 
given by the mean distance over all pairs of vertices, where distance is the number of 
edges in the shortest path joining them. An illustration is shown in Fig. 2.

Finally, a node’s strength is the sum of the weights of its edges. Namely, for the i-th 
node:

Small-world or scale-free networks (that is, networks with node degrees and strengths 
distributed according to a power-law) are characterized by high clustering coefficients 
and low average path lengths compared with those of regular/ordered graphs [29, 30]. 
Random graphs are, on the other hand, characterized by low average path lengths and 
low clustering coefficients compared to regular graphs. An illustration of the three dif-
ferent network types is shown in Fig. 3.

Q(A) =
1

2h

∑

i,j

δ(ci, cj)(Aij − kikj/(2h)),

si =
∑

j

Aij

j1

j2

j3

j4

Fig. 2 Example of a network with C = 1/3 and l = 8/6 is shown. It has three triplets, one of which is closed 
(triangle). The lengths of the paths from j2 to all others is 1, while that from j1 to j4 is 2



Page 5 of 15Najem et al. Applied Network Science            (2022) 7:85  

Data description and fitting of the regression model
As an application of the framework, the model (1) was applied to the COVID-19 data 
collected in Lebanon. On daily basis, the laboratories from the public and private sectors 
report the confirmed cases to the Epidemiological Surveillance Program of Lebanon’s 
Ministry of Public Health (ESUMOH). Later, the cases are investigated in order to get 
additional demographic information and health condition. The data are then archived 
in a national platform. Specifically, the data we have considered consist of counts 
of COVID-19 recorded daily in each of the 1544 localities of Lebanon from February 
21, 2020 to January 20, 2022. Such localities correspond to Lebanon’s smallest statisti-
cal units called “circonscriptions foncières” or cadastral villages following the Central 
Administration for Statistics (CAS) nomenclature [26]. Recommendations on possible 
interventions and updates on the disease evolution were sought for by the Ministry of 
Public Health at 20 days intervals. Model (1) was fitted using the R package surveillance 
[14] over the intervals [0, t], t = 20 · n for n = 1, . . . , 41 . This allows us to follow the evo-
lution in time of the model parameters until day 820, the last observation point.

Figure  4 displays the aggregated counts over all localities, 
∑

i Yi,t , and the fit-
ted values over the complete time period of our study broken down into the three 

Fig. 3 Examples of random, scale-free, and ordered (lattice-like) networks are shown respectively
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components of the mean function. The fit appears quite adequate. It is in fact a better 
fit to the data than the model with counts assumed to be Poisson-distributed, which is 
an indication of overdispersion in the data. A further comparison of these two models 
in terms of AIC value and prediction errors is provided in Table 1.

We further notice that the model of equation (1) considers a time-lag of one day; 
that is, the future counts depend on the counts recorded on the previous day. Changes 
in the time-lag from one to a few days did not result in any noticeable difference. Our 
analysis provides evidence that the inter-locality infection drives the overall transmis-
sion of the disease [22]. Then, for this reason we shift our focus to the network that 
governs the interaction between localities and observe that it is not purely a static 
spatially-dependent network but rather dynamic and time-evolving: in fact the prod-
uct of time-dependent coefficients with the spatial proximity matrix. Figure  4 indi-
cates that the inter-locality term has the most important contribution to the increase 
in the mean number of infections compared to the intra-locality and travel terms. 
This suggests that the inter-locality transmissions should be the main focus of analy-
sis, and what one learns from their study would be useful for disease control.

The parameter estimates of model (1) for all 1554 localities and their errors can 
not be displayed in an uncluttered fashion but are available from the corresponding 
authors. A sample of the evolution of the inter-locality term φit is shown in Fig. 5.

An example of the reconstructed network is provided in Fig. 6 which is a graphical 
representation of A(15)(t = 300) . The superscript 15 in the notation of A indicates that 
the latter was estimated on the counts data of 15 contiguous 20-day time intervals, 
that is the 300-day time span [0, 20 · 15] from February 21, 2020 to December 16th, 
2020.

Table 1 Comparison of the two models with the same mean function given in Eq. (1) with 
distribution of the counts being negative binomial and Poisson

AIC is Akaike’s Information criterion. SES is the mean squared error: the mean squared difference over the localities of the 
observed and predicted counts at the final time point of the study

ses AIC

Negative binomial 2.88 1,164,119

Poisson 3.65 1,333,453
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Fig. 4 Data and fit under the model of Eq. (1) with negative binomial distributed counts. The three 
colors show the decomposition of the fitted aggregate counts into travel, intra-locality, and inter-locality 
contributions to infections amounting to 3% , 10% , and 87% respectively
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Further, Fig. 7 shows the modularities of the 41 matrices A(41)(t) at days t = 20 · n for 
n = 1, . . . , 41 . The superscript n in the notation A(n)(t) , as mentioned above, indicates 
that A is estimated using the counts of the 20 · n days of the study.

Figure 8 shows the clustering coefficients and the average paths lengths for the matri-
ces A(41)(t) . Similar behavior of both C and l was observed for all A(n) , with n ≥ 10.

One can see a jump in modularity on the tenth 20-day time interval, which we will 
denote by Ic . This behavior may signal the onset of an emerging power-law [28]. The 
evolution of both C and l gives additional evidence for a transition at a point Ic . The 
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Fig. 5 Time evolution of the inter-locality parameter φit is shown for the regions with the highest centrality 
(see Sect. 3)
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Fig. 6 The network A(15)(t = 300) is overlaid on the map of Lebanon to illustrate its complexity. It is 
evaluated at the 300-th day of the pandemic using all 15 time interval of our collected data, that is the time 
span [0, 20 · 15]
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clustering coefficient starts suddenly to increase. At the 10-th interval there is an 
abrupt jump in the average path length as well at Ic (Fig. 8). This is an indication of 
scale-freeness of the network. This property expedites the spread of epidemics unlike 
what would occur in ordered networks, which are characterized by a slower spread 
because they possess a high C and an l that scales with system size [31, 32].

To characterize the transition to scale-freeness, we now analyse the distribution of 
the strengths of the nodes, as additional evidence for change in the network topology 
at the 10-th interval Ic . Figures 9 and 10 show the empirical and estimated distribu-
tions of the strengths (in fact, the survival function P(S > s) ) of A(n)(t = 20 · n) , at 
the time intervals n = 1, . . . , 41 on a log-log scale. We note that a transition occurs 
at t = 20 · 10 , where the distribution becomes linear, which is indicative of a power-
law (Pareto distribution): P(X ≤ x) = 1− (β/x)α−1 , for x ≥ β . The exponent α and the 
boundary value (scale) β are estimated by maximum likelihood following [33].

Figure 11 summarizes the estimates of the exponents for these networks and their 
standard errors (obtained by non-parametric bootstrap).
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Fig. 7 The modularity of the network A(n)(t) is shown as a function of time t = 20 · n , with n = 1 . . . 41 . It is 
measure of the quality of the division of a graph into subgraphs
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Fig. 8 The figure shows the clustering coefficient and average path length for A(41)(t) , which are the 
matrices estimated using the data from the start of the pandemic to the 820-th day ( 41 · 20 ) evaluated at 
t = 20 · n , where n is the index of the time intervals



Page 9 of 15Najem et al. Applied Network Science            (2022) 7:85  

After the 180th day, that is for time intervals labeled by the index n ≥ 10 , most power-
laws have very close exponents of about 2.5. This signals the stabilization of the net-
work topology. Thus, Ic marks the onset of the emergence of the steady state network. 
We think that only above this point any prescription of control measures is likely to be 
efficient as the revealed network topology, relying on the daily counts, has stabilized. 
One can wonder if there is any explanation on why the stable phase has set in during 
this interval Ic , and not before or after it. Ic chronologically coincides with the period 
between August, 19, 2020, and September 7, 2020. Perhaps, the blast in Beirut which 
occurred on August 4th and in the following weeks of social protests, personal precau-
tion measures (such as social distancing and wearing of masks) were compromised. 
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Fig. 9 Empirical and estimated distributions of the strength for the matrices A(n)(t = 20 · n) with 
n = 1, . . . , 20 are shown
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Fig. 10 Empirical and estimated distributions of the strength for the matrices A(n)(t = 20 · n) with 
n = 21, . . . , 35 are shown
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Fig. 11 Estimated values α̂ of the exponent of the power-law distributions of the strengths of the nodes of 
the 41 matrices A(n)(t = 20 · n) , n = 1, . . . , 41 , which are represented in Fig. 9. Vertical bars indicate ±2σ̂α̂
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Either of these occurrences may have contributed to the detected change in the network 
type. See the Appendix for the chronology.

Putting the analysis into action: control measures
Having fully characterized the network and identified the steady-state, we now turn to a 
possible use of this analysis to guide an optimal strategy for disease control. The strategy 
will identify some localities as candidates for being isolated or for having their connec-
tions to other localities curtailed. The measure on which the identification is based is 
that of centrality of a node. The betweenness centrality of a node v is defined as [30]:

where σij is the total number of shortest paths from node i to node j passing through 
σij(v) . Therefore, the more central the node is, the more its removal has an effect on the 
network’s connectivity, since its removal would yield a network with more disconnected 
subgraphs. The control strategy we propose involves an iterative procedure, where at 
each step the centralities of the nodes are computed, the node with the resulting highest 
centrality is removed, and the matrix A is updated, as illustrated in Fig. 12.

Other removal schemes of nodes in network exist, but the one we have just described 
has been suggested to incur the highest loss of connectivity for scale-free networks 
[34–39]. In practice, candidate targets for intervention the localities corresponding to 
nodes with higher centralities. We notice that at the policy level this strategy based on 
our analysis was indeed adopted. The localities we have identified through this strategy 
were given priority in the national vaccination campaign. On the other hand, the recom-
mendations we put forward based on this analysis were only partially adopted in target-
ing the high centrality localities for lockdown and intervention measures, as the decision 
making process involved other ministries and stakeholders. However, we conclude by 
considering theoretically the would-be repercussions of such implementation. Clearly, 
the loss of connectivity would impede the evolution of the disease since the localities 
which are contributing the most to the infection would be isolated. For example, remov-
ing around 20% of the most connected localities on the basis of their betweenness cen-
trality would lead to 80% loss of connectivity as shown in Fig. 13.

g(v) =
∑

i �=v �=j

σij(v)

σij

Fig. 12 The figure illustrates the iterative scheme. First, the node with the highest centrality j2 is 
disconnected by removing all its links, as it is the node with the highest number of shortest paths. The 
resulting network has j1 and j3 with equal centralities and either one can be disconnected. This leads to a 
total loss of connectivity in the network at the end of the process



Page 12 of 15Najem et al. Applied Network Science            (2022) 7:85 

Specifically, the localities causing 80% loss of connectivity are shown in Fig.  14, 
while the fitted model of the top sixteen localities is shown in Fig. 15. An animated 
map of the control strategy is available on this https:// www. dropb ox. com/s/ guham 
z3p7o p6b3y/ anima ted. gif? dl=0.
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Fig. 13 The loss of connectivity versus the fraction of removed nodes for the cascading and non-cascading 
strategies

Fig. 14 The map shows the localities with the highest centrality whose removals lead to 80% loss of 
connectivity

https://www.dropbox.com/s/guhamz3p7op6b3y/animated.gif?dl=0
https://www.dropbox.com/s/guhamz3p7op6b3y/animated.gif?dl=0
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Conclusion
In this paper, we have proposed a framework that can be used to inform control meas-
ures for epidemics in a country for which infections counts aggregated over local regions 
are available over time. In particular, and as an example, we have followed the evolution 
of the counts of COVID-19 cases in Lebanon at the level of local administrative units at 
a daily resolution. The framework entails fitting an auto-regressive model to the data; 
recovering an underlying network over which the disease propagates; analyzing such 
time-evolving network to identify topological measures of node centrality that suggest 
an optimal control of the spread of the disease. Specifically, for the data about COVID-
19 in Lebanon the analysis of the topological metrics of the network has given us a hint 
into a transition to a steady state structure that governs interactions between localities. 
After identifying this steady state network, and characterizing it as a scale-free, we have 
proposed control measures based on betweenness centrality of its nodes. The findings 
were taken into consideration in the national vaccination campaign for COVID-19, with 
the identified localities given priority for vaccination.

Appendix: Chronology of COVID‑19 pandemic in Lebanon
In this appendix we summarize the chronology of the COVID-19 pandemic in Lebanon 
from the first recorded case to February 2022. We divide this time interval into 4 peri-
ods, and highlight the main governmental interventions taken to control the spread of 
the disease.
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Fig. 15 The figure shows the counts, along with the fitted model, for twelve localities ordered by decreasing 
betweenness centrality
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Period 1 (February 2020 to June 2020). The first cases are documented. Early lockdown 
measures are implemented with airport closure. Testing is carried out for suspected 
cases, close contacts, and travelers. Cases are mainly within clusters. Aggressive contact 
tracing is adopted.

Period 2 (July 2020 to December 2020): The airport reopens in July 2020. The daily 
number of cases increases progressively and community transmission sets in. On August 
4th, the Beirut blast occurs.

Period 3 (January 2021 to June 2021): The alpha variant is introduced. The case counts 
increase. Lockdown measures are implemented resulting in a decrease of the recorded 
cases. However, after lockdown release, an increase of the number of infections is 
observed until mid-March, with a progressive and sustained decrease up to June.

Period 4 (July 2021 to December 2021). Introduction of the delta variant, which pro-
gressively replaces the alpha variant. Two waves of delta are observed: July–September 
and November–December.

Period 5 (January 2022 to February 2022). Introduction of the omicron variant. High 
transmissibility of the new variant leads to high daily case counts reaching 10,000 on 1st 
Feb 2022.
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